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Abstract

Although many surgical and pharmaceutical interventions are currently available for 
treating osteoarthritis (OA), restoration of normal cartilage function remains inefficient. 
In fact, because of the absence of vasculature within the articular cartilage (AC), the self-
potential for regeneration is very poor. Recently, researchers and clinicians have been 
focusing on alternative methods for cartilage preservation and repair. It has been shown 
that AC contains a population of stem cells or progenitor cells, similar to those found in 
many other adult tissues that are thought to be involved in the maintenance of tissue 
homeostasis. In the present chapter, we review the current status of stem cells potential 
in the treatment of early OA and discuss the possible origin of these cells and the role 
they might have in cartilage repair. We also review the recent progress in the field of 
chondroprogenitors in cartilage.
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1. Introduction

Articular hyaline cartilage is a tissue whose mechanical properties allow joint movements 

with a low coefficient of friction and a high absorption of constraints. Degradation of hyaline 
cartilage, posttraumatic or degenerative, causes functional impairment of the joint, pain, and 
decreased quality of life. These conditions generally lead to the formation of the most com-

mon degenerative orthopedic disease such as osteoarthritis (OA). The OA involves gradual 
deterioration of cartilage and subchondral bone accompanied by chronic low-grade inflam-

mation of the synovium. These pathological changes lead to destruction of the whole joint 
organ. Even it is agreed that OA affects entire joint articular cartilage, breakdown remains 
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the principal characteristic of OA. Unfortunately, since cartilage is a neural tissue, the OA 
is generally diagnosed in more advanced stages when the majority of cartilage is already 

degraded. Thus, restoration of normal cartilage function in OA remains challenged despite 
many surgical and pharmaceutical interventions being currently available [1]. Several treat-
ment options are available to support the knee articular cartilage injury. Painkillers and anti-
inflammatory drugs are first prescribed in association with loss of weight or physiotherapy. 
When these options are not sufficient, intra-articular injections of corticosteroids, hyaluronic 
acid, or platelet-rich plasma (PRP) [2] represent non-surgical alternatives. Despite drugs 
used clinically to reduce pain and maintain joint movement, in many cases, surgical sub-

stitution with artificial implants is inevitable. A number of surgical treatment strategies are 
currently available for articular cartilage defect repair. The cartilage repair aims to restore the 
histological structure of the whole osteochondral structure so that it can restore the original 

mechanical and functional properties [3, 4]. Restorative procedures include abrasion chon-

droplasty, subchondral drilling, microfracture, and mosaicplasty arthroscopy. The procedure 
chosen will depend on the size of the lesion, its depth, the age of the patient, the nature of 

the symptoms, and the regulations in force in each country. Surgical possibilities routinely 
used to repair articular cartilage can be separated into three major groups; those conducting 

subchondral stimulation, reconstruction techniques which transplant mature cartilage, and 

finally cellular transplants which aim to create a favorable environment for cartilage healing 
[5]. Recently, both cartilage and bone marrow stromal cells (BMSCs), also known as bone 
marrow-derived “mesenchymal stem cells” and “mesenchymal stromal cells,” with inherent 

chondrogenic differentiation potential appeared to present a potential for therapeutic use in 
cartilage regeneration. BMSCs are easy to isolate and expand in culture in an undifferentiated 
state for therapeutic use. Owing to their potential to modulate local microenvironment via 
anti-inflammatory and immunosuppressive functions, BMSCs have an additional advantage 
for allogeneic application.

2. Mesenchymal stem cells (MSC) in cartilage repair

2.1. Stem cells

Stem cells are the foundation cells for every organ, tissue, and cell in the body [6, 7]. They 
may be thought of as a blank microchip that can ultimately be programmed to perform any 
number of specialized tasks. This role is justified based on two key properties: (1) the ability to 
self-renew, dividing in a way to make copies of themselves and (2) the ability to differentiate, 
giving rise to the mature types of the cells that make up our organs and tissues [6, 7].

The stem cells can be generally divided into three groups: totipotent, pluripotent, and mul-
tipotent stem cells. Totipotent stem cells originate from the fertilized egg and give rise to the 
whole organism. These cells, through the process of proliferation and differentiation, become 
pluripotent embryonic stem cells that form three germ layers: ectoderm, mesoderm, and endo-

derm [8]. These three germ layers are the embryonic source of all cells of the body (adult 
organism consists of 200 different cells types). During embryonic development, stem cells 
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become specialized, which makes them terminally differentiated with specific function and 
they are unable to be renewed [9, 10].

