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Abstract

Fundamentals of gauge-invariant relativistic many-body perturbation theory (PT) with
optimized ab initio zeroth approximation in theory of relativistic multi-electron systems
arepresented.Theproblemof construction of optimal one-electron representation isdirectly
linked with a problem of the correct accounting for multielectron exchange-correlation
effects and gauge-invariance principle fulfilling in atomic calculations. New approach to
construction of optimal PT zeroth approximation is based on accurate treating the lowest
ordermultielectron effects, in particular, the gauge-dependent radiative contribution for the
certain class of photon propagator (for instance, the Coulomb, Feynman, Babushkin ones)
gauge. This value is considered to be a typical representative of important multielectron
exchange-correlation effects,whoseminimization is a reasonable criteria in the searching for
optimal PT one-electron orbital basis. This procedure derives an undoubted profit in the
routine many-body calculations as it provides the way of refinement of the atomic charac-
teristics calculations, based on the “first principles”. The relativistic density-functional
approximation is taken as the zeroth one. There have taken into account all exchange-
correlation corrections of the second order and dominated classes of the higher orders
diagrams (polarization interaction, quasiparticles screening, etc.). New form of multi-elec-
tron polarization functional is used. As illustration, the results of computing energies,
transition probabilities for some heavy ions are presented.
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1. Introduction

Perturbation theory (PT) formalism has a long history in studying different multielectron (more

generally, multifermion) systems, including different atomic, molecular, and nuclear properties.

Really, one should say about formalism of the many-body PT as, a rule, usually it applies to

studying different properties of the multiparticle systems, for instance, ionization and excitation

energies, spectra, electron exchange-correlation energies, hyperfine structure, radiative and

autoionization decay rates (transition probabilities, oscillator, and lines strengths), as well as the

influence of an external electromagnetic fields. In the last few decades, the PTmethods have been

refined with a sophisticated and comprehensive approach of more correct treatment of the

exchange-correlation effects, electron-nuclear dynamics, and so on [1–44]. Rephrasing the known

interesting quote by Bartlett and Musiał [3, 4] and earlier by Wilson, one could say that the PT

methods are an emerging computational area that is sixty years ahead of lattice gauge theory… and a rich

source of new ideas and new approaches to the computation of many fermion systems. The oldmultibody

quantum theoretical approaches often take place, which have been primarily developed in a

theory of a superfluity and/or a superconductivity, and generally speaking in a theory of solids,

became the powerful tools for developing new conceptions in many-body (multielectron)

atomic, nuclear, and molecular calculations [1–7].

A number of the PT versions include a synthesis of cluster expansions, Brueckner’s summation

of ladder diagrams, the summation of ring diagrams Gell-Mann, and an infinite-order gener-

alization of manybody PT (Kelly, 1969; Ivanov-Tolmachev, 1969–1974, Bartlett and Silver,

1974–1976, etc.; see review in Ref. [7]). Using quantum-field methods in atomic and molecular

theory allowed obtaining a very powerful approach for the correct treatment of the exchange-

correlation effects in many-electron systems. In this context, it is useful to remind about such

sophisticated methods as a coupled-cluster theory, the Green-functions method, configuration

interaction methods, and so on. Only with this property are applications to solids or the

electron gas possible, and, even for small atoms and molecules, its effects are numerically quite

essential. When relativistic effects became essential in the studied multielectron (fermion)

system, naturally it is necessary to formulate a formalism of the relativistic many-body PT. In

the first attempts, an account for the relativistic effects had been reduced to treating the

Darwin, mass-velocity, and spin-orbit effects, which have to be added to the nonrelativistic

solution and provide different approximations lying between the Schrödinger equation and

the four-component Dirac equation [2, 6, 7]. Among recent developments in this field, special

attention should be given to two very general and important computer systems for relativistic

and QED calculations of atomic and molecular properties developed in the Oxford, Troitsk,

and other groups (known as ”GRASP,” ”Dirac,” ”BERTHA,” ”QED,” “Superatom,” etc.; Ref.

[1–13] and references therein). For example, a new relativistic molecular structure theory

within the QED framework with accounting of the electron correlation and higher-order QED

effects has been formulated and further realized as the BERTHA program. The master system

of equations includes the so-called Dirac-Hartree-Fock-Breit self-consistent field equations. The

useful overview of the relativistic electronic structure theory is presented in Refs. [2, 7] from

the QED point of view. The next important step is an adequate taking into account the QED

corrections. This topic has been a subject of intensive theoretical and experimental interest.
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Hitherto, most many-body PT studies concerned atoms with a simple electron-shell structure,

namely atoms of the inert gases and atoms and ions with a single electron (or hole) above

(or inside) the closed shells core. The fundamental limitation to extend the many-body proce-

dure beyond such simple atomic systems arises from the complexity of any perturbation

expansion if more than just one or two effective particles appear in the derivation (see detailed

analysis in Ref. [5]). In order to overcome this difficulty, a number of different efficient tech-

niques of complex expansions were developed. As a rule, the atomic PT expansions are

expressed in terms of the Feynman-Goldstone diagrams in Rayleigh-Schrödinger PT formula-

tion. Above the most popular and known versions of the PT formalism, one should mention

formally exact relativistic many-body PT with the model zeroth approximation by Ivanova-

Ivanov et al., relativistic PT with the Hartree-Fock (HF) or Dirac-Fock (DF) zeroth approxima-

tions by Johnson et al., Flambaum-Dzuba et al., Safronova and Safronova et al., Khetselius

et al., and so on [9–38]).

The searching for the optimal one-electron zeroth representation is one of the oldest in the

theory of multielectron atoms and, respectively, in the formulation of the effective PT formal-

ism. Two decades ago, Davidson had pointed the principal disadvantages of the traditional

representation based on the self-consistent field approach and suggested the optimal “natural

orbitals” representation [11]. Nevertheless, there remain insurmountable computational

difficulties in the realization of the Davidson program (see, e.g., Refs. [11, 12]). One of the

simplified recipes represents, for example, a density functional theory (DFT) formalism [8].

Unfortunately, this approach does not provide a regular refinement procedure in the case of

the complicated atom with few quasiparticles (QPs) (electrons or vacancies above a core of the

closed electronic shells). The problem of construction of the optimal one-electron representa-

tion is tightly linked with the problem of the correct accounting for the multielectron exchange-

correlation effects. In Refs. [47, 48], the PT lowest-order multielectron effects, in particular, the

gauge-dependent radiative contribution (gauge-noninvariant) for the certain class of the pho-

ton propagator gauge is treated. This value is considered to be the typical representative of the

multielectron exchange-correlation effects contribution. New fundamental idea has been pro-

posed in Refs. [47, 48] in order to construct the optimal PT one-electron basis and is in

minimization of the gauge-noninvariant contribution into a radiation width of atomic level.

Such an approach allows to determine an effectiveness of accounting of the multielectron

exchange-correlation effects and provides the practical way of the refinement of the atomic

characteristics calculations, based on the “first principles.” Really, the known standard crite-

rion of the multielectron computing quality in atomic spectroscopy is linked with a closeness

of the atomic level radiation width values, calculated using two alternative forms of the

transition operator (the “length” and the “velocity” forms). It is of special interest to verify

the compatibility of the new optimization principle with the other requirements conditioning a

“good” one-electron representation. We suppose that this point should be obligatory in for-

mulation of the effective, optimal PT formalism.

In this chapter, we present the theoretical fundamentals of the gauge-invariant relativistic many-

body PTwith using the optimized one-QP representation in the theory of relativistic multielectron

systems [21–23, 47, 48]. All exchange-correlation corrections of the second-order and dominated

classes of the higher-orders diagrams (polarization interaction, QPs screening, etc.) [47–67] have
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been taken into account. As illustration of application of the presented PT formalism, we list the

results of computing energies, transition probabilities (oscillator strengths) in some heavy atoms

(ion of Hg+).

2. Relativistic many-body perturbation theory with optimized

one-quasiparticle zeroth representation

2.1. General remarks

Our relativistic PT version is constructed on the same principles as the known formally exact

PT with model zeroth approximation by Ivanova-Ivanov et al. [33–47]; however, there a few

principal points, where our formalism differs from this known theory. At first, this is another

definition of the zeroth approximation, namely within the relativistic DFT one [14–17, 19–22].

Second, this is an implementation of the principally new approach to construction of the

optimized one-QP representation, which allows correctly to take into account a gauge invari-

ance principle fulfilling.

In nonrelativistic theory of multielectron atoms, a powerful field approach for computing the

electron energy shift ΔE of the degenerate states is known, which are usually present in the

dense spectra of the complex relativistic atomic multielectron systems (Tolmachev-Ivanov-

Ivanova, 1969–1974). The key algorithm of this approach includes construction of the secular

matrix M using the known Gell-Mann and Low adiabatic formula and its further diagonaliza-

tion. The analogous approach using the Gell-Mann and Low formula with an electrodynamic

scattering matrix has been developed in a theory of the relativistic atom [33–36]; however, the

M matrix elements in the relativistic representation are complex; the corresponding imaginary

parts determine the values of radiation widths. According to Ref. [34], the total electron energy

shift can be defined as follows:

ΔΕ ¼ Re ΔEþ i ImΔE ImΔE ¼ � Γ=2: ð1Þ

Here, Γ is a radiation width of the atomic level (or a possibility P of the radiation decay or

transition: P = Γ. Within the general framework, the corresponding energies of a nondegenerated

excited states and their radiation decay amplitudes can be determined by means of the comput-

ing and further diagonalization of the matrixM. In Refs. [33–37], the ReΔE calculation procedure

has been generalized for the case of nearly degenerate states, whose levels form a more or less

compact group. Naturally, the matrix M reduces to one term (ΔE) in the case of well-identified

and separated energy spectrum. The Gell-Mann and Low formula allow further to obtain the

expansion of the M elements into PT series on interelectron interaction and apply the standard

Feynman diagrammatic technique. The corresponding PT series is as follows:

M ¼ M
ð0Þ þM

ð1Þ þM
ð2Þ þM

ð3Þ: ð2Þ

Here, M(0) is the contribution of the PT all-orders vacuum diagrams (in fact, this is a real

matrix, which determines only the general atomic levels shift); M(1), M(2),and M
(3) are the
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contributions, which correspond to the one-, two- and three-QP PT diagrams, respectively. The

diagonal matrix M(1) can be easily calculated as it represents a sum of the one-QP contribu-

tions. Generally speaking, computing all the one-QP diagrams contributions within the PT

formalism is the most simple procedure. The more complicated problem is computing theM(2)

and M(3)contributions. Using the Feynman diagrams technique, the authors [33–38] have in

detail analyzed the M(2) contributions. Naturally, the fundamental point of the whole consid-

eration is the definition of the PT zeroth approximation.

2.2. The perturbation theory zeroth approximation

We will describe an atomic multielectron system by the relativistic Dirac Hamiltonian (the

atomic units are used) as follows [14, 15]:

H ¼
X

i

{αcpi � βc2 � Z=ri}þ
X

i>j

expðijωjrijÞð1� αiαjÞ=rij, ð3Þ

where Z is a charge of nucleus, αi, αj are the Dirac matrices, ωij is the transition frequency, and

c, a light velocity. The interelectron interaction potential (second term in Eq. (3)) takes into

account the retarding effect and magnetic interaction in the lowest order on parameter α2 (α is

the fine structure constant). Let us note that in order to account for the nuclear finite size effect

(in the zeroth approximation), one could describe a charge distribution in the atomic nucleus

ρ(r) by the Gaussian or Fermi (another variant is relativistic mean-field theory of a nucleus)

functions and write the Coulomb potential for the spherically symmetric nuclear density

ρ(r|R) as [14]

VnuclðrjRÞ ¼ �
�

ð1=rÞ

ð

r

0

dr0r0
2
ρðr0jRÞ þ

ð

∞

r

dr0r0ρðr0jRÞ: ð4Þ

Here, R is a nuclear radius. According to the known Ivanova-Ivanov et al. method of differen-

tial equations [33–36], computing the potential (20) can be reduced to solving the system of the

differential equations. By the way, this method is used by us in further under computing the

PT first- and second-order corrections. The zeroth-order Hamiltonian H0 and perturbation

operator can be presented in the standard form as follows [7, 14, 15]:

H0 ¼
X

i

aþi aiEi

Hint ¼
X

ij

aþi ajV ij þ
1

2

X

ijkl

V ijkla
þ
i a

þ
j akal

V ij ¼

ð

d r
!
� ϕið r

!
Þ½�VMFðrÞ� � ϕð r

!
Þ

V ijkl ¼

ðð

d r
!

1d r
!

2 ϕð r
!

1Þ ϕð r
!
2Þ Vðr1r2Þ ϕkð r

!
2Þ ϕlð r

!
1Þ,

ð5Þ

where ϕð r
!
Þ are one-electron functions (Dirac bispinors), Ei , one-electron energies, and VMF is

the central field self-consistent potential of the Coulomb type. The latter can be taken in the
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form of the usual Dirac-Fock potential or even any appropriate model potential, which imi-

tates an effect of the electron subsystem. Let us remind that in the relativistic PT by Ivanova-

Ivanov et al., the consistent model (as a rule, empirical) potential was taken as VMF. In our PT

version, we use the potential

VMF ¼ VDKSðrÞ ¼ ½VD
CoulðrÞ þ VXðrÞ þ VCðrjaÞ� ð6Þ

Further as VX(r) we use the standard Kohn-Sham (KS) exchange potential as follows [8]:

VKS
X ðrÞ ¼ �ð1=πÞ½3π2ρðrÞ�1=3: ð7Þ

The standard definition of the exchange potential in the density-functional theory is as follows:

VX½ρðrÞ, r� ¼
δEX½ρðrÞ�

δρðrÞ
, ð8Þ

In the relativistic multielectron theory with a Hamiltonian having a transverse vector potential

(for describing the photons), one could determine the homogeneous density ρ(r), construct the

corresponding exchange energy EX[ρ(r)], and introduce the following exchange potential [16]:

VX½ρðrÞ, r� ¼ VKS
X ðrÞ �

3

2
ln

½βþ ðβ2 þ 1Þ1=2�

βðβ2 þ 1Þ1=2
�
1

2

( )

; ð9Þ

where β ¼ ½3π2ρðrÞ�1=3=c. The corresponding correlation functional is as follows [16, 17]:

VC½ρðrÞ, r� ¼ �0:0333 � b � ln½1þ 18:3768 � ρðrÞ1=3�, ð10Þ

where b is the optimization parameter (for details, see below and Refs. [16–19, 47–49] too).

Naturally, potential (6) is subtracted from the interelectron potential in Eq. (3) in the perturba-

tion operator. The Dirac equations for F and G components can be written as [14] follows:

f 0 ¼ �ðχþ jχjÞf =r� αZVg� ðαZEnχ þ 2=αZÞg,

g0 ¼ ðχ� jχjÞg=r� αZVf þ αZEnχf :
ð11Þ

Here, Enχ is one-electron energy without the rest energy. The boundary values are defined by

the first terms of the Taylor expansion:

g ¼
�

Vð0Þ � Enχ

�

rαZ=ð2χþ 1Þ; f ¼ 1 at χ < 0, ð12aÞ

f ¼
�

Vð0Þ � Enχ � 2=α2Z2
�

αZ; g ¼ 1 at χ > 0: ð12bÞ

The condition f, g!0 at r!∞ determines the quantified energies of the state Enχ. The system of

Eq. (11) is numerically solved by the Runge-Kutta method (‘Superatom” package is used [7, 13–

23, 34, 36, 47–67]).
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2.3. The perturbation theory first- and second-orders corrections: correlation effects

In the PT first order, one should determine the matrix elements of the PT operator with the

relativistic Coulomb-Breit potential, which are the contributions of the following type [36]:

M
ð2Þ
1 ¼ 〈 n1l1j1 n2l2j2½J� jV intj n4l4j4 n3l3j3½J� 〉

¼ P1P2ð�1Þ1þj2þj4þJ½ð2j1 þ 1Þð2j2 þ 1Þð2j3 þ 1Þð2j4 þ 1Þ�1=2

�
X

i, k

X

a

jijkJ

j2j1a

( )

�

δi,3δk,4 þ ð�1ÞJδi,4δk,3
�

�Qλ,

ð13Þ

where

P1 ¼
1 if n1l1j1 6¼ n2l2j2
1=2 if n1l1j1 ¼ n2l2j2

, P2 ¼
1 if n3l3j3 6¼ n4l4j4
1=2 if n3l3j3 ¼ n4l4j4

:

��

ð14Þ

The value of the Qλ can be expressed through the radial Slater-like integrals and presented as a

sum of the Coulomb and Breit parts: Qλ ¼ QQul
λ

þQBr
λ
, which corresponds to a partition of the

interelectron potential into the Coulomb and Breit ones in the second term of Eq. (1). Let us

remind that, for instance, the Coulomb part in Eq. (13) is expressed through the radial integrals

and angle coefficients as follows:

QQul
λ

¼
1

Z

�

Rlð1243ÞSλð1243Þ þ Rlð~124~3ÞSλð~124~3Þ þ

þRlð1~2~43ÞSλð1~2~43Þ þ Rlð~1~2~4~3ÞSλð~1~2~4~3Þ

�

:

ð15Þ

In the nonrelativistic limit, there remains only the first term in Eq. (15) depending only on the

large component f(r) of the one-electron Dirac functions. For example, its imaginary part is as

follows [36]:

Im Rλð12; 43Þ ¼
1

2
ð2λþ 1ÞπXλð13ÞXλð24Þ

Xλð12Þ ¼

ð

dr r3=2 f 1ðrÞJ
ð1Þ
λþ1=2

�

rαZjωjf 2ðrÞ
�

ð16Þ

The angular coefficient has only a real part:

Sλð12; 43Þ ¼ Sλð13ÞSλð24Þ Sλð13Þ ¼ fλl1l3g

j1 j3 λ

1

2
�
1

2
0

0

@

1

A ð17Þ

Here, {λl1l3} means that λ, l1 and l3 must satisfy the triangle rule and the sum λ + l1 + l3 must be

an even number. The rest terms in Eq. (16) include the small components of the Dirac func-

tions. The tilde in Eq. (13) designates that the large radial component fmust be replaced by the
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small one g, and instead of li, ~li ¼ li � 1 should be taken for ji < li and ~l i ¼ li þ 1 for ji > li. The

Breit (magnetic) part can be expressed by the similar way (see details in Refs. [13–16]).

Then, exchange-correlation effects can be treated within the PT formalism as effects of the

second and higher PT orders. In the second order, one should especially note the polarization

and ladder diagrams. In Figures 1 and 2, we list some important diagrams of the second order

describing the effects of the polarization interaction of quasiparticles and screening of the

external quasiparticles (or antiscreening in the case, say, of an electron and a vacancy).

The polarization diagrams take into account the quasiparticle interaction through the polariz-

able core, and the ladder diagrams account for the immediate quasiparticle interaction. An

effective approach to accounting the polarization contributions is in adding the effective two-

QP polarizable operator into the first-order matrix elements. The corresponding polarization

operator can be taken in the following form [50]:

Vd
polðr1r2Þ ¼

X

ð dr0
�

ρð0Þ
c ðr0Þ

�1=3

θðr0Þ

jr1 � r0j � jr0 � r2j
�

ð dr0
�

ρð0Þ
c ðr0Þ

�1=3

θðr0Þ

jr1 � r0j

ð dr00
�

ρð0Þ
c ðr00Þ

�1=3

θðr00Þ

jr00 � r2j

. �

ρð0Þ
c

�1=3
� �

8

>

<

>

:

9

>

=

>

;

ð18aÞ

�

ρð0Þ
c

�1=3
� �

¼

ð

dr
�

ρð0Þ
c ðrÞ

�1=3

θðrÞ, ð18bÞ

θðrÞ ¼ 1þ ½3π2 � ρð0Þ
c ðrÞ�2=3=c2

n o1=2
ð18cÞ

Figure 1. Some diagrams of the second order, taking into account the exchange and polarization interaction of quasipar-

ticles and electrons of the closed shells core.

Figure 2. Some diagrams of the second order, describing a direct interaction of the two or three external quasiparticles.
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where ρ0
c
is the core electron density (without account for the quasiparticle), X is the numerical

coefficient, and c is the light velocity. The similar approximate potential representation has

been received for the exchange polarization interaction of quasiparticles (see details in Refs.

[7, 14–19]). The polarization potential Eqs. (18a)–(18c) generalizes the corresponding nonrela-

tivistic operator, which has been derived in Ref. [36].

In order to take into account the ladder diagrams contributions as well as some of the three-

quasiparticle diagram contributions in all PTorders, we use the special procedure, which includes

a modification of the mean-filled potential, which describes the effects of screening (antiscreening)

of the core potential of each QP by the others (see details in Refs. [7, 14–19, 33–38]). Introduction of

the additional screening potential into the Dirac equations for the large and small components

changes the 1-QP energies and orbitals. It results in the corresponding modification of the diago-

nal 1-QP matrix ~M
ð1Þ
and further 2-QP one too; ~M

ð2Þ
is computed using the PT first-order formulae

and the modified radial 1-QP wave functions.

2.4. Optimization of the relativistic orbitals basis

In order to obtain a precise description of the spectral characteristics of multielectron atomic

systems, within the PT framework one should generate the optimized relativistic orbitals basis

(see “Introduction” section) [1–7, 9–15]. The powerful ab initio approach to construction of the

optimized PT basis has been developed in Ref. [48] and reduced to consistent treating gauge-

dependent multielectron contributions ImΔEninv of the lowest relativistic PT corrections to the

atomic level radiation width and their further functional minimization.

For simplicity, let us consider now the one-quasiparticle atomic system (i.e., atomic system

with one electron or vacancy above a core of the closed electronic shells). The multiquasi-

particle case does not contain principally new moments. In the PT lowest, second order for

the ΔE, there is only one-quasiparticle Feynman diagram B (see Figure 3), contributing the

ImΔE (the radiation decay width).

In the fourth order of QED PT (the second order of the atomic PT), the diagrams appear, whose

contribution to the ImΔEninv accounts for the multielectron exchange-correlation (polarization)

effects (diagrams Ad, Aex; Figure 3). This multielectron contribution is dependent on the

photon propagator gauge (the gauge-noninvariant contribution). Let us remind about the

known criterion of the correctness of the atomic-computing radiation transition probabilities

using the alternative forms for the transition operator (“length” and “velocity” transition

operator forms). Their closeness of the “length” and “length” transition probabilities values

Figure 3. B: second other PT diagram contributing the imaginary energy part related to the radiation transitions; Ad and

Aex: QED PT fourth (atomic PT second)-order polarization diagrams.
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confirms the correctness of the relativistic orbitals basis construction. Correspondingly, their

noncoincidence is provided by multielectron by their nature and gauge-noninvariant terms.

In Ref. [48], the gauge-noninvariant contribution to an imaginary part of the electron energy

has been calculated, which is as follows:

ImΔEninvðα� sjAdÞ ¼ �C
e2

4π

ð ð ð ð
dr1dr2dr3dr4

X
ð

1

ωmn þ ωαs

þ

1

ωmn � ωαs

ÞΨþ
α
ðr1ÞΨ

þ
mðr2ÞΨ

þ
s ðr3ÞΨ

þ
n ðr4Þð1� α1α2Þ=r12�

{½ðα3α4 � ðα3n34Þðα4n34ÞÞ=r34 � sin ½ωαn
ðr12 þ r34Þ þ ωαn

�

cos ½ωαn
ðr12 þ r34Þ�ð1þ ðα3n34Þðα4n34ÞÞ�}Ψmðr3ÞΨαðr4ÞΨnðr2ÞΨsðr1Þ

ð19Þ

where C is the gauge constant, and f is the boundary of the closed shells.

Realizing a principle of minimization of the functional ImΔEninv, one could obtain the Dirac-

Kohn-Sham (DKS)-like equations for an electron density. Their numerical solution allows to

obtain the optimized basis of the one-QP relativistic orbitals. The corresponding procedure is

described in detail, for example, in Refs. [18–23]. All details of the presented PT formalism can

be found in Refs. [7, 14–20, 47–49].

2.5. Radiation decay probability as an imaginary part of the electron energy shift.

Method of calculation

The method of computing the radiation decay (transition probabilities, oscillator strengths)

probabilities within the relativistic energy approach is presented in, for instance, Refs. [16–

19, 33–35, 47, 48]. Here, we only note that a probability is directly linked with the imaginary

part of electron energy shift, which is defined in the PT lowest order as follows:

ImΔE ¼ �
e2

4π

X

α>n>f

½α<n ≤ f �

V jωαnj
αnαn, ð20Þ

where
X

α>n>f

is for electron and
X

α<n ≤ f

for vacancy, and V jωαn j
αnαn is determined as follows:

V
jωj
ijkl ¼

ðð
dr1dr2Ψ

�
i ðr1ÞΨ

�
j ðr2Þ

sin jωjr12
r12

ð1� α1α2ÞΨ
�
kðr2ÞΨ

�
l ðr1Þ ð21Þ

The individual terms of the sum Eq. (21) represent the contributions of different channels and

probability, for instance, of the dipole α-n transition as Pαne 1
4πV

jωαn j
αnαn; the probability with

accounting for the core polarization correction is Pαn
e 1

4π � {V
jωαn j
αnαn þ ðVdþex

pol Þ
αnαn}. The total prob-

ability of a λ-pole transition is usually represented as a sum of the electric PE
λ
and magnetic PM

λ
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parts. The electric (or magnetic) λ-pole transition γ! δ connects two states with parities which

by λ (or λ + 1) units. In our designations,

PE
λðγ ! δÞ ¼ 2ð2jþ 1ÞQE

λðγδ;γδÞ QE
λ ¼ QCul

λ þ QBr
λ, λ�1 þ QBr

λ, λþ1

PM
λ ðγ ! δÞ ¼ 2ð2jþ 1ÞQM

λ ðγδ;γδÞ QM
λ ¼ QBr

λ, λ:

ð22Þ

In a case of the two-quasiparticle states (for instance, the excited atomic state is treated as a

state with the two QP: electron and vacancy above the closed shells core), the corresponding

probability has the following form (say, transition: j1j2½J� ! j1j2½J�):

Pðλjj1j2½J�, j1j2½J�Þ ¼ ðJÞ
λ…J…J
j2…j1…j1

� �

Pðλj11Þðj1Þ, ð23Þ

It is worth noting that all relativistic atomic calculations are usually carried out in the jj-

coupling scheme. The transition to the intermediate-coupling scheme is realized by diagonal-

ization of the M matrix, but usually only ReM should be diagonalized. The important simpli-

fied moment of the procedure is connected with converting the imaginary part by means of the

matrix of eigenvectors {Cmk}, obtained by diagonalization of ReM:

Im Mmk ¼
X

ij

C∗

mi Mij Cjk ð24Þ

where Mij are the matrix elements in the jj-coupling scheme, and Mmk in the intermediate-

coupling scheme representation. The procedure is correct to terms of the order of Im M/Re M.

In conclusion, let us also underline that the tedious procedure of phase convention in calculat-

ing the matrix elements of different operators is avoided in the energy approach, although the

final formulae, certainly, must coincide with the formulae obtained using the traditional

amplitude quantum-mechanical method. All other details can be found in Refs. [7, 16–

19, 33–36, 47–50].

3. Some results and conclusions

As illustration of the application of the above presented formalism, we present the results of

computing energies, transition probabilities (oscillator strengths) in the heavy multielectron

ion of Hg+. A great interest to studying similar systems (Hg) is explained by the importance

of the corresponding data, for instance, for laser effect studying. The collision of atoms of

the Mendeleev table second raw with ions of helium (other inert gases) leads to creating ions

in the excited states which is important for creating the inverse populations and laser effect.

The available literature data on radiative characteristics are definitely insufficient. An account

of the relativistic and correlation effects has a critical role in the cited systems as the studied

transitions occur in the external shells in a strong field of atom with large Z. Within the

relativistic PT, the Hg+ states can be treated one- and three-QP states of electrons (6s) and
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vacancy (5d�1) above the core of the closed shells 5d106s2. The interaction “quasiparticle core”

is described by the potential (6). The polarization interaction of the quasiparticles through the

core is described by the two-particle effective potential Eqs. (18a)–(18c). All calculations are

performed using the modified atomic code “Superatom-ISAN.”

In Tables 1–3, we present the experimental (NIST) [32] and theoretical energies, electric E1

(5d107p(P1/2,P3/2)-5d
106s(S1/2), 5d

107p(P1/2,P3/2)-5d
107s(S1/2)), and E2 (5d96s2 (D5/2, D3/2)-5d

106s

(S1/2)) probabilities of the transitions in the spectrum of Hg+. The theoretical results are

obtained within the Hartree-Fock, Dirac-Fock methods by Ostrovsky-Sheynerman, relativistic

PT theory with the empirical model potential zeroth approximation (RPT-MP) [18, 31], and our

optimized RPT using relativistic energy approach (RPT-EA).

The standard HF and DF approaches in the single-configuration approximations do not allow

to obtain very accurate results. Using the empirical transition energies significantly improve

the theoretical results as in fact it means an account for very important interparticle correla-

tions effects. In our approach, the corresponding exchange-correlation effects (the polarization

Method E6s 7P1/2-6S1/2 7P3/2-6S1/2 7P1/2-7S1/2 7P3/2-7S1/2 D3/2-S1/2

HF �1.07 0.721 0.721 0.095 0.095 0.863

DF �1.277 0.904 0.922 0.109 0.127 0.608

RPT-MP �1.377 0.986 1.019 0.114 0.147 0.462

RPT-EA �1.378 0.987 1.020 0.115 0.148 0.462

Exp. �1.378 0.987 1.020 0.115 0.148 0.461

Theoretical data—Hartree-Fock (HF), Dirac-Fock (DF) [31]; relativistic PT with the empirical model potential approxima-

tion (RPT-MP) [18]; relativistic PT-RPT-EA (this work); experimental data—Moore (NBS, Washington) [32] (see text).

Table 1. The energies of the 5d96s2(D5/2,D3/2)-5d
106s (S1/2), 5d

107p(P1/2,P3/2)-5d
106s(S1/2), 5d

107p(P1/2,P3/2)-5d
107s(S1/2),

5d96s2(D5/2,D3/2)-5d
106s (S1/2) transitions in Hg+ (Ry).

Method 7P3/2-6S1/2 7P1/2-6S1/2 7P3/2-7S1/2 7P1/2-7S1/2 7P3/2-6S1/2

HF 4.75�106 4.75�106 3.65�107 3.65�107 3.65�107

DF 8.45�107 1.67�107 6.89�107 6.89�107 4.71�107

DF (Eexp) 1.17�108 2.04�107 1.10�108 1.10�108 5.52�107

RPT-MP 1.49�108 2.31�107 1.41�108 1.41�108 6.33�107

RPT-EA 1.51�108 2.33�107 1.43�108 1.43�108 6.35�107

Exp. 1.53�108 2.35�107 1.44�108 1.44�108 6.37�107

HF, Hartree-Fock data; DF, Dirac-Fock data; DF (Eexp), DF data using the experimental transitions energies [31]; relativ-

istic perturbation theory with the empirical model potential approximation RPT-MP [18]; relativistic PT-RPT-EA (this

work); experimental data—Moore (NBS, Washington) [32] (see text).

Table 2. Probabilities of the transitions 5d107p(P1/2,P3/2)-5d
106s(S1/2), 5d

107p(P1/2,P3/2)-5d
107s(S1/2) in Hg+ (in s�1).
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interaction of the QPs, mutual screening and anti-screening corrections, etc.) are taken into

account more accurately. The core polarization correction to the transition probability is of

great importance as it changes significantly the probability value (~15–40%). It should be also

noted that the gauge-noninvariant contribution to radiation width is very small (0.2%; see

Table 2 in the line “EA”) that means equivalence of the calculation results in the standard

amplitude approach with using the length and velocity forms for transition operator. From the

other side, this is an evidence of the successful choice of the PT zeroth approximation and

accurate account of the multi-particle correlation effects.

We have presented the fundamentals of the new relativistic many-body PT formalism with

construction of the optimized one-QP representation in the theory of relativistic multielectron

systems. The relativistic density-functional approximation with the Kohn-Sham potential is

taken as the zeroth one and all exchange-correlation corrections of the second-order and

dominated classes of the higher-orders diagrams (polarization interaction, QPs screening,

etc.) have been taken into account. In order to reach the corresponding optimization, we have

used a procedure of the accurate treating of the PT lowest-order multielectron effects, in

particular, the gauge-dependent radiative contribution for the certain class of the photon

propagator gauge. The corresponding contribution is considered to be the typical representa-

tive of the important multielectron exchange-correlation effects, whose minimization is rea-

sonable criteria in the searching for the optimal PT one-electron basis. This procedure derives

an undoubted profit in the routine many-body calculations as it provides the way of the

refinement of the atomic (molecular) characteristics calculations, based on the “first princi-

ples.” The presented relativistic PT formalism can be further generalized, in particular, by the

way of accounting for the radiation, QED (the Lamb shift self-energy and vacuum polarization

corrections, for instance in the effective Uhling-Serber approximation with account for the

Källen-Sabry and Wichmann-Kroll corrections), and nuclear (the Bohr-Weisskopf and Breit-

Rosenthal-Crawford-Schawlow effects, nuclear finite size correction, magnetic moment distri-

bution, etc.) effects [13–23].

Method D3/2-S1/2 D5/2-S1/2

HF 1360 1360

DF 257.0 77.4

DF (Eexp) 63.9 13.3

RPT-MP 54.54 11.8

RPT-EA 54.52 (0.2%) 11.7 (0.2%)

Exp. 53.5 � 2.0 11.6 � 0.4

HF, Hartree-Fock data; DF, Dirac-Fock data; DF (Eexp), DF data using the experimental transitions energies [31]; relativ-

istic perturbation theory with the empirical model potential approximation (RPT-MP) [18]; relativistic PT-RPT-EA (this

work); experimental data—Moore (NBS, Washington) [32] (see text).

Table 3. The E2 probabilities of the 5d96s2(D5/2,D3/2)-5d
106s (S1/2) transition in Hg+ (in s�1).
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