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Abstract

Recently, metamagnetic shape memory alloys have attracted much attention as candidates
for the rare-earth free magnetic refrigerants. These materials undergo the martensitic
transformation (MT) at around room temperature accompanied by a significant entropy
change. The application of the magnetic field at the low-temperature martensitic phase
realizes the magnetic field-induced martensitic transformation (MFIMT). Through the
MFIMT, the materials show an unconventional magnetocaloric effect (MCE), which is
called inverse magnetocaloric effect (IMCE). In this chapter, the direct measurement sys-
tem of MCE in pulsed-high-magnetic fields is introduced. With taking the advantage of
the fast field-sweep rate of pulsed field, adiabatic measurements of MCE are carried out at
various temperatures. Using this technique, the IMCEs of the metamagnetic shape mem-
ory alloys NiCoMnIn and NiCoMnGa are directly measured as adiabatic temperature
changes in pulsed fields. From the experimental data of MCE for NiCoMnIn, the entropy
of spin system in the austenite phase is estimated through a simple mean-field model. By
the combination of MCE, magnetization and specific heat measurements, the electronic,
lattice and magnetic contributions to the IMCE are individually evaluated. The result for
NiCoMnIn demonstrates that lattice entropy plays the dominant role for IMCE in this
material.

Keywords: shape memory alloys, Heusler alloys, magnetocaloric effects, specific heat,
pulsed magnetic field
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1. Introduction

1.1. Magnetocaloric effects and magnetic refrigeration

Magnetocaloric effect (MCE) is thermodynamically defined as a temperature change of magnetic

material due to the variation of an externally applied magnetic field. This effect is a consequence

of the field variation of the entropy of a material. For instance, the application of a magnetic field

to a paramagnet in the adiabatic condition reduces the disorder of spins, which lowers the

magnetic entropy in the material. Since the total entropy is conserved in an adiabatic condition,

the lattice entropy (and the electronic entropy in case of metals) must increase by a comparable

amount of the magnetic entropy decrease. Consequently, the temperature of the material

increases. In the adiabatic demagnetization process, the magnetic entropy is restored from the

lattice and electronic systems, and hence, the temperature of the material decreases. In the MCE

measurement, the adiabatic temperature change or the isothermal entropy change as a function of

applied field is the experimentally measurable quantity. Since the MCE is sensitive to the entropy

change of the material at the magnetic phase transitions, it is useful to map out the magnetic

phase diagram and evaluate the temperature and field variations of entropy by the combination

with the specific heat measurement. The MCE is also applied to the magnetic refrigeration, which

is realized by means of the cycle of adiabatic magnetization/demagnetization and heat exchange

between the magnetic material and the surrounding. This technique has long been used to realize

extremely low temperatures [1, 2].

In recent decades, the magnetic refrigeration based on the MCE has attracted much attention as

an alternative technique to the vapor-compression cycle for the ambient temperatures, which has

been triggered by the discovery of the giant MCE (GMCE) at around room temperatures [3–5].

The GMCE is first observed in Gd5Si2Ge2, which was reported by Pecharsky and Gschneidner [3].

This material undergoes the first-order magnetic and structural phase transition at 276 K with a

giant entropy change. The maximum entropy change at the transition temperature in this material

is about twice larger than that of pure Gd, which is considered as a benchmark of magnetocaloric

material at around room temperature. The GMCE, in this material, appears as a result of the

simultaneous changes in the magnetic and lattice entropy through the first-order phase transition

(FOT). Hence, the total entropy change can exceed the limit of the magnetic entropy change

caused by the spin ordering. For the simultaneous change in the magnetic and lattice entropy,

the strong coupling between the spin and the lattice systems is needed. For this reason, the GMCE

undergoes in many cases the first-order magneto-structural phase transition [3–12].