Yet, even in the specialized tissue, we can find a pool of cells referred to as “adult” or “somatic” 

stem cells, which replace injured and dead cells of certain tissue (blood, skin, liver, brain, etc.) 
[9, 10]. These cells are termed as multipotent as their potential is limited to produce some or 
all of the mature cell types within a particular tissue where they reside (tissue-specific stem 
cells) [9–11]. Yet, some of the adult stem cells are less differentiated than the others and can 
give rise to the several tissue types belonging to the same germ layer. These include hemato-

poietic stem cells as a source of both red and white blood cells and mesenchymal stem cells 

(MSC), which may be a potential source of the several mesodermal tissues [10–12].

Based on this, the focus of scientific research became the potential use of adult stem cells for 
tissue repair but also to generate new tissue under in vitro conditions for biological trans-

plantation. The ability to obtain cells with proliferation and differentiation potential with-

out sacrificing potential human life is a highly popular and hopeful tool for modern day 
researchers.

2.2. Phenotype and differentiation potential of MSC

The MSC cells are multipotent—self-renewing cells found in adult tissues, which can be in vitro 

differentiated and form adipocytes, fibroblast, osteocyte, and chondrocytes lineage [13, 14]. 
These cells had been primarily isolated in the early 1970s when Friedenstein et al. discovered 
that a specific number of fibroblastic cells isolated from bone marrow have the capacity to form 
colonies in vitro and under appropriate stimulating environmental conditions, small aggregates 

of bone, and cartilage [15, 16]. Over the years, it has become clear that MSC are not an exclusive 
feature of the bone marrow [17–19], but can also be isolated from other organs and tissues such 

as fat [20–22], skeletal muscles [23, 24], and synovium [25].

The isolation and characterization of MSC among the other cell types are based on their prop-

erties to adhere and grow on plastic, phenotype characteristics, and differentiation potential 
[26]. Over the last decades of research, significant effort has been made to establish pheno-

typic characterization of MSC. Despite all the effort, to date, there is no specific marker or 
combination of markers which will allow isolation of the homogeneous MSCs pool [27].

Nevertheless, it has been generally agreed that MSCs express specific surface antigens 
which involve: CD105 (endoglin—type I glycoprotein), CD73 (ecto-5′-nucleotidase), CD44 
(HCAM—homing cell adhesion molecule), CD90 (cluster of differentiation 90 [Thy 1]), CD71 
(cluster of differentiation 71) and Stro-1 as well as the adhesion molecules CD106 (vascu-

lar cell adhesion molecule [VCAM]-1), CD166 (activated leucocyte cell adhesion molecule 
[ALCAM]), intercellular adhesion molecule (ICAM)-1, neurogenic locus notch homolog pro-

tein 3 (NOTCH3), integrin alpha-11 (ITGA11), and CD29 [17, 26, 28–31]. However, they do 
not express the hematopoietic-specific markers CD79a, CD45, CD11, CD34, CD19, or CD14 
and co-stimulatory molecules CD80, CD40, CD86, or the adhesion molecules CD31 (platelet/
endothelial cell adhesion molecule [PECAM]-1), CD18 (leucocyte function-associated anti-
gen-1 [LFA-1]), or CD56 (neuronal cell adhesion molecule-1) [26].
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Hence, to confirm the presence of MSC and extract them among the other cell types, research-

ers use the different combinations of these markers.

Another way to identify supposed MSC population is by their differentiation capacity to bone, 
cartilage, and adipocyte tissue. Herein, MSC has to be cultured in the specific medium com-

posed of the substituent known to stimulate and control these differentiations in vivo. These 
are mostly specific growth factors such as BMPs for osteocytes [32–34] and TGFs, BMPs, and 
FGFs for chondrocytes [35–38]. To optimize MSC differentiation, cells need to be put under 
the in vivo-like environment. Then MSC aimed to become osteocytes or chondrocytes will 
be cultured in 3D pellets [32–38] while differentiation to adipocytes will be performed in 
monolayer.

