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Abstract

Vitamin A deficiency (VAD) is a preventable tragedy that affects millions of people, par-
ticularly in sub-Saharan Africa. A large proportion of these people rely on diets based on 
cassava as a source of calories. During the last two decades, significant efforts have been 
made to identify sources of germplasm with high pro-vitamin A carotenoids (pVAC) 
and then use them to develop cultivars with a nutritional goal of 15 μg g−1 of β-carotene 
(fresh weight basis) and good agronomic performance. The protocols for sampling roots 
and quantifying carotenoids have been improved. Recently, NIR predictions began to 
be used. Retention of carotenoids after different root processing methods has been mea-
sured. Bioavailability studies suggest high conversion rates. Genetic modification has 
also been achieved with mixed results. Carotenogenesis genes have been characterized 
and their activity in roots measured.

Keywords: carotenogenesis, conventional breeding, dry matter content, physiological 
deterioration

1. Introduction: cassava as an important food-security and industrial crop

Cassava (Manihot esculenta Crantz) has a Neotropical origin and significant economic rele-
vance. It is an important crop in tropical and subtropical regions of the world, growing from 
sea level up to 1800 m. Its most common product is the starchy root, but cassava foliage has 
an excellent nutritional quality for animal and human consumption and offers great potential 
[1, 2]. Stems are used for commercial multiplication. Therefore, every part of the plant can 
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be used and exploited. Cassava is the fourth most important basic food after rice, wheat, 
and maize worldwide, but is the second most important food staple (in terms of calories 
consumed) in sub-Saharan Africa [3–6]. The crop is called Africa’s food insurance because it 
offers reliable yields even in the face of drought, low soil fertility, low intensity management, 
and because of its resilience to face the effects of climate change [7–9].

Between 2010 and 2014, an average of 22 million ha was annually grown with cassava 
worldwide (70% in Africa, 18% in Asia, and about 12% in the Americas). The area planted 
to cassava has grown steadily, and it was 2011 when, for the first time, more than 20 mil-
lion ha were planted with the crop (FAOSTAT). Markets in cassava are diverse. The crop 
was initially domesticated for the direct consumption of the roots, which contain plenty 
of carbohydrates. However, roots contain little protein and few micronutrients [10], when 
compared to sweet potatoes, potatoes, beans, maize, or wheat. Globally, in the period 1970–
2003, the main uses of cassava roots were for food (54%), followed by feed (30%), and other 
uses including starch production (4%) [11]. Global use of cassava for feed was affected by 
the reduction of imports from the European Union in the 1980s. Production of starch, on 
the other hand, increased considerably in the same period (by 17.5% annually [11]). Today, 
cassava is the second most important source of starch worldwide [12]. In the 2000s, a con-
siderable amount of cassava roots started to be used for the production of fuel ethanol as 
well [13, 14].

A comprehensive screening of root quality traits from more than 4000 cassava clones has 
been published [15]. On average, roots from these genotypes had 33.6% of dry matter con-
tent (DMC) of which 84.5% is starch (the main and most valuable product in cassava roots). 
Cassava starch quality is excellent and has, on average, 20.7% amylose (the remaining 79.3% 
is amylopectin). Cassava roots spoil quickly (2–3 days after harvest) because of a process 
called postharvest physiological deterioration (PPD). Therefore, roots need to be processed or 
consumed soon after harvest.

Vitamin A is an essential micronutrient for the normal functioning of the visual and immune 
systems, growth and development, maintenance of epithelial cellular integrity, and for repro-
duction [16]. Vitamin A deficiency (VAD) is the leading cause of preventable blindness in chil-
dren and increases the risk of disease and death from severe infections. In pregnant women, 
VAD causes night blindness and may increase the risk of maternal mortality. VAD is a public 
health problem in more than half of all countries, especially in Africa and South-East Asia, 
hitting hardest young children (visual impairment and blindness, and significantly increases 
the risk of severe illness, and even death) and pregnant women (especially during the last 
trimester when demand by both the unborn child and the mother is highest) in low-income 
countries. An estimated 250 million preschool children show VAD, and it is likely that, in 
areas where VAD is prevalent, a substantial proportion of pregnant women is also affected. 
An estimated 250,000 to 500,000 vitamin A-deficient children become blind every year, half of 
them dying within 12 months of losing their sight [17].

Vitamin A exists in natural products in many different forms: as preformed retinoids (stored in 
animal tissues) and as provitamin A carotenoids (pVAC), which are synthesized as pigments 
by many plants and are found in different plant tissues [16]. The carotenoids are  present in 
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both plant and animal food products (in animal products their occurrence results from dietary 
exposure). Retinoids, on the other hand, are only found in animal products. A comprehensive 
review on carotenoids has been recently published [18].

Different strategies (dietary diversification, food fortification, and/or supplementation) and 
considerable efforts have been made to reduce VAD worldwide [19]. These strategies are 
relatively cost-effective, but have failed to completely eradicate the problem for a diver-
sity of reasons [20]. Moreover, prevalence of VAD has remained unchanged in sub-Saharan 
Africa and south Asia during the 1991–2013 periods [21]. Recently, different programs such 
as HarvestPlus (www.harvestplus.org), involving a global alliance of research institutions, 
initiated the implementation of a fourth strategy (biofortification) to develop micronutrient-
dense staple crops [19, 22, 23]. A diet rich in pVAC, in addition to reducing the problems 
related to VAD would also result in other health benefits, including a reduction of cancer 
incidence [24, 25].

The color of root parenchyma (e.g., pulp) in cassava varies from white to yellow. Pinkish 
pigmentation has also been reported [26]. Pigmentation of the parenchyma is closely linked 
to carotenoids content. Most cassava varieties worldwide produce roots with white paren-
chyma. This is particularly appreciated by the starch industry. However, breeding to develop 
cassava varieties need to target different end users and it is only recently that the efforts to 
develop high-carotenoids biofortified germplasm were initiated by HarvestPlus. This is an 
international, interdisciplinary research initiative that seeks to reduce human malnutrition by 
increasing micronutrients in staple crops, including cassava. The progress already attained by 
HarvesPlus and the awareness that has elicited in the plant breeding community resulted in 
the 2016 World Food Prize Award. Biofortified cassava makes sense considering the impor-
tance of this crop in sub-Saharan Africa and the reported prevalence of VAD in that region of 
the world. The target for these varieties will be not only for human consumption but also for 
animal feed, particularly poultry [27].

2. Nutritional value of cassava roots

The nutritional quality of cassava roots in general is low, and contains mainly carbohydrates. 
Per 100 gram raw weight, white cassava provides 160 kcal mainly as carbohydrates (38 g) 
and contains further water (60 g), a little protein (1.4 g), fat (0.3 g) and trace elements of iron 
(0.3 mg), niacin 0.9 mg), thiamin (0.09 mg), riboflavin (0.05 mg), calcium (16 mg), potassium 
(271 mg), zinc (0.3 mg), and vitamin C (21 g) [28]. People depending on a diet predominantly 
based on white cassava roots are at greater risk of having iron, zinc and VAD, as was shown 
in children in Kenya and Nigeria [29].

Cassava also contains variety-dependent concentrations of cyanogenic glucosides (CG), 
which are toxic for humans and needs to be eliminated during processing before consump-
tion. Therefore, cassava with high concentration in cyanide are better suitable for more pro-
cessed products like porridge made out of flour and those low in cyanide are more suitable 
for boiled consumption [30]. CG levels range from low (≤100 ppm) in roots from sweet/cool 
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varieties to very high (≥3000 ppm) in bitter cassava cultivars. CG are eliminated through 
alternative processing techniques [2]. However, health of people may be affected [31], partic-

ularly in years when drought has affected other crops, which increases people’s dependency 
in cassava. In addition to higher consumption of cassava roots, drought generally increases 
CG levels in them [32].