1.2. MCEs in Ni-Mn-based Heusler alloys

Ni50Mn50�xZx (Z = Ga, In, Sn and Sb) Heusler alloys have attracted a lot of attention because of the

potential applications for novel rare-earth free magnetic refrigerants [13–17]. These alloys have a

cubic (L21) Heusler structure with a space group of Fm3¯m [15]. Some of the non-stoichiometric

compositions undergo martensitic transformation (MT) from a high-temperature austenitic phase

(A-phase: cubic) to a low-temperature martensitic phase of reduced symmetry (M-phase: tetrago-

nal, orthorhombic, or monoclinic) at around room temperature (Ni50Mn25Ga25 is the only

Ni-Mn-based Heusler alloy that shows the MT in the stoichiometric composition [18]). In these

alloys, the MT temperatures (TMT) and the magnetic properties in each phase strongly depend on
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the Z species and its compositional ratio x [15]. The TMT increases with decreasing x. In the small x

region, the ferromagnetic phase appears at the Curie temperatures in both the A phase (TA
C ) and

the M phase (TM
C ), respectively [15, 16, 19–21]. In addition, the partial substitution of Ni with Co

enhances the exchange coupling between the spins in the alloys, which contributes to increase TA
C

and decrease TM
C and TMT [14, 22]. Ni45Co5Mn36.7In13.3 undergoes MT accompanied with a mag-

netic phase transition from a ferromagnetic A phase to a paramagnetic M phase (monoclinic). The

application of an external magnetic field to the M phase realizes magnetic-field-induced martens-

itic transformation (MFIMT). Kainuma et al. [14] reported, for the first time, the magnetic-

field-induced shape recovery by MFIMT in this material, which is called metamagnetic shape

memory effect. Owing to the large magnetic-field-induced strain and the large output stress

throughMFIMT,Ni45Co5Mn36.7In13.3 is considered to be a potential magnetic actuatormaterial [14].

In the Ni45Co5Mn36.7In13.3, the MFIMT occurs as it is accompanied by significant increase of

entropy, whereas the applied magnetic field aligns the spins parallel to the field direction and

reduces the magnetic entropy [14, 22]. This unconventional phenomenon is called the inverse

magnetocaloric effect (IMCE). The IMCEs were also observed in other compositions Ni50Mn50�xZx

(Z = Ga, In, Sn and Sb) [13–16, 19–23]. The IMCE indicates the significant positive change in

entropy through the MFIMT that exceeds the negative contribution from the spin ordering.

Therefore, the individual evaluations of the electronic, lattice and magnetic entropy changes are

important to elucidate the origin of such positive entropy changes at the MFIMT. In addition, the

direct measurement of MCE is also important because it enables us to evaluate the magnetic part

of entropy as presented in Section 4. However, numerous studies have attempted to understand

the IMCE in these materials through indirect methods such as magnetization and/or specific heat,

which can only reveal the total entropy change [13–17, 19–23].

There are several studies investigating adiabatic temperature change of these Heusler alloys

under magnetic fields. For instance, Liu et al. [17] carried out the direct measurement of IMCEs

up to 1.9 T for NiMnInCo. In their experiments, the samples undergo the MFIMT from a pure

M phase to a mixed phase because the magnetic field of 1.9 T is insufficient to complete the

MFIMT. In that case, the quantitative interpretation of the MCE results is difficult. Therefore,

the direct MCE measurements in the wide range of temperatures and magnetic fields are

crucial to provide a greater understanding of this phenomenon.

2. Thermodynamics of MCE

In this section, a brief explanation of thermodynamics of the MCE is provided (refer to Ref. [24]

for more details). Let us start with the total entropy of the system S(T, H, p). The total

differential of S(T, H, p) can be written as:

dS ¼
∂S

∂T

� �

H,p

dT þ
∂S

∂H

� �

T,p

dH þ
∂S

∂p

� �

T,H

dp ð1Þ

Here, T, H and p denote temperature, external magnetic field and pressure, respectively. In the

adiabatic and isobaric condition (dS = 0 and dp = 0), one obtains:
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dT ¼ �
∂T

∂S

� �

H

∂S

∂H

� �

T

dH: ð2Þ

Since the heat capacity of a system at a constant magnetic field CH(T) is defined as CH(T) = T(∂S /

∂T)H, the isentropic temperature change due to the variation of the magnetic field from H1 to H2

can be expressed as:

ΔTadðH1 ! H2Þ ¼ �

ðH2

H1

T

CHðTÞ

∂S

∂H

� �

H

dH: ð3Þ

On the other hand, the isothermal-isobaric entropy change is given by the well-known Max-

well relation:

∂S

∂H

� �

T,p

¼
∂M

∂T

� �

H,p

ð4Þ

Here, M is the magnetization of a material. After integration, Eq. (4) gives

ΔSTðH1 ! H2Þ ¼ �

ðH2

H1

∂MðT,HÞ

∂T

� �

H

dH: ð5Þ

By combining Eqs. (3) and (4), the ΔTad can be expressed as:

ΔTadðH1 ! H2Þ ¼ �

ðH2

H1

T

CHðTÞ

∂M

∂T

� �

H

dH: ð6Þ

Using Eqs. (5) and (6), ΔTad and ΔST can indirectly be estimated from the magnetization and

specific heat measurements. Therefore, many studies employed so far use this method to

evaluate the magnetocaloric properties for the several materials [3–16].