The fact that MSCs can be differentiated into several different cells types in vitro clearly makes 
MSC and MSC-like cells (progenitors) a promising cell source for tissue repair and regenera-

tion. Moreover, MSCs are known to secrete a large number of growth factors (GFs), cytokines, 
and chemokines for mediating various functions including anti-inflammatory, anti-apoptotic, 
anti-fibrotic, angiogenic, mitogenic, and wound-healing through paracrine activity [27, 39, 40]. 
All these features are highly desired and support their candidature for therapeutic purpose.

2.3. MSC potential for cartilage repair

Current research into cartilage tissue engineering focuses on the use of adult MSCs as an 
alternative to autologous chondrocytes [41]. The advantage of MSC over chondrocytes is 
their ability to self-renew without loss of differentiation capacity. Likewise, MSCs may retain 
immunomodulatory activity in recipient tissue due to lack of human leucocyte antigen (HLA) 
class II expression [42, 43]. These properties make MSC promising for a diversity of clinical 
applications including in vitro development of the cartilage tissue and its transplantation into 

the joint defect.

To date, research has demonstrated that bone marrow, adipose, and synovial-derived MSCs 
are mostly relevant as MSC sources for cartilage repair [8].

2.3.1. Bone marrow-derived MSC in cartilage repair

2.3.1.1. In vitro studies

Since the Friedenstein study in the early 1970s to date, numerous reports confirmed the mul-
tipotency of MSC isolated from bone marrow (BMSC) [16, 44–48]. Although, they represent a 
minor fraction of the total nucleated cell population (1 MSC/5 ×103 mononuclear cells), they 

could significantly increase their number through in vitro expansion [44, 49–51]. Sakaguchi et 
al. confirmed that BMSC potential to divide persists even after 10 in vitro passages [49]. This 
is a significant achievement as the high cells number is required to fill the cartilage defects. 
Note that, as opposed to chondrocytes, MSC retain chondrogenetic potential even after long 
monolayer expansion [46, 52]. When a sufficient cell number is reached, cells are placed in the 
differentiation-specific medium. The quality of BMSC-derived chondrocytes and the formed 
cartilage tissue is then estimated [46, 52].
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The obtained tissue exhibited high positive staining for cartilage ECM components: glycos-

aminoglycans, collagen II, and lubricin [45–48]. Note that, however, positive staining was also 
obtained for the collagen X, which is well-known as a marker of hypertrophic chondrocytes 
and produces calcified cartilage [45].

In a comparative study of MSC isolated from versus tissues, BMSC showed greater chon-

drogenetic potential over the fetal lung MSC or placenta MSC [45, 46]. Nevertheless, BMSC-
derived cartilage pellets exhibited significantly higher expression of collagen X than those 
derived from the two other sources [46]. Moreover, the capacity of BMSC to differentiate into 
chondrocytes was reduced by passaging of the cells [46]. This has been recently confirmed on 
the animal model [53]. The results showed that proliferative, differentiation, and metabolism 
profile of BMSC significantly decreases by age increase [53]. In the other comparative study 
from 2016, authors did not observe any preference in in vitro chondrogenesis among MSC 
derived from bone marrow, adipose tissue, and umbilical cord [54].

2.3.1.2. Pre-clinical studies in animal model

To investigate cartilage repair by MSC in vivo, most of these pre-clinical studies have been 

performed in rabbit models treated with MSCs combined with appropriated scaffold materi-
als and environmental factors [55–57]. The histological outcomes confirmed formation of the 
hyaline cartilage-like tissue expressing collagen type II [55, 56, 58, 59] as well as collagen type 

I [55, 56, 58]. Note that, the latter is a marker of fibrocartilaginous tissue. However, compared 
to the traditional ACI, the MSC therapy of cartilage defect resulted in regenerated hyaline 
cartilage-like tissue and restored a smooth cartilage surface, while the chondrocyte-seeded 
constructs produced mostly fibrocartilage-like tissue with a discontinuous superficial carti-
lage contour [60].