3. Genetic variation of carotenoids content in cassava roots

Carotenoids perform essential physiological functions in plants. They are involved in the 
photosynthesis process, protecting the plant from photo-oxidative damage, and as precursors 
of regulatory molecules, such as abscisic acid (ABA) and strigolactones [33, 34]. In cassava, 
carotenoids can be found in leaves and roots. Concentration is much larger in leaves than in 
roots [35–37]. The earliest reports on pVAC contents in cassava roots (written in Portuguese) 
were based on cassava samples from the Amazon region of Brazil and the earliest dates back 
to 1964 [38–40]. Interest in increasing pVAC content in cassava roots began in the 1990s in 
India [41, 42] and few years later at International Center for Tropical Agriculture (CIAT) in 
Colombia [43] and at IIITA in Nigeria [37]. HarvestPlus provided financial resources and 
encouraged systematic work that resulted in the screening of a large sample of cassava germ-

plasm [26, 36].

Quality of data improved over the years. Initially most of the information focused on assess-

ing differences in the intensity of parenchyma pigmentation [44] and often relied on mea-

suring total carotenoids content (TCC) by spectrophotometer. HPLC analysis restricted the 
number of samples that could be screened. Moorthy reported in 1990 a range of variation 
for β-carotene from negligible to 7.9 μg g−1 [41]. Unless otherwise specified, all concentration 
values for carotenoids will be expressed on fresh weight basis. A comprehensive screening 
of carotenoids content reported in 2005 (1789 genotypes) had an average total carotenoids 
content (TCC) of 2.46 μg g−1, ranging from 1.02 to 10.40 μg g−1 [26]. Figure 1 illustrates the 
strong skewness in frequency distributions for TTC by 2005 with a long tail to the right (low 
frequency of genotypes with high TCC values).

The basic concept in breeding is to cross outstanding genotypes (e.g., clones) to generate a 
new generation of segregating progenies that will hopefully have a better average perfor-

mance. At CIAT those individuals, at the right of the plot in Figure 1, were crossed among 
themselves to obtain botanical seed. Each seed represented a new, genetically unique, geno-

type. The seed was germinated and the roots from the plants generated were evaluated for 
their carotenoids content. The best materials (highest pVAC) were then selected and crossed 
to produce a new cycle of selection. The basic scheme was described by Ceballos and co-
workers in 2013 [45]. Very early in this process, it became clear that carotenoids content was 
not only closely associated with pigmentation of the root parenchyma [41, 43] but also with 
a reduction or delay of PPD [26, 46, 47]. The beneficial effect of increased TCC in lengthening 
the shelf life of cassava roots was an important finding that would encourage the adoption 
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of biofortified varieties. It has been suggested that reduced PPD in high pVAC roots may 
involve β-ionone-like molecules, derived from β-carotene catabolism, which play a role in the 
response to biotic stress such as fungal infection [48]. However, PPD is a very variable trait, 
difficult to measure visually, influenced by the environment, and which depends very much 
on the storage conditions of the harvested root.

The relationships depicted in Figure 2 are relevant for the impact of the biofortified varieties 
released through the HarvestPlus initiative. It is not enough to develop cassava cultivars with 
high pVAC. The roots from these cultivars should meet consumer preferences. Key parameters 
defining consumer acceptance are dry matter content (DMC) and cyanogenic potential (particu-
larly in regions of the world where roots are boiled). DMC influences texture after boiling and is 
also a key parameter in the production of gari, for example (a popular way to consume cassava 
in Africa). The relationship between carotenoids and DMC is basically nonexistent (Figure 2). 
It is possible, therefore, to identify genotypes with high pVAC and acceptable levels of DMC. 
The first target of the HarvestPlus initiative was to develop biofortified clones for Africa. The 
key related trait for the most important ways to consume cassava in Africa would be DMC. 
Cyanogenic potential is not critical for gari production, but it is critical for table consumption 
after boiling. This is the most common way to consume cassava in many Latin American and 
Caribbean (LAC) countries. Only recently CIAT started the development of biofortified cas-
sava with low cyanogenic potential targeting LAC. The relationship between carotenoids and 
cyanogenic potential in Figure 2 shows a negative trend, although the coefficient of determina-
tion is low (r2 = 0.15). For a variety to be considered “sweet” and apt for table consumption, the 
maximum HCN levels would be about 150 ppm. At this stage of the breeding process, only a 
few dozen genotypes have been found to have low HCN, high pVAC and acceptable cooking 
quality. Efforts are currently made in making crosses among these genotypes to increase the 
number of segregating materials that can fit the consumer preferences in LAC.

Figure 1. Frequency distribution for total carotenoids content (μg g−1, fresh weight basis) of cassava germplasm by 2005.
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About 600 carotenoids have been isolated and characterized in nature, and approximately 10% 
of these can be metabolized into vitamin A by mammals. The most important carotenoids 
with vitaminic activity are β- and α-carotenes and cryptoxanthins. Some carotenoids that 
cannot be converted into vitamin A (e.g., lutein, zeaxanthin, and lycopene) can be found in 
the parenchyma of cassava root as well. Not all pVAC carotenoids have the same activity. 
β-carotene has about twice as much vitamin activity as the remaining pVAC carotenoids [49]. 
Fortunately, as illustrated in Figure 2, most of carotenoids in cassava roots are β-carotene. 
Assessing the nutritional potential of cassava roots, therefore, requires partitioning TCC 

Figure 2. Relationship between total carotenoids content (μg/g, fresh weight basis) with dry matter content (TOP); 
cyanogenic potential (MIDDLE) and all-trans β-carotene (bottom) contents.
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into its different individual carotenoid components. This is usually done through HPLC 
chromatograms.

Table 1 presents information on key root quality traits such as DMC and HCN and a descrip-

tion of the different carotenoids quantified in roots from a large sample of cassava genotypes. 
The information presented in Table 1 is clearly unbalanced with large variation in the number 
of samples used for quantifying different parameters. For example, DMC is available for 4913 
samples, whereas HCN was only measured in 981genotypes. Data for all-trans β-carotene is 
available from 4952 chromatograms, whereas only 49 samples allowed measuring α-carotene. 
To a large extent, the limited information on α-carotene is due to the low concentration, often 
below detection level, observed for this carotenoid. It is clear from data presented in Table 1 

that most carotenoids present in cassava roots are β-carotene (TBC), with a prevalence of its 
all-trans isomer. Similar conclusions were reported by Maziya-Dixon and Dixon in 2015 [50].

Count Average (Standard 

deviation)

Range Skew

Dry matter content 
(%)

4913 34 (±6) 10 −53 −1

HCN total (ppm) 981 684 (±631) 22 −3927 2

Precursors in α- and β-carotene synthesis μg g−1, fresh weight basis

Phytoene 3992 4.12 (±3.10) 0.00 −22.3 1.17

Phytofluene 2635 2.12 (±1.87) 0.00 −12.2 1.36

Carotenoids concentrations measured in μg g−1, fresh weight basis

Total carotenoids 
(spectroph.)

