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Abstract

Indirect or methodological calibration in chemical analysis is outlined. The establish-
ment of calibration curves is introduced and discussed. Linear calibration is presented
and considered in three scenarios commonly faced in chemical analysis: external cali-
bration (EC) when there are no matrix effects in the sample analysis; standard addition
calibration (SAC) when these effects are present and internal standard calibration (ISC)
in cases of intrinsic variability of the analytical signal or possible losses of the analyte in
stages prior to the measurement. In each kind of calibration, the uncertainty and confi-
dence interval for the determined analyte concentration are given.

Keywords: external calibration, standard addition method, internal standard, uncer-
tainty measurement

1. Introduction

Direct absolute methods such as gravimetry, titrimetry or coulometry (among others) are

directly traceable to SI units. Thus, traceability of contemporary instrumental methods is

accomplished by applying indirect calibration procedures. In a direct calibration, the value of

the standard (reference value) is expressed in the same quantity as the measurement of the

equipment (for instance, the calibration of an analytical balance). In an indirect calibration, the

value of the standard is expressed in a quantity different from the output one, that is, the

measurement and the measurand are different. This is the most common kind of calibration in

chemical analysis, for example, the calibration of a spectrophotometric method. Accordingly,

the indirect calibration in analytical chemistry, also known as methodological calibration, is the

operation that determines the functional relationship between measured values and analytical

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



quantities, characterizing types of analytes, and their amounts. In this chapter, the establishment

and validation of the mathematical model for the calibration function will be studied and

discussed as well as the habitual scenarios concerning interferences coming from the chemical

environment (matrix effects) and physical/instrumental lack of control leading to signal modifi-

cation (standard additions and internal standard methodology). Confidence intervals for the

calculated analyte concentration will be outlined and discussed.

2. The calibration in analytical chemistry

Calibration, as previously defined, can be assimilated to a mathematical function, Y ¼ f(x),

where Y is the analytical signal or response corresponding to the analyte concentration x. The

major analytical aim consists of finding this functionality. When applying absolute methods of

analysis [1], where traceability is assured, such as gravimetry, titrimetry or coulometry, there is

no need for indirect calibration. The analyte amount is evaluated from the analytical signal

with the use of physicochemical constants (atomic mass, Faraday constant) and the concentra-

tion of the standardized titration solution in titrimetry, leading to a typical linear response

model x ¼ KY:

• Gravimetry: x ¼ Gðgravimetric factorÞ � Yðmass of weighing formÞ

• Titrimetry: x ¼ pðstoichiometryÞ � Cðtitrant concentrationÞ � Yðtitrant volumeÞ

• Coulometry: x ¼
Yðtotal chargeÞ

nðelectrons transferredÞFðFaraday constantÞ

But in the field of relative methods (the majority of instrumental ones), traceability is reached

just by performing an indirect calibration, that is by establishing the relationship between the

analyte concentration and the analytical response. There are some theoretical relationships [2–5]

verified for special analytical techniques as depicted in Table 1.

Nevertheless, in the common situations, the response function has to be empirically established

by using standard analyte solutions. Many response functions exhibit linear zones, generally at

low concentrations of analyte and other zones where a curvature appears, and in some cases,

Response function Reference Analytical technique

y ¼ Aþ Bx Beer's law Absorption spectroscopy

y ¼ Aþ Blogx Nernst's equation Electrochemistry

y ¼ AxB Scheibe-Lomaking [2] Atomic emission spectrometry

y ¼ Aþ Bxþ Cx2 Wagenaar et al. [3] Atomic absorption spectrometry

y ¼ Aþ B½1� e�Cx� Andrews et al. [4]

y ¼ A�D

1þ x
Bð Þ

B þD Rodbard four parameter Logistic equation [5] Immunoassay

Table 1. Theoretical response functions used in some analytical instrumental techniques.
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there are regions where the response signal is independent of the analyte concentration [6].

Analysts are interested to the portion of the response function where the variation of the

analytical signal with the analyte concentration contains useful analytical information. This

portion of response function with analytical interest for calibration purposes is called the calibra-

tion curve. From the calibration curve, the amount of analyte in an unknown sample is evaluated

from interpolation. The calibration step is of utmost importance within the realm of method

validation.

In many situations, the calibration curve is linear, and a calibration straight line is obtained.