When a material undergoes magnetic phase transitions, the MCEs at the phase boundary show

different behaviour between first- and second-order phase transitions. In the case of the

second-order phase transition, the entropy of a material continuously and reversibly changes,

and hence, Eqs. (5) and (6) can safely be used. On the other hand, the entropy discontinuously

changes through an FOT, and the heat capacity becomes infinite at the transition temperature.

Since the Maxwell relation is relevant only when the entropy is a continuous function of

temperature and magnetic field, the direct application of the Eqs. (5) and (6) for the FOT is

not allowed. Recently, several works proposed some approaches to apply the Maxwell rela-

tions to the FOTs, but it is still in debate [25–31]. Therefore, the direct measurement of MCE

(ΔTad) is crucial to gain a deep insight into the entropic behaviour through the FOTs.

3. Direct MCE measurement system in pulsed-high-magnetic field

As described in the previous sections, the MCE measurements are of particular interest in both

fundamental (investigation of the magnetic phase transitions) and applied physics (magnetic
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refrigeration). Therefore, a lot of experimental techniques of the MCEmeasurements have been

developed so far [32–37]. Recently, Kihara et al. [36] developed a direct measurement system of

MCE under pulsed high-magnetic fields up to 56 T. In this section, the details of their experi-

mental technique are provided.

Figure 1(a) shows the schematic view of the electric circuit for the pulsed field generation

system. The magnetic fields are generated in the solenoid magnet coil by discharging the

energy stored in the capacitor bank [38]. Figure 1(b) shows the time variations of the pulsed

fields generated in the nondestructive magnet installed at the Institute for Solid State Physics

(ISSP), the University of Tokyo. The three curves correspond to the field profiles for charging

voltages of 1, 5 and 8 kV to the capacitor bank, respectively. As shown in Figure 1(b), the

maximum field depends on the charging voltage to the capacitor bank. The total duration of

the pulsed field is about 36 ms. This fast sweep rate of the pulsed field (the maximum sweep

rate is about 104 T/s) has an advantage to realize the adiabatic conditions.

Figures 2(a) and (b) show the schematic and the picture of the sample setup. The sample is

shaped into the thin plate with the thickness of less than 0.1 mm to reduce the eddy current

heating caused by the application of the pulsed field (in case of metallic samples). The mag-

Figure 1. (a) A schematic view of the electric circuit of the pulse magnet system and (b) Magnetic field profiles of the 56-T

pulse magnet at the Institute for Solid State Physics, The University of Tokyo.

Figure 2. (a) A schematic drawing of the sample with the thermometer and (b) A picture of the sample (Ni41Co9Mn31.5Ga18.5)

mounted on the MCE probe.
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netic field is applied parallel to the sample plane to reduce the cross-section of the sample. In

the thermometry under pulsed fields, the sample temperature changes rapidly as a function of

the magnetic field. Therefore, commercial thermometers such as a Cernox® bare chip cannot

be used because of the limitation of their thermal response time [35]. To detect the instanta-

neous change in the sample temperature in the pulsed field, a very small resistive thermometer

is used, in which a patterned Au sensor (thickness: 100 nm) is deposited on a sapphire disk

(thickness: 5 μm). This thermometer is mounted on top of the sample with a small amount of

Apiezon® N grease as shown in Figure 2(b). The small heat capacity of this thermometer

(typical value is about 200 μJ/K at 300 K) and the large thermal conductance of the sapphire

disk realize the fast response to the sample temperature and enable us to measure the MCEs in

the pulsed fields as demonstrated for the NiCoMnIn in the next section. The sample with the

thermometer is fixed on the Pyrex® glass plates, which have low thermal conductance, by the

small amount of glue in order to reduce the heat leak to the surrounding. The probe (assembly

of the sample, the thermometer, the sample holder, the bath heater, etc.) is inserted in the thin-

walled tube made of non-magnetic stainless steel as shown in Figure 3. The sample space

(inside of the tube) is evacuated to reduce the heat exchange between the sample and the

surrounding through the residual gas. The tube is immersed in liquid helium for low temper-

ature measurements. For high temperature measurements, small amount of helium gas is

introduced into the space indicated by “Liq. He” in Figure 3 as a heat exchange gas. During

the measurement, the probe is cooled through the cold finger that is connected to the tube at

the bottom of the probe. The sample temperature is regulated by the feedback operation of the

bath heater (Figure 3). As shown in Figure 2(b), the four Au wires (diameter: 30 μm) are

connected to the thermometer by the small amount of Ag paste. The resistance of the ther-

mometer is measured by the ac method using numerical lock-in technique [35, 36].

Figure 3. A schematic drawing of the probe setup.
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To calibrate the Au thermometer grown on the sapphire disk, the longitudinal magnetoresis-

tances (MRs) are measured in the pulsed fields before the MCE measurements. To carry out the

isothermal measurements, the sample is removed, and the sapphire disk with the thermometer is

placed directly on the Pyrex® glass substrate. Moreover, 1 atm of helium gas is introduced into

the sample space at room temperature. Figure 4 shows theMRs of the thermometer measured up

to 56 T at the various temperatures (black curves). At 0 T, one can confirm the linear temperature

dependence of the resistance of the metallic Au film. The slope is dR / dT = 8.97 mΩ/K. In the

temperature region between 200 and 330 K, the Au film shows the very small MR as shown in

Figure 4, and therefore, the linear temperature dependence of resistance can be seen in the whole

field range up to 56 T. To convert the resistance to temperature, the MRs are fitted by the

polynomial function of the temperature (T) and the magnetic field (H):

RðT,HÞ ¼ a0 þ a1T þ a2H þ a3T
2 þ a4TH þ a5H

2 þ an, ð7Þ

where an for n = 0,1,2,… is the polynomial coefficient. The result of the fitting by this polyno-

mial function for n = 0,1,2,…,35 is in good agreement with the data as shown by the rainbow

surface in Figure 4. The deviation of the fitting function from the data points is within 4 mΩ

over the entire range of temperatures and magnetic fields, which corresponds to the error of

the temperature of 0.45 K. Hence, this Au film thermometer enables the accurate MCE mea-

surements in the pulsed fields up to 56 T. The validity of this technique was demonstrated in

the wide range of temperature through the measurements on Gd at around room temperature

and on Gd3Ga5O12 at low temperatures [36].

Figure 4. Magnetoresistance of the Au film thermometer deposited on a sapphire disk measured in the pulsed field up to 56 T

at the various temperatures (black curves). The rainbow surface is the fitting to the polynomial function discussed in the text.
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4. Magnetocaloric properties of metamagnetic shape memory alloys

4.1. Experimental procedures

In this chapter, polycrystalline samples of Ni45Co5Mn50�xInx (x = 13.3 and 13.5) and Ni41Co9
Mn31.5Ga18.5 were used for the MCE, magnetization and specific heat measurements. The

samples of Ni45Co5Mn50�xInx (x = 13.3 and 13.5) were prepared by the induction melting

method. The ingots were annealed at 900�C for 24 h under argon atmosphere. The samples of

Ni41Co9Mn31.5Ga18.5 were prepared by the arc melting method. The ingots vacuum encapsu-

lated in a quartz tube were annealed at 800�C for 72 h and then quenched in cold water.

Magnetization and MCE measurements were performed in pulsed-high-magnetic fields. The

pulsed fields are generated by the 56-T magnet at the ISSP. The heat capacity measurements in

steady fields were carried out using a thermal-relaxation method in a physical property

measurement system, QuantumDesign (PPMS).