4922 11.59 (±5.16) 0.07 −29.5 0.14

Total carotenoids 
(HPLC)

4952 11.51 (±5.08) 0.11 −29.0 0.12

β-carotene and derived carotenoids μg g−1, fresh weight basis

All-trans β-carotene 4952 7.28 (±3.94) 0.00 −21.0 0.31

15-cis β-carotene 4107 0.15 (±0.15) 0.00 −2.99 2.18

13-cis β-carotene 4920 1.01 (±0.60) 0.00 −2.24 0.74

9-cis β-carotene 4895 0.99 (±0.54) 0.00 −3.95 0.82

β -Criptoxanthin 4074 0.14 (±0.13) 0.00 −3.77 1.20

Anteroxanthins 4038 0.30 (±0.26) 0.00 −1.46 2.03

Violaxanthins 4469 0.38 (±0.25) 0.00 −3.74 1.12

α-carotene and derived carotenoids μg g−1, fresh weight basis

α-carotene 49 0.08 (±0.01) 0.04 −1.09 −0.22

Lutein 4853 0.38 (±0.41) 0.00 −0.10 2.17

Table 1. Root quality traits and carotenoid components quantified in a large sample of cassava roots.
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4. Inheritance of carotenoids content in cassava roots

Early attempts to explain the inheritance of carotenoids content in cassava roots were actu-
ally based on the visual assessment of intensity of pigmentation in root parenchyma, which 
was not always linked to the quantification of carotenoids content [44, 51]. Iglesias and co-
workers [43] suggested in 1997 that relatively few major genes were involved, based on 
a hypothesis of two genes with epistatic effects controlling root color. One of these genes 
would show complete dominance while the second would have partial dominance. These 
early studies typically describe three classes for the intensity of root pigmentation (white, 
cream and yellow parenchyma) and agree that the trait shows dominance and is controlled 
by few genes, thus suggesting high heritability. Akinwale and co-workers [52] also suggested 
that segregations in TCC can be explained by the genetic control of two genes showing com-

plete dominance.

During the past few years, several studies have been published on the heritability of carot-
enoids content in cassava roots, but based on their systematic quantification, rather than indi-
rectly assessing the intensity of pigmentation. Parent-offspring regression analysis confirmed 
high heritability (˃0.60) for the trait [53–55]. High heritability for carotenoids content in cas-
sava is further confirmed in stability studies assessing the relative importance of genotype, 
environment, and genotype-by-environment interaction [56–58] and estimations of general 
and specific combining ability effects [59]. An analysis of the segregation for TCC in large 
full-sib and self-pollinated families was conducted aiming at identifying patterns that could 
be explained by Mendelian genetics [53, 54]. Table 2 reproduces the segregating values in 14 
self-pollinated (S1) families. It is clear that there is an association between the TCC values of 
the progenitors and the average of their respective S1 progenies (further validating the high 
heritability of the trait). The range of variation in the resulting S1 progenies is wide, and in 
most cases, there are individuals with TCC values above those of the respective progenitors 
(except for one family that only had two individuals). Based on the results of these segrega-
tions, it was postulated again that there are at least two genes explaining the high, intermedi-
ate, and low TCC values [53, 54].

However, one of these genes (I-) would drastically reduce the accumulation of carotenoids 
and shows complete dominance (one copy of the gene is enough to reduce TCC levels). 
Breeders may be interested in the homozygous recessive genotype for this gene (ii). The other 
gene (C-), would contribute to carotenoids accumulation and shows partial dominance.

The large variation for TCC values in the S1 family AM702 is worth highlighting (Table 2). 
This family had 29 individual genotypes and the range of variation for TCC was from 0.63 
to 19.1 μg/g. The performance in family AM697 is also interesting because none of its 38 
members had TCC values above 1.0 μg/g. The progenitors of these two families are related 
to each other since they were siblings from the same full-sib family (GM708). It has been 
proposed that the progenitor of AM697 was homozygous for the allele reducing TCC accu-
mulation (II) and/or was lacking the allele that promoted the accumulation of carotenoids 
(cc) [53, 54].
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It may be convenient to relate the three intensities of pigmentation used in earlier studies to 
the TCC values of the progenitors in Table 2. A root with white parenchyma has TCC values 
up to 1.5–2.0 μg/g, those with a cream pulp may show TCC values ranging from 1.5 to 3.0 
μg/g, whereas a TCC value above 3.0–3.5 μg/g is observed only in yellow roots. It is useful 
to visualize two levels of variation in carotenoids content in cassava roots. The first level of 
variation is qualitative and relates to the three phenotypes regarding intensity of pigmenta-
tion (e.g. white, cream, or yellow roots with the TCC values mentioned above). It is expected 
that this qualitative variation relates to some of the genes in the carotenoids biosynthesis 
described below. There is, however, a second level of variation that is quantitative in nature. 
It involves genotypes only with yellow roots and covers a very wide range of variation (from 
3.0 to 30.0 μg/g). Understanding the genetic factors controlling the large quantitative varia-
tion for TCC among yellow-rooted cassava is critical for breeding cassava with higher levels 
of pVAC. The distinction between white, cream and yellow roots, on the other hand, is easy to 
make visually and has already been linked to some of the genes in the carotenogesis pathway.

Family TCC in n Minimum Maximum Average Standard 

deviation

Skewness

progenitor

S1 family from genotypes derived from full-sib family CM9816

AM690 9.99 (H) 90 2.89 13.10 6.51 1.82 −0.599

AM689 6.67 (I) 71 0.46 11.37 4.73 2.69 −0.045

AM692 5.04 (I) 48 4.85 8.95 6.38 0.77 0.026

AM691 1.87 (L) 73 0.40 5.89 2.34 1.18 0.892

S1 family from genotypes derived from full-sib family GM708

AM702 11.16 (H) 29 0.63 19.1 6.46 5.92 0.734

AM700 7.32 (I) 2 2.01 2.79 2.40 0.55 n.d.

AM698 0.54 (L) 34 0.30 6.56 1.10 1.25 3.298

AM697 0.27(L) 38 0.26 0.89 0.54 0.15 0.34

S1 family from genotypes derived from full-sib family GM893

AM710 8.77 (H) 29 4.85 8.95 6.38 0.77 −0.299

AM718 8.14 (H) 38 3.19 9.24 5.90 1.28 −0.025

AM712 6.06 (I) 57 0.44 8.41 3.31 2.06 0.478

AM720 2.04 (L) 40 0.14 9.72 2.28 2.22 0.432

S1 families derived from commercial clones MTAI 8 and CM 4919-1

AM320 2.14 (L) 177 0.37 8.10 2.22 1.37 1.084

AM324 3.83 (I) 11 0.75 8.58 3.83 2.35 0.313

Table 2. Descriptive statistics in roots from S1 families derived from progenitors selected because of their high (H), 
intermediate (I) or low (L) levels of TCC (μg/g fresh weight basis).
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The pathway in carotenoids biosynthesis has been known for more than three decades. 
However, it was only after the 1990s that the genes involved in it could be cloned [60]. The 
diagram in Figure 3 illustrates the key steps in the process and is helpful for understand-

ing the inheritance of carotenoids synthesis and their accumulation, as crystals, in root 
chromoplasts. Few conclusions can be drawn from Figure 3: (a) The carotenogenesis path-

way is relatively simple with few key steps (and therefore few genes); (b) breeding should 
downregulate the activity of lycopene ε-cyclase (LCYE) to favor the synthesis of β-carotene 
on the right side of Figure 3; and (c) breeding should try to reduce catabolic conversion 
of β-carotene into zeaxanthin, which eventually leads to the production of abscisic acid 
(ABA).