From the mathematical models applied for establishing the response function, the most

straightforward, studied, and easy to handle is the linear one. Accordingly, the linear calibra-

tion model will be considered throughout this chapter.

In case of non-linear response, there are several alternatives. The use of linearizing trans-

formations is a common tool [7], but when this procedure does not work, curve-fitting

methods are chosen. The best procedure is to try with polynomials of degrees successively

larger until the F-test of residual variances indicates that the systematic error due to the lack

of fit is negligible. If the plot has “N” points, the major degree polynomial to be used is of

degree N�1. But the blind use of high-order polynomial may lead to overfitting. This kind of

fitting is solved by multilinear regression [8]. This technique sometimes fails because the

coefficient matrix is nearly singular. To avoid this, we can use orthogonal polynomials. The

use of these polynomials leads to a diagonal coefficient matrix, overcoming singularities,

and simplifying calculations. The orthogonal polynomials commonly used in curve fittings

are the Chebischev's polynomials [9] and the Forsythe ones [10].

Aside from the advantages and applications of orthogonal polynomials, they are not at all the

ultimate weapon. Rice proposed rational polynomial functions of the type FðxÞ ¼
X

i

aix
i
.

X

i

bix
i

that present a higher flexibility than orthogonal polynomials for adjusting purposes [11].

Another approach is to fit the points to a curve consisting of several linked sections of different

geometrical shapes. This is the basis of the spline functions. Cubic spline [12] is the most used.

They approximate the data to a series of cubic equations. These cubic links overlap in p

interpolation points called “knots,” and it is essential that splines show continuity at such

points. This continuity applies to the spline function and its first derivatives. A total cubic

spline has p�1 links, with four coefficients (S ¼ aþ bxþ cx2 þ dx3). Thus, 4(p�1) coefficients

have to be calculated. This technique has been successfully applied in radioimmunoassay, gas–

liquid chromatography, and atomic absorption spectrometry [13].

The most usual technique for establishing a calibration straight line is the method of least

squares. This consists of minimizing the function Q ¼
X

Yi � Ŷ i

� �2
where Yi is the observed

value of the response function at a xi analyte concentration, and Ŷ i is the estimated response

value according to the linear model Y ¼ aþ bxþ εðYÞ or Ŷ ¼ aþ bx. The minimization
∂Q

∂a
¼ 0

and
∂Q

∂b
¼ 0 leads to the values of a, b as well as their variances and covariance [13].

Three main requisites must be fulfilled before using this method [14], namely:
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• The x variable is free from error εðxÞ ¼ 0.

• The error associated to Y variable, εðYÞ, is normally distributed, N(0,σ2).

• The variance of response Y, σ2ðYÞ, remains uniform in the dynamic range of x (homosce-

dasticity).

In analytical calibrations, the analyte concentration is known with high accuracy and precision

and, accordingly, the requirement (i) is accomplished. The condition (ii) is assumed by many

researchers without a previous testing. There are several statistical assays for testing normal-

ity [13], and they should be performed before embarking in the fitting. Analysts have paid

much more attention to the requirement (iii). In situations of heteroscedasticity (non-constant

variance), the method of least squares can be applied but by using the so-called weighing

factors [15], which are defined as wi ¼ 1
σ
2ðYiÞ

. Thus, the function to be minimized now is

Q ¼
X

wi Yi � Ŷ i

� �2
leading to expressions similar to the one obtained in simple linear regres-

sion. This is the weighted regression [13].

Let us assume that we deal with a situation often found in routine analysis where the three

mentioned requirements are fulfilled. In the following, we consider the different scenarios we

can face.

3. Metrological foundations on indirect calibration

Consider a new proposed analytical method which is applied to dissolved test portions of a

given sample within the linear dynamic range of the linear analytical response (Y). This

response may be expressed by the following linear relationship involving both analyte and

matrix amounts [16]:

Ŷ ¼ Aþ Bxþ CzþDxz ð1Þ

where Ŷ is the estimated analytical response and A, B, C and D are constants.