This finding has been further tested in large animal models. The study on swine model con-

firmed the beneficial effect of MSC over the ACI [61, 62]. Moreover, ovine MSCs have been 
isolated from bone marrow, expanded, characterized, and injected with transforming growth 
factor (TGF) b3 in a fibrin clot [63]. Two months after implantation, histological analysis 
revealed chondrocyte-like cells surrounded by a hyaline-like cartilaginous matrix that was 
integrated to host cartilage [63, 64]. Similar findings had been observed in the Cynomolgus 

macaque OA-model. The 2 months postoperative evaluation confirmed regular surface inte-

gration with neighboring native cartilage, and reconstruction of trabecular subchondral bone 

in the BMSC filled defects [65].

Taken together, animal studies indicated that MSC may be a promising approach for cartilage 
repair. However, animal models could not completely mimic OA pathogenesis in humans. 
In human primary OA, disease generally develops as a result of disturbed cell homeostasis, 

which leads to misbalance in synthesis and degradation of cartilage and subchondral bone 

matrix. These pathological changes are widely spread in OA cartilage at advanced stages 
when OA is generally diagnosed. Unfortunately, at this stage of the disease, there is only a 
slight amount of normal cartilage left. In contrast, experimental OA induced by mechani-
cal trauma represents cartilage lesion surrounded by healthy tissue. The implanted cartilage 
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 construct may interact differently with healthy tissue than with a damaged surrounding tis-

sue. Thus, repair techniques performed on the OA experimental model may not be sufficient 
to predict outcomes of this technique in humans.

2.3.1.3. Clinical studies

The clinical reports of cartilage defects treated by bone marrow MSC did show promising 
results. The symptoms improvement was mostly expressed through the pain relief and prog-

ress in physical mobility [66, 67]. However, quality of regenerated tissue evaluated by MRI 
and histology vary with respect to the time elapsed since surgery [68–72].

Autologous BMSC embedded in a collagen gel were transplanted into articular cartilage 
defects and covered with autologous periosteum [68–71]. Six weeks follow-up revealed better 
arthroscopic and histological scores in the cell-transplanted compared to the cell-free control 

group [68]. The repaired defects were filled with hyaline-like cartilage tissue confirmed by 
positive Safranin O staining [71]. Moreover, pain and walking abilities have been improved 
significantly [69]. Nevertheless, 1-year follow-up analysis detected formation of fibrocarti-
laginous tissue instead of hyaline cartilage tissue in the repaired lesions [57, 70]. This has 
been further confirmed by a 5-year follow-up study, where in the first 6 months after surgery 
pain, walking, stairs climbing, patella crepitus, and flection contractures were all improved. 
However, after the 6 months, they started gradually to deteriorate [73].

In the comparative study of autologous BMSC and autologous chondrocyte implantation 
(ACI), it has been shown that older patients showed significantly lower improvement com-

pared to the younger in the ACI group. Nevertheless, age did not make any difference for the 
patients treated by autologous BMSC [74]. This finding may indicate that cellular senescence 
downgraded chondrocytes molecular pathways that are involved in regulation of cell activ-

ity, which affected their ability to form functional cartilage tissue [75].

Yet, these results did not confirm significant improvement between ACI and MSC therapies 
[74, 76]. Moreover, the same as for ACI, being overweight and large lesion size are significant 
predictors of poor clinical and arthroscopic outcomes after MSC therapy [77, 78].

2.3.2. Adipose tissue-derived MSC in cartilage repair

2.3.2.1. In vitro studies

Even the BMSC were commonly investigated and used in treatment of cartilage defects, the 
harvesting of bone marrow is painful and followed by risk of wound infection. Moreover, 
the BMSC number in bone marrow is very low which requires extended in vitro expansion 
and may cause loss of cells regenerative potential [8]. Given that, the adipose tissue became 
a novel source of adult stem cells due to easier harvesting procedure from the wasted tissue 

after the liposuction treatment.

Moreover, the proportion of the AMSCs in adipose tissue is several times higher than of MSCs 
in bone marrow. Results have confirmed their potential for chondrogenesis, osteogenesis, 
adipogenesis, myogenesis, and some aspects of neurogenesis [79, 80].
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Chondrogenesis of human AMSCs has shown significantly higher expression of chondro-

genic markers after 1 week under appropriate conditions [81]. However, a significantly ele-

vated expression of collagen type X was observed after 3 weeks of chondrogenic induction 
[41, 81]. The tendency of the AMSCs to differentiate in hypertrophic chondrocytes had been 
further confirmed by the other studies. These studies showed positive staining of the collagen 
I and X in newly formed tissue even after the stimulation with chondrogenic growth factors 

[82–84]. This indicates that the regulation of cellular activity by growth factors, scaffolds, and 
even gene therapy merits further investigation.