Phytoene synthase (PSY) is the enzyme responsible for the synthesis of phytoene, which is the 
first reaction specifically related to the carotenoid synthesis pathway as illustrated in Figure 3 

and demonstrated in cassava [34], also see later in this chapter. There are three copies of PSY 
in cassava but transcripts for one of them (PSY3) were negligible [61]. It has been proposed 
that PSY1 is mostly involved in responses to stress (through ABA), whereas PSY2 would 
be involved in carotenoids synthesis and accumulation [61]. Genetic transformation works 
to enhance carotenoids content in cassava roots through the simultaneous over-expression 
of PSY and CRTI (a bacterial version of phytoene desaturase—PDS) have been successful. 
Transformed cassava produced yellow roots with considerably higher TCC values compared 

Figure 3. Diagram of carotenoids biosynthesis in plants (adapted from Stange and co-workers [33]). PSY: phytoene 
synthase; PDS: phytoene desaturase; ZDS: z-carotene desaturase; CRTISO: carotene isomerase; LCYE: Lycopene 
ε-cyclase; LCYB: Lycopene β cyclase; CεHx: ε-carotene hydroxylase; CβHx: β-carotene hydroxylase; ZEP: zeaxanthin 
epoxidase.
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with the untransformed version of the same genotype that produces roots with white paren-

chyma [34, 62, 63]. It is clear, therefore, that PSY explains the variation between white and 
yellow roots (e.g., TCC values below 2.0 μg/g versus those ˃ 3.0 μg/g). It is reasonable to 
hypothesize that the partially dominant factor (C-) in Morillo-Coronado and co-workers [54] 

is related to PSY.

There is no need to deregulate the activity of LCYE in cassava because the pathway naturally 
favors the accumulation of β-carotene as demonstrated by the values presented in Table 1. In 
fact, only trace values of α-carotene and lutein are found in cassava roots. Downregulation of 
β-carotene hydroxylases (CβHx), the third conclusion above, on the other hand, may be desir-

able. Reduced activity for this enzyme has been shown to enhance β-carotene concentrations 
in potato and sweet potato [64, 65]. No information has been published regarding variation 
for CβHx in cassava. However, the putative recessive trait in phenotypic studies (ii) may be 
related to a reduced activity of this enzyme [54].

Molecular markers ranging from microsatellite (SSR) to single nucleotide polymorphisms 
(SNP), identifying regions in the genome responsible for carotenoids content have been 
reported as well [34, 66–70]. It would be expected that some of the QTLs identified in these 
studies are related to the PSY gene. In fact, that was the case reported by Esuma and co-work-

ers in 2016 [67]. Other markers may be linked to other genes in the carotenogenesis pathway 
(perhaps the putative I factor mentioned in Morillo-Coronado et al. article [54]. which may be 
related to CβHx). These genes are likely linked to the qualitative variation mentioned above 
(e.g., distinguishing white, cream, and yellow roots). From the nutritional point of view, how-

ever, much more relevant is the quantitative variation observed among genotypes producing 
yellow roots (ranging from 3.0 to 30.0 μg/g). Interesting studies in carrot compared roots from 
three cultivars: one producing white roots with negligible amounts of carotenoids crystals (CC) 
and two cultivars producing yellow roots with vast differences in CC [71]. In this study, the 
authors concluded that the difference in CC among the two cultivars producing yellow roots 
was not due to increased numbers of carotene-containing chromoplasts but rather greater 
accumulation of carotene per chromoplast. In other words, the carotenogenesis pathways were 
similar in both cultivars producing yellow roots, but the chromoplasts of the cultivar bred for 
higher levels of CC show a higher demand or capacity to store them. Perhaps future molecular 
work in cassava should focus in identifying QTLs related to the sink strength of chromoplast in 
their demand for carotenoids and/or capacity to store them as crystals. These studies should 
only focus on cassava genotypes producing yellow roots ranging, for example, from 10 to 30 
μg/g of TCC.

The relationship between carotenoids and ABA (Figure 3) is relevant. ABA has been shown to 
have important effects as a plant growth regulator [61, 72]. As illustrated in Figure 2, there is 
no relationship between TCC and DMC in the germplasm screened at CIAT. However, many 
studies in Africa report a clearly negative correlation between the two traits [61, 72]. Perhaps 
African breeding populations have restricted genetic variability (particularly for CβHx) and 
some of the β-carotene initially produced is further converted into ABA. This hypothesis 
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would be supported by a genetic transformation work in which, parallel to an increase in TCC, 
there is a reduction in DMC and increase in ABA. The performance of six transformed geno-
types with high pVAC has been reported [63]. TCC in the wild type was 0.38 μg/g, whereas the 
best transgenic line showed 5.73 μg/g. Similarly, TBC values increased from 0.12 μg/g in the 
wild type to 4.67 μg/g in the best transgenic line. One distinctive feature of the transgenic geno-
types is a drastic reduction of DMC. The wild-type roots had 32.6% DMC, whereas the average 
DMC of the six transgenic lines was 20.2% (ranging from 15.8 to 23.8%). There seems to be a 
generalized fact that increases of pVAC through genetic transformation result in a (pleiotro-
pic) decrease in DMC. A reasonable explanation for the simultaneous increase in pVAC and 
reduction of DMC in the transgenic lines would be that the pathway did not stop at the step 
accumulating β-carotene but continued resulting in a higher production of ABA.

5. Evolution and improvements of sampling protocols for measuring 

carotenoids in cassava roots

Only a small tissue section (5 g) is needed for extracting and quantifying carotenoids in cas-
sava roots. At the inception of the HarvestPlus initiative, there was no information regarding 
the uniformity of pVAC concentration within the root, among roots of the same plant, among 
roots from different plants of the same genotype, and on the relative importance of environ-
ment, age, and genotype-by-environment interaction. For early work, roots were cut longitu-
dinally in four sections: two diagonally opposed sections were used for DMC determination 
and the remaining two quarters were chopped into small pieces which were thoroughly 
mixed, and from this bulked tissue, a random sample was used for pVAC quantification.

The first systematic study analyzing sampling variation of pVAC concentration in a cassava 
clone that produces yellow roots (average TCC 3.90 μg/g) was published in 2008 [73]. Samples 
along the longitudinal (proximal, central, and distal section) and across the transversal (periph-
ery, mid-parenchyma, and core) axes of the roots were analyzed. Carotenoids and dry matter 
content were quantified individually in 243 root samples. Average TCC values, on a fresh weight 
basis, were higher in the proximal sections (4.10 μg/g) and gradually lower in the central (3.86 
μg/g) and distal portions (3.73 μg/g). An opposite trend was observed when carotenoids were 
quantified in dry weight basis. Carotenoids concentrations were higher in the core (4.13 μg/g) 
and lower toward the mid-parenchyma (4.04 μg/g) and the periphery of the root (3.52 μg/g), both 
fresh and dry weight basis. Plant-to-plant variation was only significant for dry matter content.

Breeding progress was successful increasing pVAC levels. Along this process, however, labo-
ratory personnel began to observe an increase in the variability of intensity of pigmentation 
within the root and among roots from the same genotype, even when coming from the same 
plant. Figure 4 illustrates some cases with clear differences in intensity of pigmentation par-
ticularly across the root. It should be pointed that these differences are not always present and 
the bottom left photograph shows a case with a more uniform pigmentation. A new and more 
complete study on sampling variation was published in 2011 [74]. In this new study of many 
genotypes, most of them with considerably higher levels of pVAC compared with the earlier 
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work [73] were analyzed. Variation in aliquot quantifications from the same root was negli-
gible indicating a reliable experimental procedure. A large source of variation for carotenoids 
was due to differences among the 26 genotypes analyzed (ranging from 2.87 to 12.95 μg/g). In 
contrast to earlier results, root-to-root variation from the same plant was surprisingly high in 
some cases and accounted for an average of 25% of the total variation. Plant-to-plant variation 
was not as high and accounted for 20% of the total variance. Carotenoid content was shown 
to vary depending on the age of the plant as well, particularly comparing samples harvested 
at 8 and 10 months after planting. Single-plant evaluations for carotenoid content in cassava, 
which is a requirement for rapid cycling recurrent selection (described later in this chapter) 
was acceptable, considering that it reduces in half the time required for evaluation and selec-
tion. However, it was suggested that two to three roots per plant are combined together in a 
sample to better represent each genotype at a standard plant age (10–12 months after planting).