A is a constant that does not change when the concentrations of the matrix, z, and/or the

analyte, x, change. It is obviously related to the constant error blank correction. The blank

must account for signals coming from reagents and solvents used in the assay as well as any

bias resulting from interactions between the analyte and the sample's matrix. It is well known

that the calibration blank and the reagent blank compensate for signals from reagents and

solvents, but neither of them can correct for a bias resulting from an interaction between the

analyte and the sample's matrix. The suitable blank must include both the sample's matrix and

the analyte, and so it must be determined using the sample itself. The term A is called the true

sample blank and can be estimated from the Youden sample plot, which is defined as the “sample

response curve” [17]. Thus, by applying the selected analytical method to different test por-

tions, namely m (a different mass taken from the test sample), different analytical responses Y

are obtained. The plot of Y versus m is the Youden sample plot, and the intercept of the

corresponding regression line is the so-called total Youden blank (TYB) which is the true
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sample blank [17–19]. However, when a “matrix without analyte” is available, the term A can

be determined by evaluating the system blank (calibration and reagent blank).

Bx is the essential term that justifies the analytical method because it directly deals with the

sensitivity to the presence of analyte.

Cz refers to the signal contribution from the matrix, depending only on its amount, z. When

this term occurs, the matrix is called interferent. This contribution must be absent, because a

validated analytical method should be selective enough with respect to the potential interfer-

ences appearing in the samples where the analyte is determined. Accordingly, the majority of

validated methods do not suffer from such a direct matrix interference.

Dxz is an interaction analyte/matrix term. This matrix effect occurs when the sensitivity of the

instrument to the analyte is dependent on the presence of the other species (the matrix) in the

sample [20]. For the sake of determining analytes, this effect may be overcome by using the

method of standard additions as we consider later.

Thus, the calibration function remains as:

Ŷ ¼ Aþ BxþDxz ð2Þ

This function has to be established by using standards and could be applied to samples

according to different methodologies. Calibration standards are prepared from primary stan-

dards containing the analyte or a surrogate, that is, a pure substance equivalent to analyte in

chemical composition, separation and measuring that is taken as representative of the native

analyte. It must be absent in the sample. Commonly, a surrogate is used in an internal

methodology and in this case is termed as internal standard (IS) [21].

Three different scenarios can be considered for establishing the calibration function in order to

determine the analyte in the sample: the external calibration (EC) (applicable when there is no

matrix effect); the standard addition calibration (SAC) (used when matrix effect is present);

and the internal calibration (IC) (applied for compensate uncontrolled analytical signal varia-

tions). These methodologies are outlined in the following section.

4. The external calibration

The external calibration (EC) is the most commonly used calibration methodology. It is named

so because the calibration standards are not made up of the sample test portion. Instead, they

are prepared and analysed separately from samples [21]. Accordingly, the signals recorded

accounts for the analyte added as primary standard, reagents, solvents and other agents

according to the analytical procedure, except the sample matrix. Accordingly, because EC is

established in a free matrix environment, it can be applied for analyte determination only

when sample matrix effects are absent. Thus, as a preliminary step within the method, valida-

tion to assess constant and proportional bias due to matrix effects has to be performed [22].

Being a matrix free calibration scenario, z ¼ 0, B is the slope of EC, bEC, and A can be taken as
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the system blank, aEC. In order to evaluate the goodness of the fit, the regression analysis of the

analytical signal on the analyte concentrations established in the calibration set yields the

calibration curve for the predicted responses. The simplest model is the linear one, very often

found in analytical methodology, leading to predicted responses according to

Ŷ ¼ aEC þ bECx ð3Þ

Eq. (3) must be checked for goodness of fit.

The correlation coefficient r ¼
X

ðxi � xÞðYi�YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

ðxi � xÞ2
X

ðYi � YÞ2
q , although commonly used, espe-

cially in linear models, is not appropriate owing to the little value of this parameter for

detecting curvature [23, 24]. In statistical theory, correlation is the measure of the association

between two random variables, but in our case, x and Y are strongly related. Thus, there is no

correlation in its mathematical sense. Values of r near þ1 or �1 provide an environment of

respectability but not much else. Some authors apply statistical tests for significance of the

correlation coefficient, for instance, the student t-test [13] t ¼ jrj
ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p or the Fisher transfor-

mation [9] z ¼ 1
2ln

1þ r

1� r

� �

, but they cannot ward off danger because the null hypothesis is that

the variables are uncorrelated (zero correlation), and accordingly, a small r value can be

considered significantly different from r ¼ 0. As Thompson [23] pointed out, “certainly it is

true that, if the calibration points are tightly clustered around a straight line, the experimen-

tal value of r will be close to unity. But the converse is not true”. Thus, some more suitable

criteria should be considered. A very simple way to prove that the linear model suitably fits

the experimental data and is right for searching possible calibration pathologies is the

analysis of residuals [8, 13, 25]. So, if the model is suitable, the residuals should be normally

distributed. This can be assessed by plotting them on a normal probability graph. The

presence of curvature reveals a lack of fit due to non-linear behaviour. A residual segmented

pattern may indicate heteroscedasticity in the data, and a weighted linear regression could

be used.