Compared to the BMSC, cartilage obtained from the adipose-derived MSC did not express sig-

nificantly higher levels of hypertrophic markers: collagen X and MMP-13 [41]. The recent study 
from 2016 has emphasized that MSCs from bone marrow, adipose tissue, and umbilical cord 
share similar biological properties and that their chondrogenic potential does not vary [54].

Based on the in vitro studies, it is not clear if the AMSCs are the best choice for the cartilage 
repair. Even though their chondrogenic potential had been clearly justified, their predisposi-
tion to form hypertrophic and fibrous tissue should not be neglected.

2.3.2.2. Pre-clinical studies

In vitro studies on animal models demonstrated that adipocyte-derived MSCs were able to 
restore symptoms of OA-induced cartilage. The improvement had been observed macroscop-

ically where cartilage lesion had been covered by repaired tissue and the surface was rela-

tively smooth. The histological assessment revealed only a few fissures, few cracks, and an 
almost continuous superficial zone [85]. Another study showed that injected AMSC migrated 
to the synovial membrane and meniscus, however not in cartilage. Nevertheless, reduced OA 
progression had been observed [86]. The benefits obtained by AMSCs treatment could be due 
to a trophic mechanism of action by the release of growth factors and cytokines [86]. Taken 
together, these few pre-clinical studies are in favor of AMSCs-based cartilage repair.

2.3.3. Synovium-derived MSC in cartilage repair

2.3.3.1. In vitro studies

Another source of adult stem cells is synovium (synovium-derived stem cells (SDSC)). The 
comparative study of stem cells from five different sources (bone marrow, synovium, skeletal 
muscle, periosteum, and adipose tissue) confirmed that SDSC have proliferation and differenti-
ation capacity similar to BMSC [49]. Moreover, the pellets derived from synovium were heavier 
than those from other tissues, because of their higher secretion of cartilage matrix [87–89]. This 
makes synovium-derived MSC potentially superior to bone marrow-derived MSC.

2.3.3.2. In vivo studies

The transplantation of the implant composed of MSC from different sources into the full-thick-

ness cartilage defects of rabbits showed that synovium and bone marrow MSCs had greater in 

vivo chondrogenic potential than adipose and muscle MSCs [89]. Moreover, synovium MSCs 
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had the advantage of the highest proliferation potential [90]. This study also noted that carti-
lage repair by synovium-derived MSC requires injection of a high number of these cells into 
the defect [90]. By contrast, another group reported that the aggregates with a high density of 
synovium-derived MSCs failed to regenerate cartilage due to cell death and nutrient depriva-

tion into the core of the aggregates. Though, aggregates with relatively low-cartilage density 
successfully regenerated damaged tissue [91]. When compared to the healthy cartilage, tissue 
regenerated by constructs composed of the synovium-derived MSCs showed more fibrocarti-
lage-like characteristics mostly in the superficial zone of the repair tissue [92].

This finding needs to be further confirmed by more in vitro and in vivo studies before intro-

ducing these cell types in clinical trials.

2.4. Regulation of the MSC chondrogenesis

It has been proposed that in vitro chondrogenic differentiation of MSCs mimics in vivo embry-

onic cartilage development. Hence, in vitro MSC expansion phase may correspond to the 
initial proliferation of mesenchymal cells before condensation. Switching over to the high-
density MSC pellet cultures mimics the in vivo MSCs condensation steps and early stage chon-

drogenesis during embryonic development [93]. It has been shown that mechanical forces 
employed on the cell mass during chondrogenesis may promote the cells differentiation and 
secretion of the matrix-specific molecule. These biomechanical applications mimic the natural 
articular cartilage in vivo conditions [94, 95].