CIAT laboratory began using an industrial-grade food processor that quickly grinds the root 
samples in to a uniform paste (Figure 4B). This approach allowed overcoming the problem 
of variation in pVAC concentration along and across the root (which resulted in variation in 
the coarsely chopped pieces, Figure 4A), as well as the operational problems of having to use 

Figure 4. Illustration of longitudinal (left) and transversal (center) variation in the intensity of parenchyma pigmentation. 
On right: (A): chopped roots; (B): homogenized paste after processing roots with a food processor; (C): illustration of 
variation in root color in a full-sib family.
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two to three roots per genotype. Early studies made apparent that the variation in DMC along 
the root influenced the concentrations of pVAC [73]. Variation of DMC across the root, on the 
other hand, seemed to be less relevant. The influence of variation in DMC in different sections 
of the root on the quantification of carotenoids was also shown in Ref. [75]. It is important to 
recognize, therefore, that there is not always a linear relationship between pVAC concentra-
tions reported on a fresh and a dry weight basis. Since DMC is generally around 30–35%, 
the rule of the thumb dictates that the relationship between TTC and TBC reported on a dry 
weight basis should be around threefold higher than when reported on a fresh weight basis. 
However, DMC can vary considerably (from 10 to 50% as shown in Table 1) in experimental 
material. Figure 5 has been presented to illustrate how a pVAC concentration of 15 μg/g (on a 
fresh weight basis) will vary when expressed on a dry weight basis, depending on the DMC 
values of the root. It is important for researchers reporting data on pVAC concentrations to 
also provide the respective levels of DMC.

6. Evolution and improvements of quantifying protocols for carotenoids 

in cassava roots

Early work quantifying carotenoids content relied on standard spectrophotometry and HPLC 
quantifications. Adjustments in the extraction protocol these techniques require, however, 
had to be made [76, 77].

Figure 5. Illustration of how DMC in the root will affect the concentration of carotenoids expressed on a dry weight basis 
in a sample that showed 15 μg/g of pVAC on a fresh weigh basis. When DMC is low (22%) pVAC on a dry weight basis 
tends to be very high (75 μg/g), whereas roots with higher DMC (a desirable trait) show lower pVAC values, if expressed 
on a dry weight basis (e.g., <45 μg/g).
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One of the adjustments was in the separation of the solid and liquid phases that was carried 
out by centrifugation and not by filtration [26]. Carotenoids are sensitive to ultraviolet (UV) 
light, pro-oxidants or associated compounds, and high temperature. Thus, steps need to be 
taken to avoid any adverse changes in this pigment due to such effects protecting them from 
UV light and avoiding excessively high temperatures. Therefore, special care to avoid direct 
exposure of ground tissue samples to sunlight is critical. Likewise, the lights in the laboratory 
need to be protected with UV filters. The typical extraction protocol requires 5 g of root tissue 
(either fresh or boiled) which is added to a vial with 10 mL acetone. After 10 minutes, 10 ml of 
petroleum ether are added and mixed using an ultra-turrax for 1 min. Samples are then centri-
fuged at 3000 RPM, for 10 min, at 10 °C. The organic phase is collected and extraction repeated 
on the residue with 5 ml of acetone and 5 ml of petroleum ether, followed by centrifugation. 
Extractions are optimized until it residues turn colorless. Based on preliminary analysis, it 
was decided that three iterative extractions would be used for fresh root samples and four 
for boiled samples. The organic phases are combined with 10 mL of 0.1 M NaCl solution and 
centrifuged (3000 RPM, for 7 min, at 10 °C). This washing process is repeated two additional 
times. The aqueous phase is extracted with a pipette. Petroleum ether is added to the extracts 
to adjust volume to 15 ml.

With the extracts obtained, TCC can be determined by visible absorption spectrophotometry, 
at an absorbance at 450 nm and using the absorption coefficient of β-carotene in petroleum 
ether (2592) [76, 77]. Partitioning of TCC into concentrations of individual carotenoids is done 
by HPLC. From the organic phase used for spectrophotometric quantification of TCC, aliquots 
(15 mL) are taken and partially dried by nitrogen evaporator. Immediately before injection, 
the dry extract is dissolved in 1 mL of (1:1) methanol and methy tert-butyl ether HPLC-grade 
and filtered through a 0.22 μm PTFE filter. Separation and quantification of carotenoids 
are achieved at CIAT using an YMC Carotenoid S-5 C30 reversed-phase column (4.6 mm × 
150 mm: particle size, 5 μm), with a YMC carotenoid S-5 guard column (4.0 × 23 mm) in a 
HPLC, using DAD detector with wavelength set at 450 nm. Peaks are identified by comparing 
retention time and spectral characteristics against a pure standard and available literature [78].

Breeding projects to increase carotenoids content require screening hundreds of samples in a 
short period of time. Quantification of carotenoids by spectrophotometry or HPLC limits the 
number of samples that can be analyzed. Therefore, a large data set linking TCC and TBC data 
with Near-infrared spectroscopy (NIRS) spectra was gradually developed.

NIRS is based on the absorption of electromagnetic radiation at wavelengths in the range of 
780–2500 nm. The interaction between the electromagnetic radiations and the vibrational prop-
erties of the chemical bonds results in absorption of a part of the radiation energy. The electro-
magnetic spectrum is divided into several regions, each of which induces specific molecular or 
atomic transition and is therefore suited to a specific type of spectroscopy. NIR spectroscopy 
belongs to the class of methods called vibrational spectroscopy techniques. This class of tech-
niques aims to analyze a product in order to obtain qualitative and/or quantitative information. 
The principle of absorption can be interpreted as a resonance phenomenon: when the vibra-
tional frequency of a specific chemical bond is equal to the frequency of the infrared radiation, 
a part of the energy is absorbed by the chemical bond. NIR spectra of foods  comprise broad 
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bands arising from overlapping absorptions corresponding mainly to overtones and combi-
nations of vibrational modes involving C-H, O-H, and N-H chemical bonds [79]. Additional 
information on the theory regarding vibrational NIR spectroscopy is found in more detail in 
several Refs [80].

The key point is that a NIR spectrum is the resultant of all the elementary absorptions due to 
the chemical constituents of the product analyzed; the spectrum is as a fingerprint of the sam-

ple. This fingerprint contains qualitative and quantitative information about the physical and 
chemical composition of the sample. Due to this complexity, spectra are treated mathematically 
in order to extract the relevant information within the spectra linked to the property of inter-
est (carotenoids or other). This step, called calibration, aims to develop mathematical models, 
which link the reference values to a linear combination of the values of absorbance. The calibra-
tion step is based on chemometric methods that applies multivariate analyses such as multiple 
linear regression (MLR), partial least squares (PLS), or principle components analysis (PCA) 
to the spectra in order to quantify the property analyzed. Thus, NIRS is a secondary, indirect 
method, and the calibration step requires a primary method that provides the value of the 
property for each samples. Once the calibration is developed and validated, it can be applied to 
new samples and used to directly quantify (actually predict) the property from the spectrum.

In the routine analyses, NIRS method is simple, nondestructive, and rapid, with minimum 
sample preparation and environmentally friendly. The NIR technique is widely used in the 
agriculture sector. However, a few studies have been conducted on nutritional properties 
of fresh tubers or roots using NIR spectroscopy. McGoverin and collaborators inventoried 
studies on carotenoids in various crops and one related to carotenoids in potato [81]. The 
efficiency of NIR spectroscopy for predicting TCC, TBC, and DMC in fresh cassava roots 
has been demonstrated [82]. The models were based on partial least squares (PLS) regres-
sion. PLS regression ranged within the linear methods, which assume that the relationship 
between the independent and dependent variables are linear in nature. However, predic-
tions of a new harvest based on the PLS models were actually “extrapolations” because, year 
after year, cassava genotypes with higher carotenoids content were obtained by the breeding 
project. This resulted in a nonlinear response and a tendency to underestimate the highest 
contents. The use of LOCAL regression algorithm based on large database has circumvented 
this restriction [83].

The cassava database (6026 samples) has been built over 6 years (2009–2014). For each genotype, 
two to three commercial-size roots were taken to the lab where they were washed, peeled, and 
homogenized with a food processor into a homogenous paste. Further analyses were made 
using aliquots from this homogeneous paste. For NIR analysis, approximately 8 g of ground 
root tissue was placed in NIR spectroscopy capsules for analysis using a FOSS 6500 mono-
chromator with autocup sampling module. All spectra were recorded from 400 to 2498 nm at 
2 nm intervals and saved as the average of 32 scans. Each sample was duplicated. Therefore, 
spectra from two root subsamples were obtained per genotype. Each of these two samples was 
measured once. Further analyses were made on the average of the two spectra available per 
genotype. Spectra were corrected for light scattering using the standard normal variate and 
de-trend (SNVD) correction. Then, the second derivative of the Log(1/R) spectrum, calculated 
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on five data points and smoothed using Savitzky-Golay polynomial smoothing on five data 
points, was used in combination with LOCAL regressions to develop prediction models [84].

The laboratory analyses led to 4277 TCC values that ranged from 0.11 to 29.0 μg g−1 with an 
average value of 11.6 μg g–1 and 4288 TBC values that ranged from negligible to 20.1 μg g–1

 

with an average value of 6.9 μg g–1. The standard deviation (SD) was 5.1 μg g–1 for TCC and 
3.6 μg g–1 for TBC. All values were measured and expressed on a fresh weight basis. The DMC 
values (n = 5578) ranged between 12.3 and 52.4% with a SD of 5.9%. Between 2009 and 2014, 
increases in TCC and TBC were 86 and 122%, respectively. The standard error of prediction 
were 1.38 μg g–1 for TCC and 1.02 μg g–1 for TBC and 1.09% for DMC using LOCAL regres-

sion. The scatter plots of NIRS values versus HPLC values for TBC and TCC illustrate the high 
performances of the models (Figure 6). The multiple determination coefficients were higher 
than 0.9 for both constituents.

After 5 years of harvest and database building, NIR spectroscopy coupled with LOCAL 
regression led to accurate and robust calibrations for breeding programs aiming at increas-

ing carotenoids content in fresh cassava roots [85]. These results offer immense prospects for 
many cassava-breeding projects in the world; NIRS overtakes the bottleneck of conventional 
carotenoids quantification methods. Classically, in a well-equipped laboratory with experi-
enced personnel, 20–30 samples per day can be analyzed; the implementation of NIRS in the 
analytical chain boosts this number by five to ten. Moreover, the possibility to share data and 
calibrations between spectrometers make it possible to develop a network for high-through-

put phenotyping of fresh cassava roots.

An alternative quantification protocol has been implemented at the International Institute of 
Tropical Agriculture (IITA) in Nigeria and other cassava research programs in Africa. This 
method is based on the iCheckTM Carotene technology [86].

7. Evolution and improvements of breeding methods to increase 

carotenoids in cassava roots

Cassava breeding relies on a method known as phenotypic recurrent selection. Although it is 
a simple approach, each cycle of selection requires about 8 years for completion. Elite clones 

Figure 6. Scatter plots of TBC (left plot) and TCC (right plot) NIR spectroscopy values versus HPLC values.
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are crossed to produce full- or half-sib families. In the former, the identity of both (male and 
female) progenitors is known. In the latter, only the female progenitor is known [78]. Large 
number of botanical seed from the crosses of elite germplasm is generated each year. The 
seeds are then germinated to produce seedling plants. At this stage, called F1, only one plant 
per genotype is available. The seedling plants are grown for 11–12 months (the standard age 
for harvesting commercial cassava) when they are selected based on different traits such as 
vigor, plant architecture, resistance/tolerance to pest and diseases, and/or starch and root 
quality traits. Stems of selected plants are harvested and used as a source of planting material 
for the next stage of selection (single-row trials—SRT). Typically, eight stem cuttings are used 
to represent each genotype in SRT, which is the first stage where cloned plants are evaluated. 
The rate of vegetative multiplication (number of cuttings that can be obtained from a given 
plant) is relatively low in cassava (1:8 to 1:10) and, therefore, it takes several years to have 
enough planting material from a given genotype to be evaluated in multi-location trials.

Following SRT are the preliminary yield trials (PYT), advanced yield trials (AYT), and 
uniform yield trials (UYT), which are usually conducted for two consecutive years. Each 
of these types of trials increases the size of the plots, the number of replications, and/
or the number of locations used in the evaluation process. Usually, 4000–5000 seeds are 
germinated, and about 4000 seedlings transplanted for the F1 stage. The number of geno-
types in SRT, PYT, ADYT, and UYT is gradually reduced from about 2500, 200, 60, and 
20, respectively. The entire process takes about 8 years for completion. This lengthy pro-
cess is necessary because yield data is prone to large experimental errors and affected by 
genotype-by-environment interaction.

Breeding for increased levels of pVAC, however, is much easier because of the high herita-
bility of the trait. Breeders do not need data from replicated trials using large plots in many 
locations to identify a genotype with higher levels of pVAC. In fact, a single plant is enough 
as results from studies on sampling variation demonstrated. Therefore, a special breeding 
approach—rapid cycling recurrent selection RCRS—was implemented [45]. In this scheme, 
seedling plants were evaluated for carotenoids content and the best genotypes preselected 
based on single plant evaluations. Preselection was based on a visual assessment for the 
intensity of pigmentation that discarded genotypes producing roots with white, cream, or 
pale yellow roots. Yellow roots from genotypes preselected in the field were then sent to the 
laboratory for carotenoids quantification. Selection was based primarily on TCC/TBC levels 
but other traits such as DMC and root yield potential were also taken into account. Selected 
genotypes were immediately incorporated into the crossing blocks to be used as progenitors.

Each recurrent selection cycle, therefore, lasted 2–3 years (depending on how quickly the 
selected materials flowered). Selected genotypes were also incorporated into the normal selec-
tion process described above (SRT, PYT, AYT, and UYT) to identify genotypes that not only had 
excellent levels of pVAC but also acceptable to outstanding agronomic performance. Number 
of genotypes involved was different compared with ordinary cassava breeding. The F1 seed-
ling stage was considerably larger with 8000 to 10,000 seeds germinated and about 5000 to 
8000 plants grown through the season. About 1000 to 1500 plants were selected in the field and 
about 500–800 of them eventually screened for pVAC levels in the laboratory. This breeding 
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approach was very successful and resulted in three to fourfold increases in TCC and TBC in the 
maximum values observed at the F1 trials in a decade [45]. This kind of genetic progress was in 
fact unprecedented in cassava and is largely due to the high heritability of the trait.

RCRS, however, faced some limiting bottleneck in its initial scheme. Selection for TCC/TBC 
of seedling plants required extraction and quantification of pVAC that was time-consuming. 
Only six to eight samples per day could be analyzed through HPLC. This resulted in many 
logistic problems that were gradually identified. The harvesting season lasted up to 4 months 
rather and 2–3 weeks. This was necessary to screen at least 500–800 samples in the labora-
tory. Extending the harvesting season for such a long period implied that some genotypes 
were harvested during the dry season and others after the arrival of the rains. This, in turn 
had some impact on DMC of the roots because this parameter is highest at the end of the dry 
season but is considerably reduced after the rains began. The availability of irrigation at CIAT 
reduced the difference in dry and wet season, but only partially. As the problem of a lengthy 
harvesting season became evident, CIAT began the development of the protocol for predict-
ing pVAC and DMC based on NIRS, as described above [82, 84]. The possibility of select-
ing for high pVAC based on reliable NIRS predictions was a major breakthrough. It allowed 
increasing the number of samples analyzed (from 500–800 to 2000–2500), while reducing the 
harvesting season (from 4 months down to 3–4 weeks).

An improved RCRS scheme has been recently described [85]. In this scheme, seedling plants 
(F1 stage) are grown only for 6 months. Since plants are young, only three vegetative cuttings 
can be taken from selected genotypes. These cuttings are planted to grow a new stage (F1C1) 
that was not used previously. In the F1C1, each genotype has been cloned and is represented by 
three plants. Selection is conducted in two steps. The visual assessment done in the field in the 
old system is still done at the F1 stage, with the difference that it is done when harvested plants 
are only 6-months old. Only genotypes producing yellow roots are selected, but other traits 
such as resistance to thrips, adequate vigor, and acceptable yield potential are also taken into 
consideration. A key feature is that seedlings are transplanted off-season, and the harvest of 
the plants takes place during the normal harvesting/planting season. Therefore, planting of the 
F1C1 is done in the usual season. The F1C1 is then grown for a full season and plants harvested 
at 10–12 months of age. However, in the new system, three plants per genotype are available.

One of these plants is harvested at the end of the dry season for NIRS quantification of pVAC 
and DMC. Stems from selected genotypes can be used for planting a new crossing block. The 
remaining two plants of selected genotypes are left in the field and are used as a source of 
planting material for further phenotypic selection for good agronomic performance in two 
separate SRT planted in two locations. In the old system, the seedling plant was used for two 
purposes: as a source of roots for pVAC quantification and the stems were used as a source 
of planting material. In the new system, these functions are performed by different plants. 
Quantification of pVAC is done only during the dry season, thus avoiding the variation due 
to changes in DMC that is somewhat related to the timing of harvest. Harvesting of the stems 
to be used as a source of planting material takes place only when the rains have arrived in the 
target environment. The planting material does not need to be stored for (sometimes) a long 
period of time, waiting for the rains to arrive.
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8. The transgenic approach

As already demonstrated in this chapter, conventional breeding has been very effective in 
increasing carotenoids content in the storage roots of cassava. However, breeding cassava 
is time-consuming and cumbersome due to its heterozygous nature. Adoption of new, 
improved varieties where cassava plays a key food security role is often low. Farmers tend to 
be reluctant to shift away from the varieties they have grown for decades [6, 87]. The alterna-
tive of turning farmers’ preferred varieties into vehicles for delivering pVAC through genetic 
transformation is very appealing. The technology could deliver exactly the same variety that 
farmers have grown for years but with increased nutritional value. This is a product that con-
ventional breeding could not offer. Therefore, biotechnology tools have also been included 
among the strategies that have been considered to deliver biofortified cassava to farmers.

The accumulation of carotenoids in the root involves several genes that, as described above, 
may have anabolic or catabolic function. This further complicates the conventional breed-
ing strategy, since putting all the desirable alleles of the relevant genes into a single variety 
are complex and takes time. This would be particularly true if the objective is to silence a 
gene whose function is to catabolize carotenoids, for example, into ABA (Figure 3). Not only 
enzymes that are directly involved in the making or degrading of carotenoids should be the 
target of breeding. It has been recently shown that the ORANGE (OR) protein is a posttran-
scriptional regulator of phytoene synthases (PSYs) in plants [88], which adds another level of 
intervention (conventional or transgenic) for enhancing carotenoids in cassava roots.

Genetic transformation is not only a viable approach to produce cassava clones with increased 
pVAC in the roots, but it is also a powerful tool for understanding the individual impact of 
different genes and alleles in carotenogenesis. Examples of the importance of polymorphisms 
of single nucleotides—SNPs—from relevant genes such as phytoene synthase have been pub-
lished [34, 63, 89]. The different studies have demonstrated that the substrates necessary for 
the activity of relevant enzymes were present in roots of most genotypes. Without this prec-
edent, it would be more difficult to design a genetic modification strategy to increase pVAC 
contents by inserting new gene combinations in commercial varieties, well established in the 
markets and accepted by consumers.

As stated above, genetic transformation would add nutritional value to farmers’ preferred 
varieties. In addition, this approach would reduce the time required for developing new vari-
eties since it implies handling few genes of the carotenoid synthetic pathway alone, not an 
entire genome. Finally, it could ensure that the transgenic variety produces a minimum pVAC 
as has been the case for genetically modified potato or the Golden Rice [90, 91].

There are already at least five examples of crops in which pVAC contents have been sub-
stantially increased using transgenes from the pathway of carotene synthesis: rice, maize, 
potato, tomato, and canola. They have been guided by promoters that express these genes in 
specific organs, or constitutively. Genetic transformation of rice, with genes from the caro-
tene pathway [92, 93] has shown that it was possible to increase the TCC in the grain up to 
27 times (maximum 37 μg/g, DW), of which more than 80% (>30 μg/g, DW) corresponded 
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to β-carotene. In canola, the β-carotene increase was 50-fold [94]. It has been shown that 
β-carotene in the potato tuber can be increased >3600 times, reaching 47 μg/g DW, with which 
250 g of potato satisfy half the RDA [90].

Both the rice grain and the potato tuber have complemented the carotene synthesis route, 
which in the case of rice was not very active, with encouraging results suggesting that a simi-
lar strategy could be attempted for cassava. In the case of maize, genes of the carotenoids 
synthesis pathway have been introduced in different combinations producing increases 
β-carotene and other carotenoids, including complex mixtures of hydroxycarotenoids and 
ketocarotenoids [95, 96].

The synthesis and accumulation of carotenes in plant storage roots such as cassava and sweet 
potato are just beginning to be understood at the molecular level. It is not yet very clear 
how the promoters of carotene synthesis genes are regulated in roots. On the other hand, the 
perception of foods derived from transgenic crops is not yet totally favorable, with excep-
tions, although they are safe for human consumption [97]. This forces us to think of strategies 
to reduce opposition to acceptance, such as replacing bacterial genes, which are used today 
to genetically modify crops, by plant genes. Genome edition using CRISPR/Cas9 or similar 
molecular scissors is an alternative for modifying alleles in cassava [62]. However, there are at 
least three factors that must be taken into account when using genetic modification to increase 
carotene content in cassava roots: the genes themselves (their coding sequences and their ori-
gins), controlling sequences for transcriptional control, and interacting proteins such as PSY 
and OR for posttranslational control of carotenoid production in plants.

As an example, in the case of cassava, having genetically transformed a wild-type genotype 
that produces white roots with combinations of the bacterial versions of key carotenoid bio-
synthetic genes (crtB, crtY, and crtI) significantly increased pVAC levels. However, transgen-
esis could not exceed the maximum pVAC levels attained by conventional breeding (about 
90 μg/g DW in the 2016 harvest, unpublished data). These experiments, however, demon-
strated that there were bottlenecks for the synthesis of carotenoids in roots with white paren-
chyma, such as the absence of a PSY capable of effectively synthesizing phytoene, to keep the 
route operating so that enough carotenoids were produced and accumulated in the root until 
the harvest time (usually 11–12 MAP). This bottleneck was solved with the introduction of the 
CRTB (the bacterial version of PSY in plants) enzyme alone. This modification was respon-
sible for increasing TCC from 0.4 to 22 μg/g (DW) and turning roots from white to yellow 
[34]. In addition, in the same work, it was confirmed that the PSY enzyme was a limiting step 
of the pathway, demonstrating that a single SNP in the coding region of the PSY gene could 
partially explain the difference between white and yellow roots. Thus, deficiency in the carot-
enoid synthesis pathway in the white cassava root was complemented by providing enzymes 
more effective than the endogenous ones, possibly not regulated by the plant [34, 62], and by 
showing allele diversity correlated with better efficiency among PSY endogenous enzymes.

Compared with the increases in TCC obtained in potato by transgenesis (maximum 114.4 μg/g 
DW; [90]), the 13–31 μg/g (DW) obtained in cassava [34, 63, 98, 99], can be considered only 
moderate. However, these comparisons are made on a dry weight basis that would favor 
potato (Figure 5) because of its considerable lower DMC and starch contents compared with 
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cassava. The same three genes (crtB, crtY, and crtI) were used in cassava and potato, under the 
control of the same patatin promoters (in fact it was the same construct). However, the TCC 
baseline of the nontransgenic control in potato was 5.8 μg/g DW, while for cassava, it was 
only 1.1 μg/g DW, which improved the chances of increasing TCC in the former. If we accept 
that the genetic modification of cassava still has a potential to raise the carotenoid content in 
the root, at levels similar to or higher than those reached in potato, the results with the tuber 
would indicate the way forward with cassava: raise TCC would be more effective by trans-
genesis if yellow-rooted (nonwhite) plants were modified.

9. Retention and bioavailability studies

The impact of biofortified cassava roots in the reduction of VAD depends on two factors: (a) 
how much of the carotenoids present in the raw root at harvest time reach the individual 
consuming the cassava product; and (b) how much retinol can the individual make with the 
consumed cassava product. This section describes information regarding these two key steps.

As stated in the introduction, cassava roots have a short shelf life due to PPD. Roots therefore 
need to be consumed or processed 1–3 days after harvest. A diversity of processing meth-
ods has been developed by different cultures resulting in many ethnic products. The easiest 
and most direct way to consume cassava roots is boiling or steaming them. However, this 
approach does not allow storing the roots and other processing methods that allow storage 
for long periods have been developed. Roots can be dried and ground into flour. Drying can 
be done in an oven, in open air under shaded conditions or by sun drying. Two popular pro-
cessing methods in West Africa are fufu and gari [100].

A comprehensive review of true retention of carotenoids in cassava roots after alternative 
processing methods and different storage period has been published [101]. Different authors 
have highlighted that retention of carotenoids is not only affected by the processing method 
and length of storage period but also by the cassava genotype [102–104]. Boiling the root is a 
very simple and popular processing method in many regions of the world, which results in 
relatively high retentions. There is large variation reported depending on genotypes. Average 
retention after boiling ranged from 68 [105], around 70 [104], and 74% [100]. DMC in the roots 
influences true retention of carotenoids after boiling [75, 106]. When the effect of DMC prior 
to boiling is taken into consideration, retention of carotenoids after this processing method 
was relatively high (87%) and uniform (retention ranged from 76 to 97%) [75].

Drying the roots soon after harvest is an important method to prevent PPD. Significant differ-
ences were observed regarding the drying method employed. The highest β-carotene reten-
tion was obtained by oven drying (72%), followed by shade drying (59%), and sun drying 
(38%) [102]. Similar conclusions were obtained by other authors but with some variation in 
the average retentions that may be due to the genotype effect [43, 101, 104, 107].

Retention of carotenoids after gari preparation varies widely. Final carotenoids content in 
gari is a function of the intensity and duration of roasting as well as the duration of the 
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fermentation prior to roasting [101]. Retention reported by Failla and collaborators in 2012 
was about 66, 62, and 29%, respectively, for boiling, fufu, and gari [63]. On the other hand, 
a different study reported average retentions of 74% after boiling, 41 and 22% in raw and 
cooked fufu, and about 45% in gari [100].

Carotenoids are also lost during storage of the processed product. Chávez and co-workers 
measured the β-carotene retention during a 4-week storage period with flour and chips that 
had been either oven-dried or sun-dried [102]. Oven-dried cassava initially retained 72% of 
β-carotene, which decreased to 40 and 32% after 2 and 4 weeks of storage at room tempera-
ture, respectively. Sun-dried cassava had a lower initial β-carotene retention (38%), which 
was further decreased to 24 and 18% after 2 and 4 weeks of storage, respectively. Retention 
values for cassava chips were very similar to those of cassava flour. Lower retention levels 
after storage (at room temperature and in the absence of light) have been reported [108]. 
Carotenoid content of gari products decreased markedly with time and temperature [109].

The absorption, bioavailability, and conversion of β-carotene, the most prominent carotenoid 
in yellow cassava, into retinol in the human body depend on several factors. These factors 
are food- and host-related and depended on, for example, host genotype, availability of fat 
in the diet, and the food matrix [110]. Beta-carotene in cassava is stored in parenchyma cells, 
which are more easily destructed in the gastrointestinal tract than, for example, chloroplasts 
membranes, the primary location of β-carotene in green leafy vegetables. Little is known on 
the histology of carotenoids stored in cassava roots because of the density of amyloplast. An 
animal study with gerbils showed a bioconversion factor of 3.7 μg β-carotene to 1 μg of retinol 
[111]. In a study with 10 healthy American adults, this conversion factor was estimated to be 
4.2 μg, but the individual variation between the humans was high (range 0.3–10.6) [112]. A 
randomized-controlled efficacy study with Kenyan primary school children showed a sig-
nificant increase of both retinol and β-carotene in the blood after 4 months of feeding with 
boiled yellow cassava as compared to boiled white cassava [113]. In conclusion, we can say 
that the β-carotene from cassava is absorbable, bioavailable and converted into retinol in the 
human body. More research is currently being conducted to provide evidence on the effect of 
processing in different recipes, as well as for different age groups countries.

10. Conclusions and perspectives

Most of the information described in this chapter relates to the work coordinated and financed 
by the HarvestPlus initiative. It all began about two decades ago with the simple, yet relevant, 
idea that the nutritional value of crops could be improved. Since then, the significant progress 
achieved in different crops was highlighted with the 2016 Food Prize Award to a group of 
researchers lead by Dr. Howard Bouis.

The significant gains in carotenoids content in cassava roots could only be obtained with 
the concerted effort of many researchers working in a wide range of disciplines. The first 
group of cassava varieties with increased levels of carotenoids has been already released in 
Brazil and in Africa. A second generation of new varieties with higher levels of pVAC and 
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better agronomic performance will soon follow. In addition to the strategic relevance of the 
germplasm generated, valuable information has been generated ranging from the relation-

ship between carotenoids and DMC in the roots to retention and bioavailability information. 
Enhanced levels of carotenoids resulted in an unexpected reduction of PPD. The new pro-

tocol to screen for carotenoids content based on NIR was developed and prompted further 
changes in the breeding approach. The different constructs for genetic transformation not 
only resulted in varying degrees of success but also exposed unexpected responses from the 
plant, such as the reduction in DMC.

The release of varieties, rich in pVAC, requires strategies for the efficient production of plant-
ing material to be distributed to farmers as well as participatory approaches to promote their 
adoption. Deploying these varieties will provide excellent opportunities for nutritional stud-

ies and development of new food products and alternative processing methods. The con-

certed effort of many researchers and institutions and the valuable financial support of key 
donors and investors have been motivated by the magnitude of VAD. