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Abstract

We propose a new model describing the dynamics of wire made of shape memory
alloys, by combining an elastic curve theory and the Ginzburg-Landau theory. The wire
is assumed to be a closed curve and is not to be stretched with deformation. The derived
system of nonlinear partial differential equations consists of a thermoelastic system and
a geometric evolution equation under the inextensible condition. We also show that the
system has dual variation structure as well as a straight material case. The structure
implies stability of infinitesimally stable stationary state in the Lyapunov sense.

Keywords: shape memory alloys, elastic curve, thermoelastic system, nonlinear partial
differential equations, Ginzburg-Landau theory, phase transition, stability, dual variation
principle

1. Introduction

Shape memory effect arises from the phase transition of lattice structure. Although there are

many models for shape memory alloys, one of the classical model is proposed by Falk, which

we call the Falk model. Falk applied the Ginzburg-Landau theory for phase transition to shape

memory alloys by regarding shear strain E as an order parameter (see e.g., [1]). That is, the

Helmholz free energy density proposed by Falk is given by

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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where u and θ are displacement and absolute temperature, respectively, and a positive con-

stant θc denotes the critical temperature of the phase transition. We call the first term
j∂2x uj2

2

curvature energy density, the second term f(E, θ) nonlinear elastic energy density and the

third term f0(θ) thermal energy density. In other words, Falk represented the phase transition

by using the form of the nonlinear elastic energy density. We also remark that for simplicity, all

physical constants without the critical temperature are normalized by unity. The Falk model

was proposed for straight materials. In the model, the material is built up by a stack of layers

parallel to the so-called habit plane (see [2]) and assumed that the displacement u in that

direction to depend only on a coordinate x perpendicular to the habit plane, that is, the

variable x runs in the stacking direction. Then, the material conserves its volume.

From the point of the small deformation theory, we may use a linearized approximation

relation E = ∂xu. Moreover, we take f0 as the following typical form:

f 0ðθÞ :¼ θ� θlogθ:

Then following a standard procedure of derivation of thermoelastic system (see e.g., [3]), we

can derive the system of nonlinear partial differential equations called the Falk model:

∂
2
t u þ ∂

4
xu ¼ ∂xfð∂xuÞ

5 � ð∂xuÞ
3 þ ðθ� θcÞ∂xug,

∂tθ� ∂2xθ ¼ θ∂xu ∂t∂xu:

(

ð2Þ

Here, unknowns are displacement u and absolute temperature θ, and ∂x and ∂t represent

partial differential operator with respect to x and t, respectively. The model is well known as

one of classical models describing shape memory alloys. For the other models, we refer

Fremond [4], Fremond-Miyazaki [5] and reference therein. The Falk model (Eq. (2)) has been

studied actively in the mathematical literature. In the isothermal case, well-posedness, stability

of solitary-wave solution, existence of steady state, travelling wave solution and invariant

measure have been investigated by Fang-Grillakis [6], Falk-Laedke-Spatschek [7], Friedman-

Sprekels [8], Garcke [9] and Tsutsumi-Yoshikawa [10], respectively. For the full system (Eq. (1)),

the well-posedness results are found in, for example, [11–13] and so on, and numerical results

are found in Hoffmann-Zou [14], Niezgodka-Sprekels [15] by finite element method and in

Matus-Melnik-Wang-Rybak [16] and Yoshikawa [17, 18] by the finite difference method. In

particular, in Ref. [19], the stability of steady state in the Lyapunov sense was shown. More

precisely, the stationary state of Eq. (2) is expressed as a nonlocal nonlinear elliptic problem. If

there exists a linearized stable critical point for the functional corresponding to the elliptic

problem, then for each neighbourhood U of the equilibrium, we can find a neighbourhood W

of the equilibrium such that the solution of Eq. (2) with the initial data in W stays in U for any

time. The proof can be shown by the dual variation principle which appears in most of the

models in non-equilibrium statistical thermodynamics (see [20]).

Shape Memory Alloys - Fundamentals and Applications38



The existence of several non-trivial steady states for low-temperature phase and low-energy case is

proved in Ref. [21]. The numerical simulation given in Ref. [17] exactly indicates the properties

mentioned above. The dual variation structure appears also in a multi-dimensional case [22]; how-

ever, well-posedness of the multi-dimensional model corresponding to Eq. (2) is still open in large

initial data case due to the propagation of singularity. That is one of ourmotivations of this problem.

We mention mathematical studies on the motion of curves governed by geometric evolution

equations. One of the typical objects is curve-shortening flow derived as an L
2 gradient flow

for the length functional of curve γ:

LðγÞ :¼

ð
γ

ds

where s denotes the arc length parameter of γ. By Gage [23], Gage and Hamilton [24] and

Grayson [25], it is well known that the curve-shortening flow shrinks simple closed curves to a

point in a finite time. Since the curve-shortening flow can be regarded as a one-dimensional case of

mean curvature flow for surfaces, the flow is applicable to various mathematical analysis. For

example, the curve-shortening flow plays an important role in studies on phase transition.We also

mention the curve-straightening flow which has been attracted a great interest and studied

actively inmathematical literature. The flow is derived as an L
2 gradient flow for the elastic energy

KðγÞ :¼
1

2

ð
γ

κ2
ds

where κ denotes the scalar curvature of γ. It is well known that the flow is applicable to studies

on elastic curve inspired by Bernoulli and Euler. Indeed, the curve-straightening flow under the

length constraint L(γ) � C converges to a classical elastic curve so-called elastica. There is also an

interest in the study on motion of curves governed by the L
2-gradient flow for E under the

inextensible condition. Under the condition, the length constraint L(γ) � C is also satisfied for

the condition means that the curve does not stretch. As we will state in Section 2.2, the constraint

is imposed on each point of curves. Thus, a standard Lagrange multiplier theory does not work.

Therefore, we have to make use of geometric properties of curves governed by the flow.

The purpose of this chapter is to derive a mathematical model describing thermoelastic defor-

mation of shape memory wire in R3. In particular, we regard the wire as a closed space curve

satisfying the inextensible condition. From the physical point of view, it may be unnatural that

the wire does not stretch. However, the contribution of this chapter is to adopt a geometric

analysis into a classical thermoelastic theory with phase transition inspired by Falk.

2. Setting and derivation of equations

We denote the closed curve representing shape of wire by Γ = {γ(ξ): ξ ∈ Ξ}, where the variable ξ

is an arbitrary parameter not necessarily the arc length parameter. Let us define a displacement

vector from a point ξ in an original shape Γ0 = {γ0(ξ): ξ ∈ Ξ} by u(ξ) (see Figure 1); namely, it

holds that
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γðξÞ ¼ γ0ðξÞ þ uðξÞ

for

• γðξÞ :¼
�

γ1ðξÞ, γ2ðξÞ, γ3ðξÞ
�

: vector representing the shape,

• γ0ðξÞ :¼
�

γ0
1ðξÞ,γ

0
2ðξÞ,γ

0
3ðξÞ

�

: vector representing the original shape,

• uðξÞ :¼
�

u1ðξÞ, u2ðξÞ, u3ðξÞ
�

: displacement vector.

Throughout this chapter, we denote by L the length of Γ0, and hence, the length of Γ is also L

from the non-stretching assumption. To apply the idea by Falk, we need to determine the form

of strain and free energy (Eq. (1)) suitable for this setting.

2.1. Definition of strain

We first consider the strain. Let γ0(ξ) be a space closed curve, where ξ is a parameter (not

necessary to be the arc length parameter). For γ0 (ξ), we define the displacement vector by u(ξ),

and we denote γðξÞ ¼ γ0ðξÞ þ uðξÞ. Since the relation “strain ≈ line element” holds, let us first

pursue line element between γ0 (ξ) and γ (ξ). From the direct calculation, we have

jγ0ðξÞj2 � jγ00ðξÞj2 ¼ fγ00ðξÞ þ u0ðξÞg � fγ00ðξÞ þ u0ðξÞg � γ00ðξÞ � γ00ðξÞ

¼ 2γ00ðξÞ � u0ðξÞ þ ju0ðξÞj2:

Here, if we assume a smallness of deformation, then we may assume

jγ00ðξÞ � u0ðξÞj≫ ju0ðξÞj2:

From now on, we regard the strain as

γ00ðξÞ � u0ðξÞ:

Figure 1. Original shape Γ0 and deformed curve Γ.
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2.2. Definition of energy functional

Let γ0(ξ) be an initial closed curve and γ(ξ, t) denote a family of closed curves starting from

γ0(ξ). Recalling that the arc length parameter s(ξ, t)of γ(ξ, t) is given by

ds ¼
∂γ

∂ξ

�

�

�

�

�

�

�

�

dξ;

we can write kinetic energy M(γ) of γ as

MðγÞ :¼ ∮
∂γ

∂t

�

�

�

�

�

�

�

�

2
∂γ

∂ξ

�

�

�

�

�

�

�

�

dξ:

In a similar manner, thermal energy is defined by

F0ðγÞ :¼ ∮ f 0ðξÞ
∂γ

∂ξ

�

�

�

�

�

�

�

�

dξ;

and the curvature energy is expressed as

KðγÞ :¼ ∮κ2 ∂γ

∂ξ

�

�

�

�

�

�

�

�

dξ:

Observe that the scalar curvature κ is written as

κ ¼
∂γ

∂ξ

�

�

�

�

�

�

�

�

∂2γ

∂ξ2
�

∂γ

∂ξ
�
∂2γ

∂ξ2

� �

∂γ

∂ξ

� �

∂γ

∂ξ

�

�

�

�

�

�

�

�

�3

:

Lastly, the nonlinear elastic energy density is given by

f ð∂ξ γ, θ; ∂ξ γ0Þ :¼
1

6

∂γ0

∂ξ
�
∂u

∂ξ

� �6

�
1

4

∂γ0

∂ξ
�
∂u

∂ξ

� �4

þ
1

2
ðθ� θcÞ

∂γ0

∂ξ
�
∂u

∂ξ

� �2

and then the nonlinear elastic energy is written as

Fð∂ξγ,θ; ∂ξγ
0Þ :¼ ∮ f ð∂ξγ, θ; ∂ξ γ0Þ

∂γ

∂ξ

�

�

�

�

�

�

�

�

dξ

where u = γ � γ0. Thus, we obtain the Helmholtz energy for our setting as

Hðγ,θ,γ0Þ :¼ MðγÞ þ KðγÞ þ Fð∂ξγ,θ; ∂ξγ
0Þ þ F0ðθÞ:

From now on, let s∈R=LZ ¼: S1L be the arc length parameter of the initial closed curve γ0 = γ0(s).

It follows from the property of arc length parameter that |γ0
0

(s)| � 1. In a similar fashion to the

above equation, γ(s, t) means the closed curve deformed along evolution from γ0(s). Moreover, in

what follows, we assume that γ(s, t) satisfies
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j∂sγðs, tÞj � 1 ð3Þ

which means “s is arc length parameter of γ not only the initial time but also every time t”.

From the assumption, we can rewrite M, F0 and F shortly as

MðγÞ ¼

ðL

0

j ∂tγ j2 ds,

F0ðθÞ ¼

ðL

0

f 0ðθÞds,

Fð∂s γ,θ; ∂s γ
0Þ ¼

ðL

0

f ð∂sγ,θ; ∂sγ
0Þ ds:

Moreover, since ∂sγ � ∂2sγ ¼ 0, from Eq. (3), it holds that

KðγÞ ¼

ðL

0

j ∂2sγj
2ds:

Therefore, the Helmholtz free energy density is denoted by

HðtÞ :¼
1

2
jj∂tγð�, tÞjj

2
L2ðS1LÞ

þ
1

2
jj∂2sγð�, tÞjj

2
L2ðS1LÞ

þ F
�

∂sγð�, tÞ, θð�, tÞ; ∂sγ
0ð�Þ

�

þ F0

�

θð�, tÞ
�

:

We will explain that for the free energy under some assumptions, the following system of

nonlinear partial differential equations is derived:

∂2t γþ ∂4sγþ ∂sf ,∂sγð∂sγ, θ; ∂sγ
0Þ � ∂s fðv� 2 j∂2sγj

2Þ ∂sγg ¼ 0,

� ∂2sv þ j∂2sγj
2v ¼ 2 j∂2sγj

4 � j∂3sγj
2 þ j∂s∂tγj

2 þ ∂2s f ,∂sγð∂sγ, θ; ∂sγ
0Þ � ∂sγ,

∂tθ � ∂
2
sθ ¼ θ

�

∂sγ
0 � ∂sðγ –γ0Þ

�

ð∂t∂sγ � ∂sγ
0Þ

8

>

>

>

>

<

>

>

>

>

:

ð4Þ

where

f ,∂sγð∂sγ, θ; ∂s γ
0Þ ¼

∂f

∂sγ1

,
∂f

∂sγ2

,
∂f

∂sγ3

� �

¼ fð ∂sγ
0 � ∂su Þ5 � ð ∂sγ

0 � ∂su Þ3 þ ðθ� θcÞ∂sγ
0 � ∂su g∂sγ

0
:

2.3. Equation of motion

By using the Hamilton principle, we derive an equation of the motion of γ. Namely, we will

derive the Euler-Lagrange equation for the functional:

~Hðγ, θ;γ0Þ ¼

ðt1

t2

1

2
jj∂tγð�, tÞjj

2
L2ðS1LÞ

þ
1

2
jj∂2sγð�, tÞjj

2
L2ðS1LÞ

� F
�

∂sγð�, tÞ, θð�, tÞ; ∂sγ
0ð�Þ

�

� F0

�

θð�, tÞ
�

� �

dt: ð5Þ
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Let us denote the variation of γ by

γðs, t;θÞ :¼ γðs, tÞ þ ε ϕðs, tÞ

where ε is a sufficiently small positive parameter and ϕ is sufficiently smooth and satisfies ϕ(s, t1)

= ϕ(s, t2) = 0. Moreover, from the assumption Eq. (3), it is also necessary to hold that

d

dε
j∂sγðs, t;εÞj

�

�

�

�

�

ε¼0

¼ 0:

Since

d

dε
j∂sγðs, t;θÞj

�

�

�

�

�

ε¼0

¼ ∂sγðs, tÞ � ∂sϕðs, tÞ

ϕ has to satisfy

∂sγðs, tÞ � ∂sϕðs, tÞ ¼ 0

for any s∈ S1L and t > 0. Calculating the first variation of the energy functional, we have

d

dε
~Hðγ, θ;γ0Þ

�

�

�

�

�

ε¼0

¼

ð

t2

t1

f〈∂tγ, ∂tϕ〉 � 〈∂2sγ, ∂
2
sϕ〉 � 〈f ,∂sγð∂sγ,θ; ∂sγ

0Þ, ∂sϕ〉gdt:

From the integral by parts, the right-hand side is rewritten as follows:

�

ðt2

t1

〈∂2t γþ ∂
4
sγ� ∂sf ,∂sγð∂sγ,θ; ∂sγ

0Þ,ϕ〉dt: ð6Þ

Then the integral Eq. (6) is equal to 0 for any ϕ satisfying ϕðs, t1Þ ¼ ϕðs, t2Þ ¼ 0 and ∂sγ � ∂sϕ � 0.

For the purpose, we define

V :¼ fϕ j ∂sγ � ∂sϕ � 0g:

The orthogonal complement V⊥ of the space V with respect to L2ðS1LÞ inner product is given by

V⊥ ¼ f∂sðw∂sγÞw ¼ wðs, tÞ is a scalar functiong: ð7Þ

Here, we remark that in the case where γ is a curve embedded in three-dimensional space

(not a planar curve), ∂2sγ 6¼ 0 has to be satisfied for every ðs, tÞ∈ S1L � Rþ. In the end of this

section, we will show the reason why V⊥ is given as above. Consequently, if for the direction

∂2t γþ ∂4sγ� ∂sf ,∂sγð∂sγ,θ; ∂sγ
0Þ, there exists a scalar function w = w(s, t) such that
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∂
2
t γþ ∂

4
sγ� ∂sf ,∂sγð∂sγ,θ; ∂sγ

0Þ ¼ ∂sðw∂sγÞ ð8Þ

then Eq. (6) is equal to 0.

Next, we derive the equation for w. From the assumption Eq. (3), we see that

0 ¼ ∂
2
t j∂sγj

2 ¼ 2∂s∂
2
t γ � ∂sγþ 2j∂s∂tγj

2

It follows from Eq. (8) that

f�∂
5
sγþ ∂

2
s f ,∂sγð∂sγ,θ; ∂sγ

0Þ þ ∂
2
s ðw∂sγÞg � ∂sγ ¼ �j∂s∂tγj

2
: ð9Þ

Differentiating Eq. (3), we obtain

∂sγ � ∂2sγ ¼ 0,

∂sγ � ∂3sγ ¼ �j∂2sγj
2,

∂sγ � ∂4sγ ¼ �
3

2
∂sðj∂

2
sγj

2Þ,

∂sγ � ∂5sγ ¼ � 2∂2s ðj∂
2
sγj

2Þ þ j∂3sγj
2
:

By the relations, we will rewrite Eq. (9). It follows from the direct calculation that

∂
2
s ðw∂sγÞ � ∂sγ ¼ ∂

2
sw � wj∂2sγj

2
:

Since from the definition

f ,∂sγð∂sγ, θ; ∂sγ
0Þ

¼
�

∂sγ
0 � ∂sðγ� γ0Þ

�5

�
�

∂sγ
0 � ∂sðγ� γ0Þ

�3

þ ðθ� θcÞ
�

∂sγ
0 � ∂sðγ� γ0Þ

�

� �

∂sγ
0

we also obtain

∂2s f ,∂sγð∂sγ, θ; ∂sγ
0Þ � ∂sγ

¼ ∂2s

�

∂sγ
0 � ∂sðγ� γ0Þ

�5

�
�

∂sγ
0 � ∂sðγ� γ0Þ

�3

þ ðθ� θcÞ
�

∂sγ
0 � ∂sðγ� γ0Þ

�

� �

∂sγ
0

	 


� ∂sγ:

Therefore, substituting these into Eq. (9), we find

0 ¼ 2∂2s ðj∂
2
sγj

2Þ � j∂3sγj
2 þ ∂2sw� wj∂2sγj

2 þ j∂s∂tγj
2 þ ∂2s

�

∂sγ
0 � ∂sðγ� γ0Þ

�5
�	

�
�

∂sγ
0 � ∂s ðγ� γ0Þ

�3

þ ðθ� θcÞ
�

∂s γ
0 � ∂s ðγ� γ0Þ

�

�

∂sγ
0




� ∂sγ:

Shape Memory Alloys - Fundamentals and Applications44



Here setting the new unknown v by v :¼ wþ 2j∂2sγj
2, we can rewrite the equation as follows:

�∂2svþ j∂2sγj
2v ¼ 2 j∂2sγj

4 � j∂3sγj
2 þ j∂s∂tγj

2

þ∂2s

�

∂sγ
0 � ∂sðγ� γ0Þ

�5

�
�

∂sγ
0 � ∂sðγ� γ0Þ

�3

þ ðθ� θcÞ
�

∂sγ
0 � ∂sðγ� γ0Þ

�

� �

∂sγ
0

	 


� ∂sγ:

Consequently, under given temperature θ, the equation of motion is given by

∂
2
t γþ ∂

4
sγ� ∂sf ,∂sγð∂sγ,θ; ∂sγ

0Þ � ∂sfðv� 2j∂2sγj
2Þ∂sγg ¼ 0,

�∂
2
svþ j∂2sγj

2v ¼ 2j∂2sγj
4 � j∂3sγj

2 þ j∂s∂tγj
2 � ∂

2
s f ,∂sγð∂sγ, θ; ∂sγ

0Þ � ∂sγ:

8

<

:

At the rest of this section, we prove that the orthogonal complement of V is given by Eq. (7).

Lemma 1. Let γðs, tÞ be a smooth curve in R
3 and s∈S1L be an arc length parameter of γ for any t.

Suppose that ∂2sγ 6¼ 0 holds for all ðs, tÞ∈S1L � Rþ then the orthogonal complement V⊥ of the space

V ¼ fϕj∂sγ � ∂sϕ � 0g with respect to L2ðS1LÞ inner product is represented by

V⊥ ¼ f∂sðw∂sγÞw ¼ wðs, tÞ is a scalar functiong:

Proof. Observe that ∂sγ, ∂
2
sγ and the outer product ∂sγ� ∂2sγ are orthogonal each other. Under

the assumption ∂
2
sγ 6¼ 0, a coordinate system defined on γ consists of the vectors. Then

arbitrary vector η = η(s, t) can be represented as

ηðs, tÞ ¼ η1ðs, tÞ∂sγðs, tÞ þ η2ðs, tÞ ∂
2
sγðs, tÞ þ η3ðs, tÞ ∂sγðs, tÞ � ∂

2
sγðs, tÞ:

If we assume additionally η ∈ V, then we obtain

0 ¼ ∂sη � ∂sγ

¼ f∂sη1∂sγþ η1∂
2
sγþ ∂sη2∂

2
sγþ η2∂

3
sγþ ∂sη3∂sγ� ∂2sγþ η3 ð∂

2
sγ� ∂2sγþ ∂sγ� ∂3sγÞg � ∂sγ

¼ ∂sη1 þ η2∂sγ � ∂3sγ

¼ ∂sη1 � η2j∂
2
sγj

2

that is

∂sη1 ¼ j∂2sγj
2η2: ð10Þ

In other words, an element of V consists of η1, η2 satisfying Eq. (10) and arbitrary η3. However,

we remark that we cannot take η2 freely. Indeed, in order to verify L periodicity of η1, η2, we

have to show the following condition:

ðL

0

j∂2sγj
2η2ds ¼ 0: ð11Þ
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If ζðs, tÞ ¼ ζ1ðs, tÞ∂sγðs, tÞ þ ζ2ðs, tÞ∂
2
sγðs, tÞ þ ζ3ðs, tÞ∂sγðs, tÞ � ∂2sγðs, tÞsatisfies 〈ζ, η〉 = 0, then

we see that η1 and η2 satisfy Eqs. (10) and (11) and any η3 satisfies

ðL

0

fζ1η1 þ ζ2η2j∂
2
sγj

2 þ ζ3η3ð∂sγ� ∂
2
sγÞ

2gds ¼ 0: ð12Þ

In particular, if we assume η2 � 0 and η3 � 0, then we infer from Eq. (10) that η1 � C holds true.

Then, we deduce from Eq. (12) that

ðL

0

ζ1ds ¼ 0:

Now we define

ϕðs, tÞ ¼ ζ1ð0, tÞ þ

ðs

0

ζ1ðs, tÞds:

Then, ϕ has the period L and satisfies ∂sϕ ¼ ζ1. Substituting it into Eq. (12) and using Eq. (10),

we have

0 ¼

ðL

0

f∂sϕ η1 þ ζ2η2j∂
2
sγj

2 þ ζ3η3ð∂sγ� ∂
2
sγÞ

2gds

¼

ðL

0

f�ϕ∂sη1 þ ζ2η2j∂
2
sγj

2 þ ζ3η3ð∂sγ� ∂
2
sγÞ

2gds

¼

ðL

0

f�ϕ j∂2sγj
2η2 þ ζ2η2j∂

2
sγj

2 þ ζ3η3ð∂sγ� ∂
2
sγÞ

2gds

¼

ðL

0

fð�ϕþ ζ2Þη2j∂
2
sγj

2 þ ζ3η3ð∂sγ� ∂
2
sγÞ

2gds:

Recalling Eq. (11), we see that the vector-valued function (η2, η3) is orthogonal with ðj∂2sγj
2
, 0Þ

in the sense of L2 inner product. Therefore, there exists some function μ = μ(t) depending only

on t such that

�

f�ϕþ ζ2g j∂2sγj
2
, ð∂sγ� ∂

2
sγÞ

2ζ3

�

¼ μðj∂2sγj
2
, 0Þ

that is,

�ϕþ ζ2 ¼ μ, ζ3 � 0: ð13Þ

Setting

μþ ϕðs, tÞ ¼ wðs, tÞ,

the function w(s, t) is the L periodic function and satisfies ∂sw ¼ ζ1. It follows from Eq. (13) that
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ζ2ðs, tÞ ¼ wðs, tÞ:

Then ζ(s) is orthogonal with elements of V with respect to L2 inner product. Thus, we get

ζðs, tÞ ¼ ∂swðs, tÞ∂sγðs, tÞ þ wðs, tÞ∂2sγðs, tÞ ¼ ∂s

�

wðs, tÞ∂sγðsÞ
�

which completes the proof.

Q.E.D.

Remark 1. The assumption ∂
2
sγ 6¼ 0 in Lemma 1 means that the curvature is always non-zero. If

∂
2
sγ ¼ 0 at some point, we cannot determine the tangential vector ∂sγ at the point uniquely.

Therefore, we need the assumption in order to give a coordinate system at every point of Γ. On

the other hand, in the case of a planar curve, we do not need the assumption. Indeed, by

rotating the tangential vector, we can construct a coordinate system.

Remark 2. We mention the elastic flow with the inextensible condition (Eq. (3)), more precisely,

L2 gradient flow for K(γ) under the constraint (Eq. (3)). To the best of our knowledge, the

problem was first considered by N. Koiso [26] for planar closed curves. With the aid of

smoothing effect of the elastic energy E, the Cauchy problem on the elastic flow has a unique

classical solution and the solution converges to an equilibrium state as t ! ∞ in the C∞-

topology. The result can be extended to the following case: (i) L2 gradient flow for E under the

area-preserving condition and (C) [27] and (ii) L2gradient flow for Tadjbakhsh-Odeh energy

functional under the constraint (C) [28]. Moreover, the result [26] was also extended to the case

of space curves [29].

2.4. Derivation of heat equation

In this subsection, we study the energy law. We confirm thermal energy conservation law (the

first law of thermodynamics) and the increasing law of entropy (the second law of thermody-

namics). To begin with, we consider the first law of thermodynamics. According to Ref. [30],

thermal energy conservation law for thermoelastic system is given by

θ∂tSþ ∇ � q ¼ h ð14Þ

where S, q and h are entropy, thermal velocity and external heat, respectively. In our setting,

thermal transfer occurs only on wire, and the wire does not expand. Then, we may regard ∇ � q

as ∂sq as the same as one-dimensional case, where s is necessary to be arc length parameter. By

the same reason, the Fourier law q = ∇θ is replaced by

q ¼ �∂sθ: ð15Þ

The Helmholtz free energy density
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~f ¼ ~f ð∂2sγ, ∂sγ, θ ;γ0Þ

¼
1

2
j∂2sγ j2 þ f ð∂sγ, θ ;γ0Þ þ f 0ðθÞ

and the entropy S are connected with the relation

S ¼ �
∂~f

∂θ
:

Then, the conservation law, Eq. (14), is rewritten as follows:

� θ f
00

0ðθÞ ∂tθ � ∂
2
sθ ¼ θ

�

∂sγ
0 � ∂sðγ� γ0Þ

�

ð∂t∂sγ � ∂sγ
0Þ þ h: ð16Þ

We note that the Clausius-Duhem inequality holds automatically:

∂tSþ ∂s
q

θ

� �

≥
h

θ
:

Indeed, we observe from Eqs. (14) and (15) that

∂tSþ ∂s
q

θ

� �

¼
h� ∂sq

θ
þ ∂s

q

θ

� �

¼
h

θ
�
q∂sθ

θ2

¼
h

θ
þ j

∂sθ

θ
j2 ≥

h

θ
:

The Clausius-Duhem inequality corresponds to the second law of thermodynamics. For more

precise information of the inequality, we refer to, for example, 1.11 of chapter 4 in Ref. [2].

Here, we assume external heat source h = 0 and adopt the well-known form:

f 0ðθÞ ¼ θ� θlogθ:

Then since f 0
0 0
ðθÞ ¼ �1=θ, Eq. (16) is reduced to

∂tθ� ∂
2
sθ ¼ θ

�

∂sγ
0 � ∂sðγ� γ0Þ

�

ð∂t∂sγ � ∂sγ
0Þ:

We thus obtain the system of equation as Eq. (4).

3. Dual variation structure

Let us rewrite Eq. (4):

∂
2
t γþ ∂

4
sγ þ ∂sf ,∂sγð∂sγ, θ; ∂sγ

0Þ � ∂sfðv� 2 j∂2sγj
2Þ∂sγg ¼ 0, ð17Þ

� ∂
2
svþ j∂2sγj

2v ¼ 2j∂2sγj
4 � j∂3sγj

2 þ j∂s∂tγj
2 þ ∂

2
s f ,∂sγð∂sγ, θ; ∂sγ

0Þ � ∂sγ, ð18Þ
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∂tθ� ∂
2
sθ ¼ θ

�

∂sγ
0 � ∂sðγ� γ0Þ

�

ð∂t∂sγ � ∂sγ
0Þ, ðt, sÞ∈ ð0, TÞ � S1L, ð19Þ

γð0, sÞ ¼ γ0ðsÞ, ∂tγð0, sÞ ¼ γ1, θð0, sÞ ¼ θ0, s∈ S1L: ð20Þ

In this section, we show that the problem in Eqs. (17)–(20) has also dual variation structure as

well as the problem (Eq. (2)). The structure plays an important role to prove the dynamical

stability of infinitesimally stable stationary state.

We assume that the system has sufficiently smooth solution (γ, θ) satisfying θ > 0. Then initial

data also has to satisfy

j∂sγ0j ¼ 1, ∂sγ0 � ∂sγ1 ¼ 0:

Setting

f 1ð∂sγÞ :¼
1

2

∂γ0

∂s
�
∂ðγ� γ0Þ

∂s

� �2

,

f 2ð∂sγÞ :¼
1

6

∂γ0

∂s
�
∂ðγ� γ0Þ

∂s

� �6

�
1

4

∂γ0

∂s
�
∂ðγ� γ0Þ

∂s

� �4

�
θc

2

∂γ0

∂s
�
∂ðγ� γ0Þ

∂s

� �2

,

we have the relation f ¼ θf 1 þ f 2. Multiplying Eq. (17) by ∂tγ and integrating it with respect to

s, we obtain

d

dt

1

2
jj∂tγjj

2
L2 þ

1

2
jj∂2sγjj

2
L2

� �

¼ �〈f ,∂sγ, ∂s∂tγ〉 ¼ �
d

dt

ðL

0

f 2ð∂sγÞds�

ðL

0

θ∂tf 1ð∂sγÞds:

Integrating Eq. (19), we find

d

dt

ðL

0

θds ¼

ðL

0

θ∂tf 1ð∂sγÞds:

Then for the quantity

Eðγ, ∂tγ,θÞ :¼
1

2
jj∂tγjj

2
L2 þ

1

2
jj∂2sγjj

2
L2 þ

ðL

0

θdsþ

ðL

0

f 2ð∂sγÞds,

it holds that

d

dt
Eðγ, ∂tγ,θÞ ¼ 0:

Moreover, for the quantity

Wð∂sγ,θÞ :¼

ðL

0

ff 1ð∂sγÞ � logθgds

we deduce from Eq. (19) that
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d

dt
Wð∂sγ,θÞ ¼

ðL

0

∂
2
sθ

θ
ds ¼ �

ðL

0

j
∂sθ

θ
j2ds ≤ 0:

Finally, we confirm an important structure of the system (17)–(20). We denote the stationary

state of θ by θ > 0, and the corresponding equilibrium by γ satisfy the following constraint:

b � Eðγ0, γ1, θ0Þ ¼ Eðγ, 0, θÞ,

∂4sγ ¼ ∂sfθf 1,∂sγ þ f 2,∂sγg:

Eliminating θ by the relation

b ¼ Lθþ
1

2
jj∂2sγjj

2
L2 þ

ðL

0

f 2ð∂sγÞ ds

the stationary state of this problem satisfies the following nonlinear nonlocal problem:

∂
4
sγ ¼ ∂s

1

L
b�

1

2
jj∂2sγjj

2
L2 �

ðL

0

f 2ð∂sγÞds

� �

f 1,∂sγð∂sγÞ þ f 2,∂sγð∂sγÞ

� �

: ð21Þ

Eq. (21) is derived as the Euler-Lagrange equation of the functional

JbðyÞ :¼
1

L

ðL

0

f 1ðyÞds� log b�
1

2
jj∂syjj

2
L2 �

ðL

0

f 2ðyÞds

� �

þ logL

where y ¼ ∂sγ∈H2ðS1L, S
2Þ and

S2 :¼ fω∈R
3jjωj ¼ 1g:

We remark that the following relation between Jb and W holds true:

Wð∂sγ,θÞ ≥LJbð∂sγÞ:

The relation is called semi-unfolding minimality. Thus, if (γ, θ) is a non-stationary state,

b ¼ Eðγ0,γ1,θ0Þ, y ¼ ∂sγ is a linearized stable critical point of Jb ¼ JbðyÞ, y∈ H1ðS1L, S
2Þ and

θ > 0 is a constant satisfying Eðγ, 0,θÞ ¼ b, then it holds that for y ¼ ∂sγ

JbðyÞ � JbðyÞ ≤Wð∂sγ0, θ0Þ �Wðy,θÞ:

By this structure, we can infer that any infinitesimally stable stationary state is dynamically

stable, that is, stable in the Lyapunov sense. A critical point y ¼ ∂sγ of Jb for γ∈H2ðS1L, S
2Þ is

infinitesimally stable if there exists ε0 > 0 such that any ε1 ∈ 0, ε0
2

� �

admits δ0 > 0 such that if

jj∂sðγ� γÞjjH1 < ε0 and Jbð∂sγÞ � Jbð∂sγÞ < δ0 then
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jj∂sðγ� γÞjjH1 < ε1:

The definition of infinitesimally stable is obviously weaker than the one of well-known linear-

ized stable which means that for a critical point y ¼ ∂sγ of Jb, the quadratic form

Qyðw,wÞ ¼
d

dε2
Jbðyþ εwÞjε¼0

is a positive definite for any w∈H2ðS1L, S
2Þ.

Theorem 1. Assume that θ > 0 is a constant and that γ is an infinitesimally stable critical point of Jb

with constraint ∂sγ∈H2ðS1L, S
2Þ. Then ðγ,θÞ is a dynamically stable in the sense that for any ε > 0,

there exists δ > 0 such that if

Eðγ0, γ1, θ0Þ ¼ b, jj∂sðγ0 � γÞjjH1 < δ, j
1

L

ðL

0

logθ0ðsÞds� logθj < δ ð22Þ

then

sup
t ≥ 0

jj∂s

�

γðtÞ � γ
�

jjH1 < ε, j
1

L

ðL

0

logθðt, sÞds� logθj < ε:

Proof. We first show the semi-unfolding minimality. From the energy conservation law, we see

that

b ¼
1

2
jj∂tγjj

2
L2 þ

1

2
jj∂2sγjj

2
L2 þ

ðL

0

θdsþ

ðL

0

f 2ð∂sγÞds:

It follows from the Jensen inequality that

1

L

ðL

0

logθds ≤ log
1

L

ðL

0

θds

� �

:

Then we have

Wð∂sγ, θÞ ≥

ðL

0

f 1ð∂sγÞds� log
1

L

ðL

0

θds

� �

≥

ðL

0

f 1ð∂sγÞds� Llog
1

L
b�

1

2
jj∂syjj

2
L2 �

ðL

0

f 2ðyÞds

� �

¼ LJbð∂sγÞ:

We have thus completed to show the semi-unfolding minimality. Recall that γ∈H2ðS1L, S
2Þ is an

infinitesimally stable critical point of Jbð∂sγÞ. Thus, we find ε0 > 0such that any ε1 ∈ 0,ð ε0
2 � admits

δ0 > 0 such that if jj∂sðγ� γÞjjH1 < ε0 and Jbð∂sγÞ � Jbð∂sγÞ < δ0 then
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jj∂sðγ� γÞjjH1 < ε1: ð23Þ

From the above properties, it holds that

Jb

�

∂sγðtÞ
�

≤
1

L
W

�

∂sγðtÞ, θðtÞ
�

≤
1

L
Wð∂sγ0, θ0Þ: ð24Þ

Moreover, for the constant θ > 0, we obtain

Wð∂sγ, θÞ ¼ L
1

L

ðL

0

f 1ð∂sγÞds � log
1

L
b�

1

2
jj∂syjj

2
L2 �

ðL

0

f 2ðyÞds

� �	 


¼ LJbð∂s γÞ,

namely,

Jbð∂sγÞ ¼
1

L
Wð∂sγ,θÞ: ð25Þ

Given ε > 0, setting δ∈ 0, ε0
2

� �

and satisfying Eq. (22), we have

1

L
jWð∂sγ0, θ0Þ �Wð∂sγ,θÞj ≤

1

L

�

kf 1, ∂sγð∂sγ0ÞkL∞ þ kf 1, ∂sγð∂sγÞkL∞
�

k∂sðγ0 � γÞkL1

þj
1

L

ðL

0

logθ0ds� logθj < minðδ0, εÞ:
ð26Þ

Therefore, it follows from Eq. (24) to Eq. (26) that

Jb

�

∂sγðtÞ
�

� Jbð∂sγÞ ¼
1

L

�

Wð∂sγ0, θ0Þ �Wð∂sγ,θÞ
�

< δ0:

If jj∂sðγðtÞ � γÞjjH1 ¼ δð ≤ ε0=2 < ε0Þ, then we apply Eq. (23) for ε1 = δ, and hence

k∂s

�

γðtÞ � γ
�

kH1 < δ,

which is a contradiction. Thus, we have

k∂s

�

γðtÞ � γ
�

kH1 6¼ δ:

Here, from γ∈Cð½0,∞Þ; H2
�

and k∂sðγ0 � γÞkH1 < δ, it follows that

jj∂s

�

γðtÞ � γ
�

jjH1 < δ ð27Þ

for any t ≥ 0.

From the semi-unfolding minimality (Eqs. (24) and (25)) and the linearized stability of Jb, we

observe that
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Wð∂sγ,θÞ ≥ LJbð∂sγÞ ≥LJbð∂sγÞ ¼ Wð∂sγ,θÞ:

Then, combining Eq. (26) with Eq. (27), we have

1

L

ðL

0

logθðt, sÞds� logθ

�

�

�

�

�

�

�

�

�

�

≤
1

L

�

Wð∂sγ,θÞ �Wð∂sγ,θÞ
�

þ
1

L

ðL

0

ff 1ð∂sγÞ � f 1ð∂sγÞgds

�

�

�

�

�

�

�

�

�

�

≤
1

L

�

Wð∂sγ0,θ0Þ �Wð∂sγ,θÞ
�

þ Cjj∂sðγ� γÞjjH1 ≤ εþ Cδ ≤ 2ε

where δ is small enough such that δ < ε / C. This completes the proof.

Q.E.D.

Remark 3. Both the existence of solution for evolution equations (Eq. (4)) and non-trivial

solutions for stationary problem (Eq. (21)) are open problems. In the straight material case

(i.e. the problem (2)), smooth solution for Eq. (2) is assured in [11] (we also refer to chapter 5

in [2]). The existence results of non-trivial solution for stationary problem (Eq. (21)) in low-

temperature and low-energy cases can be found in [21, 31].

4. Concluding remarks

In this chapter, we propose the new mathematical model describing the movement of wire

made of shape memory alloys. The derived system of nonlinear partial differential equations is

a thermoelastic system with phase transition and non-stretching constraint. The Falk model

(Eq. (2)) represents the dynamics for crystal as a stack of layers, whose displacement is

restricted to move only on one direction. On the other hand, our model describes the dynamics

of wire. We emphasize that our model allows the displacement of each direction. Thus, our

model may describe a more realistic motion of wire made of shape memory alloys. Moreover,

it is also interesting to regard our model as a mathematical problem on elastic curve with heat

conduction. To the best of our knowledge, there is no result considering such a mathematical

problem.

We mention the mathematical contribution of the present chapter. We prove the dynamical

stability of an infinitesimally stable stationary state by finding the dual variation structure in

our model. This property shall be applicable, for example, to assure the strength of not only a

wire in an original shape but also a deformed wire. Indeed, in the straight material case,

namely in the Falk model (Eq. (2)), numerical simulation shows the stability in this sense

(see [17]).
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