Another parameter measuring the goodness of the fit is called the on-line linearity [26] and is a

parameter that measures the dispersion of the points around the calibration straight line and is

evaluated as the relative standard deviation of its slope: on-line linearity ¼ RSDbEC
¼ sbEC

bEC
. The

typical critical threshold for considering a suitable linear model is RSDb ≤ 0:05.

Nevertheless, the best way to test the goodness of fit is by comparing the variance of the lack of

fit against the pure error variance [27]. For an adequate assess of the lack of fit of the linear

model, a suitable experimental design for performing the calibration is needed as indicated in

the following [28]:

i. At least six calibration points spaced over the concentration range of the method scope

are required for establishing the calibration straight line.

ii. Calibration standards should be measured over 5 days for suitably covering the possible

sources of uncertainty.
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iii. Each calibration standard should be measured in triplicate to account for pure error

variance.

From these data, we can test homoscedasticity. Accordingly, we have a triplicate of responses

for each calibration standard and hence an estimation of the pure error variance of the

response is available at each calibration point. We can apply the Cochran’s assay because

the number of observations is same for all concentration levels of analyte. Thus, if the number

of calibration standards is N and they are replicated n times, the Cochran statistics is calcu-

lated as:

C ¼
s2max

X

N

i¼1

s2i

ð4Þ

where s2i is the response variance at the concentration level i and s2max is the maximum variance.

This value is compared against the critical tabulated value CtabðN, n, PÞ, P being the selected

confidence level. If C ≤Ctab, then the response variances can be considered to be uniform across

the range of analyte concentrations, and an estimated pooled sum of squares due to pure

errors, SSPE, can be obtained:

SSPE ¼
X

N

i¼1

X

n

j¼1

Yij � Yi

� �

2

¼
n� 1

N

X

N

i¼1

s2i ð5Þ

The residual sum of squares of the model SSR is given by

SSR ¼
X

N

i¼1

X

n

j¼1

Yij � Ŷ
ij

� �2
¼

X

N

i¼1

n Yi � Ŷ i

� �2
ð6Þ

where Yij is the recorded analytical signal of the calibration point i at the replication j and Ŷ ij.

This value can be split into two terms: the sum of squares corresponding to pure error (SSPE)

and the sum of squares corresponding to the lack of fit (SSLOF):

SSLOF ¼ SSR � SSPE ð7Þ

The pure error variance is SSPE/(n�1), and the variance of the lack of fit, by considering N�2

degrees of freedom for SSR, is SSLOF/(N�n�1). So, for assessing the adequacy of the model, the

Fisher F-test is applied:

F ¼
SSR � SSPEð Þ= N � n� 1ð Þ

SSPE= n� 1ð Þ
ð8Þ

The calibration model is considered suitable if less than the one-tailed tabulated value

FtabðN � n� 1, n� 1, PÞ exists at a P given confidence level.
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Once the model is adequate for application, analyte determination is carried out by

interpolating the analytical signal of the sample in the calibration model. Typical statistical

calculations for evaluating the variances of slope, intercept, its covariance as well as the

uncertainty associated to the estimated analyte concentration can be found in several

texts, for instance, Miller and Miller [13]. Thus, if Y0 is the response signal recorded by

applying the analytical method on the sample, the concentration of native analyte, x0, is

given by

x̂0 ¼
Y0 � aEC

bEC
ð9Þ

In order to evaluate its standard deviation, and the corresponding expanded uncertainty,

the theorem of variance propagation is applied. The propagation of variance is the common

approach for evaluating the uncertainty of indirect measurements according to the current

edition of the guide for the expression of uncertainty measurement (GUM). However, an

essential limitation has to be taken into account. The non-linearity of the function (here the

calibration function) must be negligible. This is fundamental because the function is

expanded in a Taylor series, and then, it is truncated by neglecting second- and higher-

order terms. To avoid this drawback, the propagation of distributions instead of the propa-

gation of variance is a very suitable way for estimating the measurement uncertainty. The

application of Monte-Carlo method to carry out the propagation of distributions is very

effective [29].

Saying that brute-force Monte-Carlo (MC) methods are “very effective” may seem strange

to some readers, as one major problem of MC is their methodological in-efficiency. It is

due to large sampling variance of the relatively small samples acceptable in computation-

ally demanding applications. In other words, any acceptable sample of 100 values may

have a large random unknown error, generally different from any other sample of com-

parable size. To overcome this inefficiency, approximate simplified surrogate models are

often used to allow for sampling a much as 106 times, just to reduce sampling variability. I

would thus rather call MC methods ‘general’, ‘useful’, ‘simple’ and ‘powerful’ etc., as they

apply to any parametric model and any distribution (if a random generator can be found),

and can be utilized by anybody with very little statistical training.

But in our case, where the calibration function has been considered linear, the use of theorem

of variance propagation can be applied without risks:

s2x0 ¼
∂x0

∂Y0

� �2

s2Y0
þ

∂x0

∂aEC

� �2

s2aEC þ
∂x0

∂bEC

� �2

s2bEC þ 2
∂x0

∂aEC

� �

∂x0

∂bEC

� �

covðaEC, bECÞ

¼
1

bEC

� �2

s2Y0
þ �

1

bEC

� �2

s2aEC þ �
Y0 � aEC

b
2
EC

 !2

s2Y0
þ 2 �

1

bEC

� �

�
Y0 � aEC

b
2
EC

 !

�xs2bEC

� �

ð10Þ

Considering the following equivalences (see Ref. [13] for instance):
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s2
Y0

¼ s2R ¼ SSR=ðN � 2Þ

s2aEC ¼ s2R
1

N
þ

x2

Sxx

� �

s2bEC ¼
s2R

Sxx

Sxx ¼
X

i

xi � xð Þ2

ð11Þ

After some algebraical manipulations, we get

s2x0 ¼
s2R

b
2
EC

1þ
1

N
þ

Y0 � Y
� �2

b
2
ECSxx

" #

ð12Þ

If the signal Y0 is obtained as the average of m measurements, we have

s2x0 ¼
s2R

b
2
EC

1

m
þ

1

N
þ

Y0 � Y
� �2

b
2
ECSxx

" #

ð13Þ

And the corresponding expanded uncertainty can be evaluated from the tabulated Student t-

statistics or by assuming a Gaussian distribution and using the z score at a given confidence

level (generally P ¼ 95%) and so:

Ux0 ¼ ttabðN � 2, 95%Þsx0

Ux0 ¼ z95%sx0 ≈ 2sx0

Confidence Interval : x0 �Ux0

ð14Þ

EC is adequate for analytical procedures that could be considered as methods free from matrix

effects, but it has the main limitation coming from the assumption that the different environ-

ments (matrices) of the calibration standards (solvent, buffer,…) and of the samples are equiv-

alent, and they have no effect on the calibration function [21]. If this assumption is incorrect,

additive and/or proportional systematic errors may appear. Accordingly, in a preliminary

stage within the method validation, constant and proportional bias due to matrix effects must

be investigated with the help of standard addition calibration and Youden plot [22].

5. Standard addition calibration

The standard addition calibration (SAC) or standard addition method was originally proposed

in 1937 by Hans Hohn in polarographic studies [30]. He used this strategy in order to avoid the

matrix effects on the intensity of emission signal, and nowadays, it is widely used in chemical

analysis. SAC can be applied with three fundamental goals [31]:
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• To determine analytes in samples where the analyte-matrix interactions lead to inaccurate

results when the EC is used.

• To determine analytes where the content in the sample is smaller than the quantitation

limit but within the range of analytical sensitivity.

• To check the accuracy of an analytical result when no reference materials or reference

method is available (recovery assay).

In essence, the calibration for the two first purposes comprises three steps [32]:

a. Measure the analytical response produced by the test solution.

b. Spike the test solution with one or more amounts of analyte to get corresponding solu-

tions and measure the new responses.

c. From the responses, calculate a straight-line fit of the experimental data and from that

evaluate the concentration that produced the response obtained from the untreated test

solution.

The SAC can be performed either at a final fixed volume or at a variable volume [19]. In this

discussion, we only consider the first case by working at constant final volume.

Consider now the application of the analytical procedure to a dissolved test portion of an

unknown sample within the linear working range. The analyte concentration x is the sum of

the fixed native concentration coming from the sample (volume of test portion V0) and the

variable spiked concentration (spiked volume, Vspike) and keeping a final constant volume V.

The amount of matrix in the test portion (z) is constant. Accordingly, the analytical response

can be now modelled as:

Ŷ ¼ Aþ BxþDxz ¼ Aþ ðBþDzÞx ¼ Aþ ðBþDzÞ
V0C

0
native þ VspikeC

0
spike

V

 !

¼

Aþ ðBþDzÞCnative þ ðBþDzÞCspike ¼ aSAC þ bSACCspike

ð15Þ

where Cnative is the actual concentration of the analyte in the unspiked sample, Cspike the actual

concentration of the spiked analyte and aSAC and bSAC are the intercept and the slope of the SAC

calibration straight line. Ifwe try to estimate the analyte concentration of a spiked sample byusing

the external calibration line, we obtain an estimation of the total observed analyte concentration:

Ĉobs ¼
Ŷ � aEC
bEC

¼
aSAC � aEC þ bSACCspike

bEC
ð16Þ

For the unspiked sample, Cspike ¼ 0, we obtain

Ĉnative ¼
aSAC � aEC

bEC
ð17Þ

According to Eqs. (16) and (17), the spiked concentration of the analyte is estimated from the

external calibration as:
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Ĉspike ¼ Ĉobs � Ĉnative ¼
bSACCspike

bEC
ð18Þ

From Eq. (18), an overall estimation of the overall consensus recovery is calculated as:

Rec ¼
Ĉspike

Cspike
ð19Þ

When proportional bias is absent, we have bSAC ¼ bEC, and that implies Rec ¼ 1. This must be

tested for statistical significance by using the student t-test [22]:

t ¼
jRec-1j

sRec
ð20Þ

with the recovery standard deviation given by:

sRec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2bSAC
b2EC

þ
b2SACs

2
bCE

b4EC

v

u

u

t ð21Þ

Thus, if the degrees of freedom ν corresponding to the uncertainty of consensus recovery are

known, student t-statistic is compared with the critical two-tailed tabulated value, ttab(ν,P), at

P% confidence. If t ⩽ ttab, the consensus recovery is not significantly different from 1. Alterna-

tively, instead of ttab, a coverage factor k taken as z score may be used for the comparison.

Typical values are k ¼ 2 or k ¼ 3 for 95 or 99% confidence, respectively [22], so

• if jRec �1j
sRec

≤ k, the recovery is not significantly different from 1.

• if jRec �1j
sRec

> k, the recovery is significantly different from 1, and the results have to be

corrected by Rec.

Although recovery is sometimes considered a separate validation parameter, it should be

established as a part of method validation because it is directly related to the trueness assess-

ment [33]. Aside from the statistical testing considered above, the Association of Official

Analytical Chemists (AOAC) has published tables of acceptable recovery percentages as a

function of the level of analyte in the sample (see Table 1 of [22]). The relative uncertainty for

proportional bias owing to matrix effects is taken as
sRec
Rec

according to SAC.

The relationships between the analytical signal and theanalyte concentrationwhenamatrix effect is

present aregivenbyEq. (15). The independent term“A” is the totalYoudenblank,which is included

in the intercept of the SACcalibration (aSAC¼Aþ bSACCnative). TheYouden's plot [17–19] consists of

plotting the analytical response (Y) against the amount of the test portion taken for analysis:

Ŷ ¼ Aþ bYwsample ð22Þ

The intercept of this plot is an evaluation of the TYB, which is the sum of the system blank (SB)

corresponding to the intercept of the EC (aEC) and the YB associated with the constant bias in
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the method [13]. Thus, we can equate TYB ¼ A, SB ¼ aEC and YB ¼ A – aEC. We can define the

method constant bias as:

θ ¼
A� aEC

bEC
ð23Þ

The uncertainty of the constant bias can be obtained by the law of variance propagation [22]:

sθ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
A

b
2
EC

þ
s2aEC

b
2
EC

þ
A� aECð Þ2s2

bEC

b
4
EC

þ
2 A� aECð Þ

b
3
EC

covðaEC, bECÞ

v

u

u

t ð24Þ

The variances s2aEC , s
2
bEC

and the covariance are obtained from the statistical parameters of the

EC straight line and s2
A
from the Youden's plot. Once sθ is calculated, the constant bias may be

assessed for significance as in the case of recovery.

• If jθj
sθ
≤ k, the constant bias is not significantly different from 0.

• If jθj
sθ
> k, the constant bias is significantly different from 0, and the results have to be

corrected by θ.

Accordingly, if after performing the assessment of proportional and constant bias matrix

effects are present, the uncorrected result x0, found by EC, must be suitably corrected as

x0 ¼
xuncorr0 � θ

Rec
ð25Þ

Another way of getting the correct result from the reading of analytical signal Y0 is

x0 ¼
Y0 � A

bSAC
ð26Þ

On the other hand, when using the SAC for evaluating the analyte concentration x0 of a

sample, its standard deviation can be obtained by applying the theorem of variance propaga-

tion to the function

x0 ¼
aSAC � A

bSAC
ð27Þ

leading to

s2x0 ¼
∂x0

∂A

� �2

s2
A
þ

∂x0

∂aSAC

� �2

s2aSAC þ
∂x0

∂bSAC

� �2

s2bSAC

þ2
∂x0

∂aSAC

� �

∂x0

∂bSAC

� �

covðaSAC, bSACÞ

¼ �
1

bSAC

� �2

s2
A
þ

1

bSAC

� �2

s2aSAC þ
�ðaSAC � AÞ

b
2
SAC

 !2

s2bSAC

�2
1

bSAC

� �

�ðaSAC � AÞ

b
2
SAC

 !

xs2bSAC

ð28Þ
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After several algebraical manipulations, we obtain

s2x0 ¼
s2y=x

b2SAC

1

N
þ

Y
2

b2SACSxx

þAðA� 2YÞ

b2SACSxx

" #

þ
s2A
b2SAC

ð29Þ

But many workers apply the SAC without considering the true blank, that is, by setting A ¼ 0

and sA ¼ 0 leading to

s2x0 ¼
s2y=x

b2SAC

1

N
þ

Y
2

b2SACSxx

" #

ð30Þ

This expression is presented in several standard analytical textbooks, for instance [13, 19, 32, 34].

However, Ortiz et al. [35] pointed out that when extrapolating, the analyte concentration is

obtained by setting Y0 ¼ 0 and calculating x0 ¼ �aSAC=bSAC, but even in this case, the uncer-

tainty of the signal must be included in calculations, leading to

s2x0 ¼
s2y=x

b2SAC
1þ

1

N
þ

Y
2

b2SACSxx

" #

ð31Þ

The SAC, as it has been outlined, is considered as an extrapolation method but an interpolation

approach is available [32, 36]. A plot of the data obtained from SAC and how the analyte

concentration is predicted by extrapolation are depicted in Figure 1. Nevertheless, an interpo-

lation alternative is also gathered there. The latter is discussed in the following.

What value of the analytical signal Y0 will correspond to a spiked x value that is equal to the

concentration of the native analyte? That is:

Y0 ¼ aSAC þ bSACx0 ¼ Aþ 2bSACx0 ¼ 2Yunspiked � A ð32Þ

Figure 1. The plot of extrapolation and interpolation for prediction of the native analytical concentration of a sample by

using the SAC.
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And if we disregard the true blank, we get

Y0 ¼ aSAC þ bSACx0 ¼ 2bSACx0 ¼ 2Yunspiked ð33Þ

Thus, the native analyte concentration can be obtained by interpolation by setting the analyt-

ical signal for the sample as the double of the signal, corresponding to the unspiked sample

minus the true blank:

x̂0 ¼
Y0 � aSAC

bSAC
ð34Þ

This leads to a variance for the native analyte

s2x0 ¼
s2y=x

b2SAC
1þ

1

N
þ

Y0 � Y
� �2

b2SACSxx

" #

ð35Þ

According toAndrade et al. [32, 36], the use of extrapolation in the SAC is a risky practice because

it may lead to biased prediction and uncertainties substantially different from interpolation.

Confidence interval from extrapolation is always higher than those obtained by interpolation.

6. The internal standard calibration

The method of internal standard calibration (ISC) was first applied in the 1950s in several

analytical fields [37–41]. This method is especially useful when the analytical response varies

slightly from run to run due to different causes, for instance:

• Temperature fluctuations in atomic emission spectrometry.

• Changes in the capillary characteristics in polarography.

• Inhomogeneities in the effective magnetic field due to shielding effect in nuclear magnetic

resonance (NMR).

• Variability in the injection volume in gas chromatography (manual injection).

• Irreproducibility of automatic injectors in capillary electrophoresis.

• Differences in the nature of particulate matter in the sample in X-ray fluorescence.

The use of an internal standard is also needed for analytical methods where there are multiple

sample preparation steps, especially when volumetric recovery at each step may vary (extrac-

tion with separation cartridges) or when involving chemical derivatizations with low or

variable yields of reaction.

An internal standard is a substance different from the analyte but that has physicochemical

properties very similar to the analyte. Evidently, the internal standard cannot be a component

of the sample.
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It is added to the sample, and the patterns in known amounts and the signal produced by both

the analyte and the internal standard are measured. If in repeated measurements, there is

signal oscillation, it will occur both in the analyte and in the internal standard, and the ratio

of the signals of both will not change.

Thus, instead of the response Y, the ratio of responses Y/YIS is used in the calibration proce-

dure. Assuming that in the instrumental method the signal is in direct proportion to the

analyte and internal standard, we get:

Y ¼ kx

YIS ¼ kISxIS

Y

YIS

� �

¼ F
x

xIS

� �

ð36Þ

Here, Y is the analytical signal due to the analyte andYIS is the analytical signal corresponding

to the internal standard. The calibration straight line is performed as in EC by preparing

standards at several analyte concentrations and with the same concentration fixed for

internal standard xIS. Thus, the calibration constant F is evaluated. Whereas the dispersion

of the calibration straight line Y ¼ kx may be significant, the one obtained with the ISC is

negligible.

The sample is then treated in the same way by spiking the internal standard at the same

concentration in the standards. Thus, if the reading of the sample is
Y

0

Y
0
IS

� �

x̂0 ¼
Y
0

Y
0
IS

 !

xIS

F
ð37Þ

By applying the variance propagation law and considering negligible variance of xIS, we get

sX0
¼

xISsR

F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ

x2
IS

Y
0

Y
0
IS

 !2

F
2
X

x
2
i

v

u

u

u

u

u

t ð38Þ

The main advantage of ISC is that this quantification method does not need a previous

calibration because it is implicit in the quantification [21]. Accordingly, the use of one-

point calibration method can be used. It only requires the addition of known and equal

amounts of internal standards to the standard analyte solution and to sample solution and

measures the analytical signals of analyte and internal standard in the standard and in the

sample. Evidently, the signals of analyte and internal standard must be distinguishable

without overlapping.

Thus,
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Ystd

Ystd
IS

 !

¼ F
xstd

xIS

� �

and
Y0

Y0
IS

 !

¼ F
x0

xIS

� �

x̂0 ¼ xIS

Y0

Y0
IS

 !

Ystd

Ystd
IS

 !

ð39Þ

Another exclusive feature of ISC is the possibility of performing the quantification of several

analytes of the same chemical family in the same test portion and in a unique internal calibra-

tion with a single internal standard. Consequently, it could be possible to evaluate the mass

fraction of each analyte according to [21].

%x0i ¼
x0i

X

j

x0j
� � 100 ¼

xIS
F

� � Y0
i

Y0
IS

 !

X

j

xIS
F

� � Y0
j

Y0
IS

 ! 100 ¼
Y0

i
X

j

Y0
j

100 ð40Þ

Accordingly, ISC is a very powerful method for congener analysis (for instance in fat analysis,

determination ofwaxes, sterols, aliphatic alcohol and so on) byusing onlya unique internal standard.

7. Synthesis

Indirect calibration is a key concept for method validation. Instrumental analysis involving

indirect calibration is a common feature in routine analysis, and three typical scenarios can be

found depending on the analyte-matrix interaction and the uncontrolled variation of the

analytical signal owing to intrinsic characteristics of the analytical process. Thus, when the

interaction of the matrix of sample is negligible, the external calibration is the normal choice.

Otherwise, the Standard Addition calibration together with the Youden plot have to be

applied. In cases where there are non-random signal variations run to run or possible analyte

losses due to sample preparation procedures or derivatization reactions, Internal Standard

calibration must be considered. These three approaches have been outlined and discussed.

Uncertainty values for the analyte concentration coming from the calibration step are consid-

ered and evaluated from the calibration data.
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