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Abstract

Guided tissue regeneration (GTR) is a clinical procedure promoting regeneration of peri-
odontal tissues. In general, this technique provides spaces for periodontal cells to repopulate 
and regenerate in the periodontal defect by physically preventing an invasion of gingival 
tissues in the affected area. Although various reports certify clinical success of GTR, high 
variation of favourable outcome among studies leads to the investigation to improve clinical 
GTR efficiency for periodontal tissue regeneration. Recent development of GTR membrane 
aims to augment bioactivity for facilitating and enhancing tissue healing and regeneration. 
Various approaches are examined, for example, the release of growth factor, the incorpora-
tion of bioactive ceramics and the delivery of antimicrobial agents. Polycaprolactone (PCL) 
is widely used in biomedical application due to its acceptable biocompatibility and degrad-
ability. Physical characteristics are easy to manipulate. Various forms and shapes are simple 
to fabricate. PCL can be employed as GTR membrane and scaffold filling in the periodontal-
defect area. Bioactive PCL could be fabricated by various techniques to enhance periodontal 
tissue regeneration. The present chapter reviews the bioactive approaches for GTR mem-
brane, and the potential utilization of PCL for GTR application is described.

Keywords: guided tissue regeneration, periodontal tissues, polycaprolactone, 
biomaterials

1. Introduction

The guided tissue regeneration (GTR) aims to regenerate the periodontal tissue appara-

tus in its original architecture. GTR procedure is well established and has proven to be a 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



 successful clinical procedure to regenerate periodontal tissues [1]. Treatment is conducted 

by applying a membrane barrier over the affected area in order to exclude the gingival 
tissues, connective tissues and epithelial tissues from the defect area, allowing specific 
cells to regenerate in the affected site [1]. Various materials have been employed and inves-

tigated in both clinical and experimental setting [2]. However, the results from systemic 

review and meta-analysis demonstrated that guided tissue regeneration technique exhib-

ited highly variable between and within the studies [3, 4]. In human, the weighted-average 

bone-filling ration in the infrabony defect treated by GTR alone ranges from 42 to 77%, 
implying the variety of response [5]. One possibility of this discrepancy is the different 
types of membrane employed in the studies [4]. Thus, it suggests that the clinical available 

membranes are still needed for further improvement to efficiently promote periodontal 
tissue regeneration.

In order to advance the healing capability of the periodontal tissues, the membrane modifica-

tion is widely investigated. In this regard, the development of drug/bioactive agent-containing 

membrane has been developed. Various specific agents, such as bioactive ceramics, antimi-
crobials, growth factors and small molecules, have been added into the membrane aiming to 

facilitate and/or enhance periodontal tissue regeneration [2, 6]. Many studies have proven the 

incremental effect imposed by the combination of these agents with traditional guided tissue 
regeneration membranes [6].

Polycaprolactone (PCL) has been introduced as a candidate biomaterial for tissue regener-

ation. It has many properties that satisfied the criterion for GTR membrane. For example, 
it exhibits biocompatibility properties and is not toxic [7]. It has been widely investigated 

as a scaffold material for tissue-engineering application [8, 9]. In addition, it has been 

approved for clinical application, for example, suture materials, confirming the biocom-

patibility and safety in clinical use. Besides, the physical characteristics (e.g. strength and 

degradability) could be easily manipulated. Further, a precise control of membrane archi-
tecture could be simply fabricated. PCL also has less chance to induce immunological 

reaction. Together, it may imply the potential use of PCL as a material-based for GTR 

membrane.

2. Periodontal tissue healing and regeneration

Like healing processes of the other tissues, periodontal tissue-healing processes are divided 

into four phases: inflammation, proliferation, matrix formation, and remodelling [10]. First, 
the stability of blood clot at the defect site is crucial for periodontal tissue regeneration as it 

supports cell migration and proliferation in the affected area [10, 11]. However, periodontal 

tissue healing requires a unique healing process due to the complex nature of periodontal 

apparatus, which composes of cementum, periodontal ligament and alveolar bone. In addi-

tion, the distinctive periodontal ligament character requires the formation of collagen fibril 
embedding on the root surface of the teeth and alveolar bone. This contributes as another 
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unique factor for periodontal tissue healing [10]. It is postulated that connective tissues recog-

nize the exposed root dentin as a foreign body. Therefore, the formation of parallel collagen 

fibres is noted along the root surface [10]. The exposed root dentin provides a substrate for 

cementoblast-like cells to attach and differentiate. Further, cementoblasts form extracellular 
matrix where collagen fibres are anchored [10].

There are several cell types involved in periodontal regeneration/healing, for example, peri-

odontal fibroblasts, osteoblasts, gingival fibroblasts and epithelial cells. A majority of cells in 
periodontal tissues is fibroblasts [12]. Fibroblastic cell population contains stem/progenitor 
cells that can differentiate into fibroblast, osteoblast and cementoblasts, depending on the 
stimulator [13–15]. These cells further participate in the regeneration and healing of peri-

odontal tissues. However, it has been reported that gingival fibroblasts exhibited signifi-

cantly higher in vitro wound-healing rate than periodontal ligament cells [16], implying that 

the speed of periodontal tissue healing is relatively slower than gingival tissues. Further, 
the bone healing is relatively slower than epithelium [15, 17]. Thus, normal periodontal 

tissue healing results in the formation of long junctional epithelium rather than the orga-

nized periodontal tissue formation [17]. This information indicates the complex and distinct 

regeneration/healing process of periodontal tissues. The control of specific time for each cell 
type to migrate into periodontal defect area is critical in the success of periodontal tissue 

regeneration/healing.

3. Guided tissue regeneration

GTR is one of the procedures that could ultimately regenerate the damaged periodontal tis-

sues and restore them to a functional state [18]. GTR procedure is accomplished by placing 

the GTR membrane over the defect. This membrane acts as a physical barrier separating the 

gingival tissues and epithelium from the periodontal defect, allowing the required cell popu-

lation (periodontal ligament cells and osteoblasts) to formulate a new attachment apparatus 
and functional periodontal tissues (Figure 1) [1, 17–19]. At the same time, the migration of 
epithelial cells and gingival fibroblasts is prevented. Thus, the formation of long junctional 
epithelium healing is attenuated [12].

GTR is well known for its successful clinical uses in an intrabony and furcation defect treat-

ment [1, 18]. A systematic review of literature reports that GTR treatment results in better 
clinical outcomes than open-flap debridement procedure, for example, the improvement of 
clinical attachment levels, the reduction of probing depth and gingival recession [4, 20, 21]. 

Although other benefits of GTR for other types of periodontal defects are not as recognizable, 
GTR remains a beneficial treatment [1]. In this regard, GTR therapy results in a higher amount 

of clinical attachment gain than a therapy of accessing flap alone [22]. The disadvantage of 

GTR is that the result of the treatment varies due to the difference of host response, patient’s 
oral hygiene, surgical technique and the lack of biological property to facilitate periodontal 

healing [1, 23–27]. 
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4. Guided tissue regeneration membrane materials

In general, like other biomaterials, GTR membrane should exhibit a biocompatibility. The 

degradation ability should match with the rate of new tissue formation, and the degrada-

tion product should not elicit host-inflammatory response. GTR should have the suitable 
mechanical and physical properties to maintain its shape in vivo and to easily manipulate. 

In this regard, GTR should have the adequate strength to maintain its form as a separating 

barrier and the clinical manageability [2, 6]. Materials for GTR membrane can be roughly 

categorized into two groups according to their degradation property, namely non-resorbable 

and resorbable materials. Both types of GTR materials exert similar clinical results [28, 29]. 

The non-biodegradable material currently available is polytetrafluoroethylene (PTFE) and 
methylcellulose acetate [1]. Major disadvantage of non-resorbable-guided tissue regeneration 
membranes is owing to the need for re-entering into the surgical site in order to remove the 

placed membranes, thus creating extra pain and discomfort to patients [2, 6, 29, 30].

Figure 1. GTR membrane is positioned over the periodontal defect to separate gingival tissues and epithelium from the 

affected area, allowing the regeneration of periodontal tissues.
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Due to the disadvantage of the non-resorbable membrane, the resorbable membranes are 

created in order to eliminate the second surgery to remove the membrane [28]. The biore-

sorbable membranes can be further grouped into two categories: the natural and the syn-

thetic membranes. The advantage of the natural membrane is that these can be degraded by 

normal physiological or pathological process in vivo [6]. In addition, the natural-derived 

membranes inherit biological properties that can induce or maintain biological activity of 

local cells and tissues. Collagen is widely used as a resorbable GTR membrane as it is an 

abundant structural protein in various types of connective tissues [31]. Although collagen 
exhibits low immunogenicity, the antigenic response and autoimmunization are noted [29, 

31]. Another drawback of collagen is the fast degradation period leading to the failure of 
GTR treatment due to the downgrowth of epithelial cells, forming long junctional epithe-

lium [6].

A resorbable membrane made from synthetic materials has the advantage in several 
aspects. Firstly, the desirable physical and chemical properties can be altered with simple 
methods [32]. Secondly, fabrication methods are controllable, easy and reproducible. In 

general, synthetic materials are biocompatible but the degradation products of some syn-

thetic materials induce tissue reaction [33]. Many types of polyester-based material have 

been clinically utilized as synthetic resorbable membranes [2]. Synthetic materials for GTR 

membrane include polyglycolic acid (PGA), polylactic acid (PLA), polydioxanone (PDS), 
and polycaprolactone PGA is an alpha-polyester. PGA is able to hold their mechanical 
strength for 2–4 weeks after implantation [32]. PLA has higher solubility in organic sol-
vents than PGA because of its molecular structure. PLA has an amorphous poly(d,l-lactide) 

which is useful for further application in drug delivery. PGA and PLA can be copolymer-

ized to form high-molecular weight copolymers [32]. Periodontal ligament cells attach bet-
ter on PLA and co-PLA-PGA than on PTFE, and cell proliferation is observed on PLA and 
co-PLA-PGA but not on PTFE, implying their biocompatibility [34]. PDS is a homopolymer 

of p-dioxanone. PDS can maintain its strength for 4–8 weeks and completely resorb in 

4–6 months [32]. PDS membrane treatment for human infrabony defects demonstrated the 

reduction of probing depth and the increase of vertical clinical attachment levels as well as 
bony filling in the defect sites [35]. These results are similar to those defects treated with 

polylactide acetyltributyl citrate [35]. 

5. Bioactive-guided tissue regeneration membrane

With the evolution of tissue-engineering approach, the recent development of GTR mem-

branes is not only used as a physical barrier but also used as a delivery device of specific 
agents such as antimicrobials, growth factors and stem cells [6]. This development of bioactive 

GTR membranes aims for facilitating the regeneration and healing of periodontal tissues [6]. 

This type of membrane is considered as bioactive-guided tissue regeneration membrane. The 

first approach is to incorporate antimicrobial agents with GTR membrane to attenuate the risk 
of bacterial infection, leading to the reduction of inflammation process [36]. The bacterial con-

tamination and infection could effect on the healing and regeneration outcome and it has been 
shown that bacterial infection may be associated with gingival recession and impediment 
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Subjects Materials Agents Results Reference

Human ePTFE Tetracycline (3%) Additional gain of clinical periodontal attachment Zarkesh et al. [45]

Dog PGA and PLA 
copolymer

Doxycycline (25%) More pronounced new bone formation and less crestal 

bone resorption

Chang and Yamada [46]

Human Collagen Minocycline Not significantly beneficial Minabe et al. [47]

Dog Polytetrafluoroethylene 
(ePTFF)

Platelet-derived growth factor-BB 

(PDGF-BB)
Effectively promoted periodontal regeneration Cho et al. [48]

Dog Polytetrafluoroethylene 
(ePTFF) (GORE-TFX)

Platelet-derived growth factor-BB 

(PDGF-BB)
Effectively promoted periodontal regeneration with 
reproducibility

Park et al. [49]

Rat Poly L-lactide (PLLA) Platelet-derived growth factor-BB 

(PDGF-BB)
Enhanced regenerative efficacy Park et al. [50]

Human Collagen 1. Recombinant human platelet-

derived growth factor-BB 

(rhPDGF-BB)

2. Platelet-rich plasma (PRP)

3. Commercially available enamel 

matrix derivative (cEMD)

4. Peptide P-15 (P-15)

1. cEMD effectively used to treat intra-osseous defects

2. The combined use of rhPDGF-BB and P-15 has 
shown beneficial effects in intra- 
osseous defects

3. PRP and graft combinations are not beneficial

Trombelli and Farina [51]

Dog Polytetrafluoroethylene 
(ePTFF) (GORE-TFX)

Recombinant human transforming 

growth factor-beta1 (rhTGF-β1)
Restricted potential to enhance alveolar bone regeneration 

in conjunction with guided tissue regeneration
Wikesjö et al. [52]

Dog Collagen Basic fibroblast growth factor (bFGF) Enhance periodontal regenerative results, both 
mineralized and non-mineralized tissues

Rossa et al. [53]

Dog Sandwich membrane: 

collagen and gelatin

Basic fibroblast growth factor (bFGF) Active vascularization and osteogenesis
Successful regeneration of the periodontal tissues in a 

short period of time

Nakahara et al. [54]

Human Cellulose human fibroblast growth factor-2 
(FGF-2)

Efficacious in the regeneration of human periodontal 
tissue

Kitamura et al. [55]

Rat Alginate/nanofibre Recombinant bone morphogenetic 

protein-2 (rhBMP-2)

Effective in repair of critical-sized segmental defect Kolambkar et al. [56]

Table 1. Studies on the bioactive-guided tissue regeneration membrane.

Periodontitis - A
 U

seful Reference
176



of attachment gain [37, 38]. Local minocycline application in combination with GTR treat-

ment results in the significant higher clinical attachment gain [39]. In addition, GTR loaded 

with metronidazole reduces inflammatory response in vivo [40]. Further, the antimicrobial-
incorporated GTR membrane has been shown to improve the attachment of periodontal liga-

ment cells by effective oral pathogen eradication [41]. The second approach is to incorporate 

bioactive calcium phosphate in GTR membrane [6]. The addition of hydroxyapatite improves 

the biocompatibility and osteoconductivity of GTR membrane [42, 43]. These composite mem-

branes also enhance osteoblast cell proliferation in vitro [42, 44]. In addition, the different 
response could be obtained by varying the concentration of calcium phosphate in the com-

posite membrane [42].

The last approach is to incorporate with growth factor. Growth factors regulate various bio-

logical processes, for example, cell differentiation, cell proliferation, angiogenesis and chemo-

taxis, resulting in the promotion of tissue healing and regeneration. Various growth factors 

have been identified as factors enhancing periodontal tissue healing. The exemplification of 
these growth factors is platelet-derived growth factor (PDGF), insulin-like growth factor-1 
(IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor β-1 (TGFβ-1), bone 
morphogenetic protein-2 (BMP-2), bone morphogenetic protein-4 (BMP-4), bone morphoge-

netic protein-7 (BMP-7), bone morphogenetic protein-12 (BMP-12) and enamel matrix deriva-

tive (EMD). The example of the development of bioactive GTR membrane is demonstrated in 
Table 1.

6. Polycaprolactone in guided tissue regeneration

PCL is a semi-crystalline, aliphatic polyester [57]. The structure of PCL comprises a repeating 

unit of one ester group and five methylene groups (Figure 2). PCL has an excellent biocom-

patibility and slow degradation rate [7, 58]. In regard to many studies, there is no evidence 

revealing that PCL could potentially induce any cytotoxic effects nor accumulate in human 

Figure 2. Structure of polycaprolactone.
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body [59]. Its ester linkages can be hydrolysed and excreted under normal physiological 

conditions. The degradation rate of PCL is slower than other aliphatic polyester [60]. In this 

regard, the degradation of PCL and its copolymers can be altered with different form and 
molecular weight of the materials. The high-molecular-weight (≥50,000 g/mol) PCL requires 
3 years to degrade in host [60].

Therefore, PCL is a practicable option for many applications in tissue-engineering approaches. 

PCL been approved by the Food and Drug Administration (FDA) for several medical applica-

tions, for example, suture materials and subdermal contraceptive implants [57, 61, 62]. It has 

been applied as a beneficial biomaterial for drug delivery devices [63, 64]. The drug-releasing 

property is able to be controlled [64]. Thus, the biological activity could be lengthened [8]. 

For example, PCL was employed as wound-dressing materials, which released chemical anti-
septic agent [65]. In dentistry, PCL has been introduced as root canal-filling materials. It was 
noted that PCL-filled root canal gave a predictable seal in an aqueous environment [66]. PCL 

is also employed as materials for bone tissue-engineering scaffolds that could be used for 
bone augmentation [58, 67–69]. Furthermore, PCL composites are recognized for its signifi-

cant uses in tissue-engineering scaffolds in order to regenerate bone, ligament, cartilage, skin, 
nerve and vascular tissues [57]. PCL-based biomaterials have demonstrated the osteoconduc-

tive properties as they support various cell proliferations and differentiations, including bone 
marrow-derived mesenchymal stem cells (BMSCs), dental pulp stem cells (DPSCs) and adi-

pose-derived mesenchymal stem cells (ADSCs) in PCL scaffold which was confirmed [68, 69]. 

Further, PCL implantation in murine calvarial defect model does not significantly increase the 
total IgG levels as compared with sham surgery group, demonstrating the immune compat-

ibility of PCL-based materials [70].

As aforementioned, there has been a development in manufactured membrane used for 
GTR in order to meet its basic requirements. PCL is considered as satisfactory candidate for 

GTR due to its useful properties such as biocompatibility, proper mechanical strength, bio-

degradability and ease of fabrication [71–73]. Many studies investigated on the effective-

ness of PCL membrane in GTR reveals an improvement of bone formation in the presence 

of noticeable bone cell attachment and proliferation [74, 75]. PCL and hydroxyapatite-

incorporated PCL membrane were biocompatible and able to support human periodon-

tal ligament cell attachment, spreading and proliferation (Figure 3). It was also shown 

that nano-apatite-incorporated PCL membrane facilitates osteoblast-like cell proliferation 

and differentiation [76]. Moreover, hydroxyapatite and gelatin nanocomposite-incorpo-

rated PCL supported osteoblast proliferation, induced alkaline phosphatase activity and 

enhanced mineralization [77]. For further study, the researcher has invented a new poly-

mer/calcium phosphate composite for guided tissue regeneration use. Osteoblast alkaline 

phosphatase activity and expression of osteoblast marker gene, which indicates the promo-

tion in bone maturation, have been recorded as the result [78]. The basic fibroblast growth 
factor-releasing heparin-conjugated PCL membrane has been successfully developed and 
exhibits biocompatibility. This basic fibroblast growth factor-releasing PCL membrane pro-

motes human osteoblast-like cell attachment, proliferation and differentiation as compared 
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with the naïve PCL membrane [79]. Metronidazole-incorporated PCL-based membranes 

decrease inflammatory response, determined in subcutaneous implantation model as com-

pared to the unmodified PCL membrane [40, 80]. According to these studies, PCL become 
an appropriate material for the use of GTR membrane and advantageous prototype for 

further clinical membrane invention [76].

Beside GTR membrane, PCL has been developed as bone-defect-filling materials aiming to 
promote bone regeneration in periodontal defects. The scaffolds aim to support periodontal 
ligament and alveolar bone cell migration and repopulation in the affected site, facilitating 
the regeneration process. Three-dimensional PCL scaffolds can be fabricated by a modi-
fied solvent casting and particulate-leaching techniques, resulting in the highly porous and 
interconnected structure in PCL scaffolds [81]. Hydroxyapatite incorporation in PCL scaf-

folds exhibited biocompatibility and degradability [67]. These scaffolds have osteoconduc-

tive property which enhanced primary human osteoblast response in vitro and promoted 

bone formation in rat calvarial defect in vivo [67]. The incorporation of hydrophilic poly-

ethylene glycol into hydrophobic PCL enhanced the overall hydrophilicity and cell culture 

performance of PCL/PEG copolymer as an optimal guided tissue regeneration material [82]. 

PCL/PEG scaffolds supported growth and osteogenic differentiation of human periodontal 
ligament cells in vitro [70]. Huynh et al. demonstrated that PCL/PEG scaffolds incorporated 
with epigenetic-modified human periodontal ligament cells could promote bone formation 
in calvarial defect [70]. Together, these findings strongly support the potential application 
of PCL as the potential guided scaffold in periodontal tissue regeneration therapy.

Figure 3. Scanning electron micrographs demonstrated the morphology of human periodontal ligament cell attachment, 
spreading and proliferation on polycaprolactone (PCL) and hydroxyapatite-incorporated PCL (PCL/HA) membrane. 
At 2 h, cells exhibited lamellipodia extension and completed cell spreading covering the surface was noted at 48 h after 
seeding. Cell monolayer was observed on the membrane at day 7.
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7. Notch signalling as a potential bioactive molecule in guided tissue 

regeneration of periodontal tissues

Notch ligands, Jagged1, promote cell differentiation towards osteoblast lineages of human 
periodontal ligament stem cells and bone marrow-derived mesenchymal stem cells [83–85]. 

Other studies also demonstrated that Jagged1-immobilized surface could reduce epithelial 

cell proliferation and enhanced epithelial cell differentiation [86, 87]. In addition, in rafted 

organ culture model, Jagged1-coated porous biomaterial significantly reduced the forma-

tion of epithelial tongue [87]. In other words, Jagged1 could prevent epithelial cells migra-

tion down into the dermis. For this reason, Jagged1 is considered as a beneficial molecule to 
be coated on a guided tissue regeneration membrane to enhance periodontal tissue forma-

tion. The schematic diagram of the propose idea is demonstrated in Figure 4. The Jagged1-

coated PCL membrane firstly acts as a physical barrier to prevent epithelial down-growth 
into periodontal-defect site. In biological events, Jagged1 inhibits proliferation and induced 

the differentiation of epithelial cells. Further, Jagged1 promoted osteogenic differentiation of 
periodontal ligament cells and alveolar osteoblast cells. Together, these effects prevent the 
epithelium downgrowth in the lesion and promote the formation of alveolar bone, leading to 

the achievement of successful guided tissue regeneration.

8. Conclusion

The present chapter reviews the biological basis of GTR membrane in periodontal tissue heal-

ing and regeneration. In the past, GTR acts as a physical barrier to allow required cells to facili-

tate periodontal tissue formation. Recently, bioactive GTR membrane has been investigated 

and developed aiming to fabricate membrane that not only act as a physical barrier but also 

induce biological events to enhance periodontal tissue regeneration. PCL has been introduced 

Figure 4. Schematic diagram of Jagged1-coated PCL membrane for GTR therapy.
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as candidate materials for bioactive GTR membrane due to its biocompatibility and simple 

fabrication procedure. The modification with other agents/biomolecules could be easily con-

structed. With the use of proposed Notch ligands, PCL-decorated Jagged1 could be beneficial 
to promote periodontal tissue formation. However, further investigations are indeed required.
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