4.2. NiCoMnIn

4.2.1. Magnetization measurements

As described in Section 1.2, the metamagnetic shape memory alloy Ni45Co5Mn36.7In13.3
undergoes the MT at around room temperature. Figures 5(a) and (b) show the isothermal

magnetizations of the Ni45Co5Mn36.7In13.3 measured at 310 and 280 K, respectively. The sample

is in the ferromagnetic A phase at 310 K, where the M-H curve shows the ferromagnetic

behaviour as shown in Figure 5(a). On the other hand, as shown in Figure 5(b), the magnetiza-

tion increases steeply at the MFIMT, when the magnetic field is applied to the paramagnetic M

phase. Here, the transition fields are defined asHaf for the field increasing process andHms for the

field decreasing process in Figure 5(b), respectively. The M-H curves measured at the various

temperatures are shown in Figure 6(a). One may note that the application of the pulsed-

high-magnetic field up to 25 T can complete the MFIMTs in the entire temperature range. From

the M-H curve at 4.2 K, the saturation magnetization moment (Ms) in the ferromagnetic A phase

is estimated asMs = 1.68 μB/f.u. Here, μB is the Bohr magneton. A formula unit (f.u.) is defined as

Ni0.45Co0.05Mn0.367In0.133. The magnetic phase diagram of Ni45Co5Mn36.7In13.3 determined from

Figure 5. M � H curves measured in the pulsed magnetic fields at (a) 310 and (b) 280 K for Ni45Co5Mn36.7In13.3 [39].
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the M � H curves is shown in Figure 6(b). The M � H curves and the magnetic phase diagram

for Ni45Co5Mn36.5In13.5 are also provided in Figures 7(a) and (b). Hereafter, we denote In13.3 for

Ni45Co5Mn36.7In13.3 and In13.5 for Ni45Co5Mn36.5In13.5, respectively. The saturated magnetization

in the ferromagnetic A phase for In13.5 is also estimated as Ms = 1.76 μB/f.u. As shown in

Figures 6(b) and 7(b) and described in Section 1.2, the magnetic phase diagram of Ni45Co5
Mn50�xInx is sensitive to the compositional ratio x. However, the saturated magnetizations of

the two compositions are similar.

The total entropy change through MFIMT (ΔStot) can be estimated from the well-known

Clausius-Clapeyron equation:

μ0

dH0

dT
¼ �

ΔStot

ΔM
: ð8Þ

Here, μ0 = 4 π � 10�7 H/m is the space permeability. The ΔM is the difference of magnetization

between the A and M phase. The H0 = (Hms + Haf) / 2 is used for the transition field. The results

are shown in Figure 8, where the ΔStot is defined as the entropy change from the M to the A

phase. The ΔStot at the MT temperature at the zero field is estimated to be 26 J/kg K for In13.3

and 23 J/kg K for In13.5. These values are in good agreement with that obtained from the

Figure 7. (a) M � H curves measured in the pulsed magnetic fields at the various temperatures and (b) the magnetic

phase diagram for Ni45Co5Mn36.5In13.5 (In13.5) [39].

Figure 6. (a) M � H curves measured in the pulsed magnetic fields at the various temperatures and (b) the magnetic

phase diagram for Ni45Co5Mn36.7In13.3 (In13.3) [39].
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specific heat measurements [39]. The ΔStot decreases with decreasing temperature in both

In13.3 and In13.5 and reaches zero at around 100 K. This indicates that the entropies of A and

M phase coincide with each other below 100 K. In other words, the driving force of the MT

decreases and reaches to zero below 100 K, which increases the hysteresis of the M � H curves

at low temperatures. The MCEs can be calculated by theM � H curves using Eq. (5), which are

compared with the results of direct measurements in the next section.

4.2.2. MCE measurements in the pulsed magnetic fields

The direct MCE measurement technique described in Section 3 was first applied to the In13.3

[39]. Figures 9(a) and (b) show the adiabatic changes of the sample temperature of In13.3

measured at 310 and 280 K. The typical mass of the sample for the MCE measurements is

about 50 mg, which is more than 100 times larger than that of the thermometer. Therefore, we

can neglect the heat capacity of the thermometer in the measurements. Since the sample is in

the ferromagnetic A phase at 310 K, the conventional MCE (monotonic heating/cooling with

increasing/decreasing magnetic field) due to the forced spin alignment by the applied field is

observed. It is important to note that the reversible temperature change demonstrates the

experimental validity: negligibly small heat exchange between the sample and the surroundings

and fast response of the thermometer [36]. The result at 280 K is the MCE when the magnetic

field is applied to the M phase [Figure 9(b)]. The steep cooling (IMCE) occurs at the MFIMT in

the field-increasing process. In the successive field-decreasing process, the sample temperature

heats up at MFIMT and approximately reaches to the initial temperature at the zero field as