2.4.1. MSC isolation and in vitro culturing conditions

The MSC to be subjected to the cartilage formation first need to be isolated from their native 
tissue. To date, bone marrow, fat, and synovium tissue presents the most suitable sources of 
adult stem cells [8] with each tissue necessitating a specific isolation procedure [6]. BMSC are 
aspired by syringe from bone shafts, while ADMS are released and collected due to enzymatic 
digestion of the tissue [6]. Subsequently, these cells are in vitro expanded in order to obtain 
sufficient cell numbers for the following experimental procedures [6]. After the proliferation 
step, expanded cells need to be cultured under the 3D conditions in order to stimulate chon-

drogenesis. Thus, they are cultivated in micromass (pellets) or in scaffold materials, such as 
polymers, alginate beads, collagen sponges or hydrogels, and microspheres for 2–3 weeks 
in special chondrogenic medium enriched by growth factors [96]. Growth factors enhance 
expression of chondrocyte markers and support formation of cartilage tissue [35, 44, 97–99]. 
Moreover, hypoxic conditions seem to be the logical choice to stimulate chondrogenesis as it 
is present in in vivo articular tissue [100–104]. It has been shown that hypoxia induces expres-

sion of crucial genes for cartilage formation like SOX9, SOX6, and SOX5 as well as secretion of 
ECM molecules typical for hyaline cartilage [44, 100–104].

Reported in vitro conditions provide MSC differentiation to chondrocytes, nevertheless, do not 
stop chondrogenesis at the pre-hypertrophic stage, while cells undergo terminal differentiation 
to hypertrophic chondrocytes. These cells produce calcified instead of hyaline cartilage [105]. 
This remains crucial, a limitation in the formation of functional articular cartilage, as calcified 
cartilage has different biomechanical characteristics compared to hyaline cartilage [105, 106].
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2.4.2. Role of growth factors in cartilage repair

Chondrogenic differentiation of MSCs is induced by various intrinsic and extrinsic factors 
[107]. Growth factors play the most important role in this process [107]. The importance of 
growth factors in the maintenance and production of cartilage in vivo had been explained 
previously. Hence, introduction of these factors in in vitro controlled chondrogenesis was 

the logical choice. Below are listed studies that clarified the importance of growth factors in 
treatment of cartilage defects with MSC. Keep in mind that TGF-β superfamily (TGF-β 1 & 
2 and bone morphogenic proteins—BMPs), insulin-like growth factors (IGFs), and fibroblast 
growth factors (FGFs) are the major factors regulating chondrogenesis and synthesis of car-

tilage matrix.

Porcine MSCs encapsulated in agarose hydrogels after treatment with TGF-b3 increase the 
sulfated glycosaminoglycans in surrounding culture media, highlighting their role in carti-

lage ECM anabolism [35]. Moreover, the expression of BMP4 in transgenic MSC enhances 
their chondrogenesis in rat model through the positive regulation of main cartilage compo-

nent, collagen type II [108]. Moreover, after 24 weeks, animals treated with BMP-4 showed 
significantly better cartilage repair than untreated animals [108]. Nevertheless, better results 
were obtained in chondrogenesis of MSC when TGF-b1, IGF-1, BMP-2, and BMP-7 were com-

bined [36]. Also, intra-articular application of another growth factor, FGF-18-induced dose-
dependent, increases the cartilage thickness of tibial plateau in rat OA model [37]. Similar 
effect to FGF-18 has FGF-2 which stimulates [38, 109] increase in glycosaminoglycan and 

collagen type II after its application on MSC culture in chondrogenic medium [38]. Overall, 
growth factors appear to be one of the main components in improving clinical cartilage 

regeneration, but they must be precisely combined and loaded on appropriate scaffold mate-

rials to simulate the conditions and three-dimensional (3D) structure most similar to the in 

vivo condition.

3. Chondroprogenitors in cartilage

3.1. Chondrogenesis

Chondrogenesis is a complex process that is initiated by MSC crowding and condensing on 
the bone-forming site, followed by maturation into terminally differentiated chondrocytes 
[110, 111]. This pathway is accompanied by stage-specific ECM production, synchronized 
by cellular interactions with the matrix, growth, and differentiation factors [110]. The latter 
initiate or suppress cellular signaling pathways and transcription of specific genes in a spa-

tial-temporal manner [110, 111]. The anti-inflammatory and immunosuppressive properties 
of BMSCs suggest that these cells reduce inflammation in the joint. Moreover, BMSCs may 
initiate the repair process by differentiating into chondrocytes or by inducing proliferation 
and differentiation of the remaining healthy chondroprogenitor into mature chondrocytes 
or both. In addition, other features such as transcription factors, biological modulators, and 
extracellular matrix proteins expressed or produced by BMSCs may play an important role in 
enhancing cartilage formation.
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Initially, MSCs express adhesion molecules including N-cadherin, N-CAM (Ncam1), tenas-

cin-C (Tnc), and versican, which are involved in the compaction and condensation of MSCs 
regulated by different BMP factors [112]. Through progression of the condensation process, 
MSCs begin to express early cartilage markers collagen type II, aggrecan, and FGF receptor 
leading to chondrocytes progenitors stage of chondrogenesis [113]. Process of MSC condensa-

tion and chondrogenesis is triggered and positively regulated by major transcriptional factor, 

Sox 9. It is highly expressed in MSC before condensation and remains highly expressed in 
all stages of chondrogenesis through prechondrocytes to mature chondrocytes, while it is 

switched off when cells undergo hypertrophy [113, 114]. The formation of chondrocytes over 
osteocytes is regulated by combined action of Sox 9 and other transcriptional factors Pax/Nkx/
Barx2, Sox 9 through inhibition of Runx2 (Cbfa1) as a domain transcriptional factor required 
for osteoblast differentiation [113, 115]. Moreover, Sox 9 positively regulates two other Sox 
family members Sox 5 and Sox 6, which play a significant role in activation of cartilage-spe-

cific genes: type II, IX, and XI collagen, aggrecan, and cartilage oligomeric matrix protein [114, 

116, 117]. The role and spatio-temporal expression of Sox 5 and Sox 6 in chondrogenesis has 
been studied through single and double null mutations in mice model. Single gene deletion 
resulted in moderate skeletal abnormalities; however, double mutation induced animal death 
caused by systemic chondrodysplasia and skeletal deformity. These results indicate simul-
taneous action of these two transcription factors in formation of functional skeletal system. 
Nevertheless, in the double mutant low level of cartilage, specific extracellular matrix compo-

nent was sustained by normal Sox 9 expression, but it was insufficient to support proper MSC 
differentiation and formation of cartilage [116]. This implies that synchronized action of Sox 5, 
6, and 9 trios is required to maintain sufficient ECM component expression and normal matrix 
composition. Furthermore, these three genes promote the chondrogenesis by inhibition of 
hypertrophic and osteogenic differentiation [113]. Chondrocytes maturation to hypertrophic 
chondrocytes is repressed by Sox 9 modulation of the Wnt/beta-catenin signaling pathway 
with beta-catenin degradation or inhibition of beta-catenin transcriptional activity without 

affecting its stability [118]. In addition, Sox 5 and Sox 6 delay chondrocyte hypertrophy by 
down-regulating Ihh signaling, FGFR3, and Runx2 and up-regulating BMP6 [115].

Further maturation of chondrocytes is essential for the final remodeling of the cartilage into 
bone. Terminal chondrocytes differentiation into the hypertrophic chondrocytes is promoted 
by upregulation of Runx 2 and calcified cartilage markers collagen X and MMP13 [113, 117]. 
Later, hypertrophic and terminal chondrocytes express angiogenic factors, including VEGF, 
which provide the genesis for vascularization and formation of primary ossification centers 
within osteoblasts, osteocytes, and hematopoietic cells [119]. Equally, terminal chondrocytes 
undergo apoptosis by release of collagen types X and I and mineralization of the ECM [117]. 
Contrary to growth plate chondrogenesis, normal articular chondrocytes never undergo 

hypertrophic differentiation, except at the tidemark [113].

3.2. Chondroprogenitors potential in cartilage repair

Recent research reported the presence of MSC and their progenitors in cartilage itself [104]. 
These cells possess characteristics similar to stem cells isolated from other adult tissues 

Mesenchymal Stem Cells - Isolation, Characterization and Applications214



involving proliferation and differentiation potential under appropriate in vitro conditions 

[120–123]. They were subjected to the process of isolation, expansion, and identification in 
order to confirm their stem cells phenotype previously established on MSC from other adult 
tissues [121–124]. To date, studies investigated the presence of these cells in normal and OA 
cartilage. Interestingly, several authors observed that OA cartilage contains higher number of 
mesenchymal progenitors compared to normal [122, 125–129].