Figure 8. Temperature dependencies of the entropy change at the MFIMT estimated from the magnetic phase diagrams

for Ni45Co5Mn36.7In13.3 (In13.3) and Ni45Co5Mn36.5In13.5 (In13.5) [39].
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expected for the adiabatic measurements. The difference between the initial and final tempera-

tures is less than 0.5 K, which indicates that the heating caused by the hysteresis loss is negligibly

smaller than the MCE. In addition, a gentle slope is observed in the field-induced A phase, which

is due to the change in the entropy of the ferromagnetic spins. This conventional MCE can be

calculated by using the following mean-field model:

MðT,HÞ ¼ NgμBJBJ
gμBJμ0ðH � λMÞ

kBT

� �

: ð9Þ

Here,N = 6.02� 1023 mol�1 is Avogadro’s number, g is the g factor, J is the spin quantum number,

BJ(x) is the Brillouin function, and kB = 1.38 � 10�23 J/K is Boltzmann constant. The coefficient λ

represents the magnetic interaction, which is defined as λ ¼ 3kBTΘ=Ng2μ2
BJðJ þ 1Þ by the Weiss

temperature TΘ. Using the experimentally obtained values g J = 1.68 and TΘ = TC = 387 K, the

magnetization of A phase can be calculated as a function of the temperature and magnetic field.

Hence, the MCEs of A phase are calculated by this M(T, H) curve through Eq. (6). The results are

plotted as the red-dashed lines in Figures 9(a) and (b) and are in reasonable agreement with the

experimental data. On the other hand, the MCE in the paramagnetic M phase is very small and

therefore, cannot be calculated by this model.

Figure 10 shows the temperature dependence of ΔTad (15T), which is indicated in Figure 9(b),

the difference of the sample temperatures between 15 and 0 T as a function of the initial

temperature. The ΔTad (15T) decreases linearly with increasing temperature and is in good

agreement with the indirectly estimated values from the magnetization as shown in Figure 10.

4.2.3. Specific heat measurements

From the magnetization and MCE measurements, the total entropy change at MFIMT and the

magnetic entropy in the field-induced A phase is estimated. In this section, the specific heat

Figure 9. Magnetic field variations of the sample temperature in the adiabatic condition for In13.3. (a) The magnetic field

applied to the ferromagnetic A phase and (b) the magnetic field applied to the paramagnetic M phase [39].

Magnetocaloric Effects in Metamagnetic Shape Memory Alloys
http://dx.doi.org/10.5772/intechopen.69116

69



measurements are performed to evaluate the electronic and lattice contributions to the total

entropy. As shown in Figures 6(b) and 7(b), the samples remain in the A phase at the low

temperatures when they are cooled down in the magnetic field above Hms. Therefore, the appli-

cation of high magnetic fields enables us to measure the specific heat in both A and M phase for a

sample. Figure 11 shows the results of specific heat measurements for In13.5 at low temperatures,

which are plotted as C/T versus T2. The data of A phase (open circles) are measured after the field

cooling at 12 T from room temperature. The data in both phases can be fitted by the function:

C ¼ γT þ βT3
; ð10Þ

where the first term represents the electronic contribution and the second term corresponds to

the phonon contribution. The electronic contribution to the specific heat is characterized by

Sommerfeld coefficient, γ, which is proportional to the density of states at Fermi level. The

phonon contribution with the coefficient β provides us with the Debye temperature ΘD. The

values [γ, ΘD] are estimated to be [γA = 52 mJ/kg K2 (3.4 mJ/mol K2), ΘA
D ¼ 314 K] for A phase

and [γM = 48 mJ/kg K2 (3.1 mJ/mol K2), ΘM
D ¼ 361 K] for M phase, respectively. The electronic

contribution to the total entropy change ΔSele is estimated as:

ΔSeleðTÞ ¼ ðγA � γMÞT: ð11Þ

At 300 K, ΔSele becomes 1.2 J/kg K. This value corresponds to about 5% of the total entropy

change at MT. Thus, the electronic contribution to the IMCE does not play dominant role.

Figure 10. The temperature dependence of ΔTad(15T) (red triangles), which is defined in Figure 9(b). The open squares are

the MCEs calculated from isothermal magnetization curves using Eq. (5) [39].
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The specific heat of lattice system can be calculated by assuming the Debye model:

CV ¼ 9NkB
T

ΘD

� �3ðΘD=T

0

x4ex

ðex � 1Þ2
dx: ð12Þ

Therefore, the lattice contribution to the total entropy change ΔSlat(T) due to the difference of

the Debye temperature between A and M phase can be calculated. Here, the CV in Eq. (10) is

the specific heat under the constant volume, while the measurements are carried out in the

isobaric condition. Hence, one has to consider the difference of the specific heat between at the

constant pressure and at the constant volume conditions, which can be calculated as:

Cp � CV ¼ 9α2BVT, ð13Þ

where α is bulk thermal expansion coefficient, B is bulk elastic modulus, and V is molar

volume. Using the values α = 6.67 � 10�6 K�1 for Ni45Co5Mn37In13 [40] and B =140 GPa for

Ni50Mn25In25 [41], one obtains Cp � CV = 2.3 J/kg K at 300 K, which is smaller than the 0.6% of

the experimentally obtained Cp at 300 K [39]. Therefore, the calculated data Clat can be com-

pared with the Cp for the entire temperature range. The ΔSlat is calculated as 51 J/kg K at 300 K,

which is about twice larger than ΔStot value obtained from the phase diagram [Figure 7(b)].

This indicates that the lattice contribution plays the central role in the IMCE.

Figure 11. Specific heat of In13.5 plotted as C/T versus T2 [39].
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4.2.4. Estimations of the electronic, lattice and magnetic entropy changes

Using Eqs. (11) and (12), ΔSele andΔSlat can be calculated for the entire temperature range, which

are plotted as the blue- and green-solid curves in Figure 12. The magnetic entropy change ΔSmag

is calculated by subtracting ΔSele and ΔSlat from the total entropy change (ΔSmag = ΔStot � ΔSele
�ΔSlat). The TMT dependence of ΔSmag estimated from the experimental data of ΔStot below 300

K is plotted as the red-dashed curve in Figure 12. The ΔSmag is estimated as ΔSmag = �29 J/kg K

(1.9 J/mol K) at 300 K. As mentioned in Section 4.2.2, the magnetic entropy in A phase (SAmag) can

be calculated by using the mean-field model. Using the values TC = 383 K and J = 0.88 for In13.5,

the SAmag is calculated as 79 J/kg K (5.1 J/mol K) at 300 K. Therefore, the magnetic entropy of theM

phase can be estimated as SMmag ¼ 108 J/kg K (7.0 J/mol K). If one assumes a random arrangement

of spins in the paramagnetic M phase, the magnetic moment of the M phase gJM ¼ 1:32 is

obtained from the relation: SMmag ¼ NkBlnð2JM þ 1Þ. This magnetic moment is smaller than that

of the A phase by 25%. This result indicates that the magnetic contribution to the total entropy

change is composed of not only the negative change due to the spin ordering but also the

positive change due to the change in the magnetic moment.

Figure 12. Calculated entropy changes through the MTas functions of the transition temperature (ΔSele, ΔSlat, ΔSmag, and

ΔStot versus TMT) [39]. The solid and open squares are the experimentally obtained ΔStot [22, 42]. The open triangles are

the ΔStot estimated by the M � H curves shown in Figure 7(a).
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By assuming the constant value of SMmag ¼ 108 J/kg K, the temperature dependence of the mag-

netic entropy change can be calculated as ΔS0magðTÞ ¼ S
A
magðTÞ � S

M
mag. The result is plotted as a

red-solid curve in Figure 12. The calculated ΔStot is also plotted as the black-dashed curve in

Figure 12, which coincides with the experimentally obtained data for Ni50�yCoyMn50�xInx for the

various x and y values above 300 K. Above TC, the ΔStot shows the small temperature depen-

dence. In this temperature region, both A and M phase are paramagnetic, where the contribution

of the spin ordering can be neglected. Hence, the ΔStot was determined by the difference of the

lattice entropy and the difference of the magnetic moment. Below TC, the A phase is ferromag-

netic, and therefore, the contribution of the spin alignment increases with decreasing TMT. This

effect dominates the TMTdependence of the ΔStot. This behaviour of the ΔStot in the vicinity of the

TC can be confirmed in the x dependencies of the Ni50�yCoyMn50�xInx [22, 43].

Below 300 K, the calculated ΔStot no longer reproduces the experimental results. This discrep-

ancy can be attributed to the improper assumption of the constant SMmag. To obtain the deeper

insight into the magnetic contribution to the IMCE at lower temperatures, the detailed infor-

mation about the magnetic structure of M phase is necessary.

4.3. NiCoMnGa

In the NiCoMnIn, the negative entropy change due to the spin ordering through the MFIMT

suppresses the ΔStot and dominates the TMT dependence of the ΔStot, as shown in Figure 12.

Therefore, the large IMCE due to the lattice entropy change and due to the change of magnetic

moment is expected to occur when a material undergoes MT from the ferromagnetic/paramag-

netic M phase to the ferromagnetic/paramagnetic A phase.

Recently, Kihara et al. carried out the magnetization and MCE measurements for Ni41Co9Mn31.5
Ga18.5. Figure 13 shows the isothermal M � H curve measured in the pulsed magnetic field at

260 K. At this temperature, the sample is in ferromagnetic M phase at zero-field. As shown in

Figure 13, the sample undergoes the MFIMT from the ferromagnetic M phase to the ferromag-

netic A phase. In this case, it can be predicted that the negative entropy change due to the spin

ordering is smaller than that when the magnetic field is applied to the paramagnetic M phase.

Hence, the large and TMT independent IMCE is expected to be observed.

Figure 14 shows the result of the direct MCEmeasurement at 257.5 K. The sample temperature

increases with increasing magnetic field below 16 T in both field increasing (the M phase) and

decreasing (the field induced A phase) processes. This temperature increase can be considered

as the conventional MCEs due to the forced spin alignment by the magnetic field. In the field

increasing process, the sample temperature steeply decreases above 16 T, which can be consid-

ered as the IMCE through the MFIMT. However, this temperature decrease is observed up to

36 T, where the MFIMT seems to be completed above 30 T according to the magnetization

measurement (Figure 13). In the successive field decreasing process, the sample temperature

increases reversibly and starts decreasing at around 25 T, where there is no anomaly in theM � H
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Figure 14. Magnetic field variation of the sample temperature in the adiabatic condition for Ni41Co9Mn31.5Ga18.5 mea-

sured at the initial temperature of 257.5 K.

Figure 13. M � H curve measured in the pulsed magnetic field at 260 K for Ni41Co9Mn31.5Ga18.5.
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curve. The temperature difference between 0 and 36 T is ΔTad (36T) =�3.9 K, which is indicated

in Figure 14. Contrary to the expectation, the large IMCE is not observed. The origin of this

unexpected MCE in the Ni41Co9Mn31.5Ga18.5 is still unclear.

5. Conclusion

In this chapter, the direct measurement system of magnetocaloric effect (MCE) under pulsed-

high-magnetic field is introduced. Using this technique, the inverse magnetocaloric effects

(IMCE) of NiCoMnIn and NiCoMnGa were measured as adiabatic temperature changes in

pulsed fields. The electronic, lattice and magnetic contributions to the total entropy change

through the magnetic field induced martensitic transformation (MFIMT) are individually

evaluated by the combination of the results of MCE, specific heat and magnetization measure-

ments. Through the analysis for NiCoMnIn, the validity of the present experiments for the

metamagnetic shape memory alloys is demonstrated.

In conclusion, the origins of the IMCE of NiCoMnIn are as follows. The electronic contribu-

tion to the IMCE is negligibly small. On the other hand, the significant change in entropy of

the lattice system plays a dominant role in the IMCE. The magnetic contribution involves the

two different contributions competing with each other: the increase of magnetic moment

(positive entropy change) and the spin ordering (negative entropy change). Moreover, the

magnetic contribution determines the composition dependence of the total entropy change

(ΔStot) at the martensitic transformation (MT), when the MT temperature (TMT) and Curie

temperature in the austenite phase (TC) are close to each other. However, the model

presented in this chapter cannot reproduce the composition dependence of the ΔStot when

the TMT and TC are far away from each other. To clarify the origin of the IMCE for the entire

temperature range, the detailed experiments about the magnetic structure of the martensitic

phase are important.

The magnetization and MCE measurements are carried out at 260 K for Ni41Co9Mn31.5Ga18.5.

In the MCE measurement, a complex field dependence of the sample temperature is observed.

To clarify the origin of the MCE in the Ni41Co9Mn31.5Ga18.5, the MCE measurements in the

wide range of temperatures and the instantaneous observation of the structural change

through the MFIMT are highly desirable.
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