Subpopulation of cells determined as cartilage progenitor cells (ACPCs) possess high-col-
ony forming efficiency and express surface antigens specific to MSC (Notch 1, CD 105 & 
CD 166) [121–123]. Moreover, after the cultivation in specific chondrogenic medium, they 
showed capacity to differentiate into cartilage in 3D pellet cultures [130]. The expression of 
MSC markers and differentiation potential confirmed presence of multipotential mesenchy-

mal progenitor cells in articular cartilage [122]. Comparative study of ACPCs and BMSCs 
revealed positive expression of adult stem cells markers (Notch 1, Stro 1, CD105, and CD 166) 
on both cell types. Nevertheless, chondrogenesis of BMSCs resulted in hypertrophic cartilage 
tissue confirmed by positive staining of collagen X, while this marker was not detected in tis-

sue obtained from ACPCs [124]. Similar was reported by Alsalameh et al. where CD105+ and 

CD166+ cells showed no signs of hypertrophic chondrocytes and osteogenesis in chondro-

genic micromass cultures after 3 weeks [128].

Likewise, cells positive for other markers that have been identified in MSC CD9+/CD90+/CD166+ 

[131], CD105+/CD166+ [128], and Notch-1+/Stro-1+ [125] were capable of differentiating in chon-

drocytes and formed cartilage tissue in vitro. MCS differentiation into hypertrophic cartilage is 
the major limitation in hyaline functional cartilage production [105]. ACPCs may therefore be 
considered superior to MSCs from other tissues in cartilage repair [124, 125, 128, 129].

These results indicate the opportunity for using OA cartilage as a potential source of cells 
with cartilage-forming potential. Yet, further investigations are required to explore chondro-

genesis regulation in vitro.

4. Conclusion

Based on self-repair and multilineage potentials, MCS provide hyaline cartilage regenera-

tion opportunities. Studies on cartilage regeneration with adult mesenchymal stem cells have 
shown that BMSC are the most commonly used cell types to address cartilage regeneration. 
However, although short-term results appear satisfactory, hypertrophic chondrocyte and 

fibrocartilage formation emerge thereafter with hypertrophically differentiated MSC. Note 
that fibrocartilage provides a molecular pattern secreted by hypertrophic chondrocytes, lead-

ing to different biomechanical characteristics compared with hyaline cartilage.

Furthermore, harvesting bone marrow is a painful procedure with donor-site morbidity and 
risk of wound infection and sepsis. Hence, both AMSCs and synovium-derived stem cells 
have been considered as alternatives. However, results using these two cell lines have been 
similar to those obtained employing the bone marrow approach. In fact, although a high 
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expression of chondrogenic markers was initially obtained, they appear to be expressed as 
collagen type X confirming the presence of hypertrophy.

Therefore, further investigations regarding the regulation of cellular activity by growth fac-

tors, scaffolds and even gene therapy remain viable options. Recently, one more potential 
source of MSC and progenitors for cartilage repair engineering from the cartilage itself has 
been tested. Cells isolated from the surface zone of articular cartilage have the capacity to dif-
ferentiate into cartilage in 3D pellet culture. Moreover, no signs of hypertrophic chondrocytes 
and osteogenesis were observed. Thus, ACPCs could be considered more adequate than MSC 
in cartilage repair.

Abbreviations

OA Osteoarthritis

AC Articular cartilage

PRP Platelet-rich plasma

ECM Extra-cellular matrix

MSC Mesenchymal stem cells

BMSCs Bone marrow stromal cells

ACI Autologous chondrocytes implantation

COMP Cartilage oligometric matrix protein

TGF-β Transforming growth factors-beta superfamily

IGFs Insulin-like growth factors

FGFs Fibroblast growth factors

BMPs Bone morphogenetic proteins

ALK Activin receptor like-kinase

IHH Indian hedgehog protein

IRS Insulin receptor-substrate family

FGF Fibroblast growth factors

FGFR Fibroblast growth factor receptor

CD105 Endoglin-type I glycoprotein

CD73 Ecto-5′-nucleotidase

CD90 (Thy) Cluster of differentiation 90

CD106 (VCAM-1) Vascular cell adhesion molecule-1

CD166 (ALCAM) Activated leucocyte cell adhesion molecule

CD106 (ICAM-1) Intercellular adhesion molecule-1

NOTCH Neurogenic locus notch homolog protein

ITGA11 Integrin alpha-11
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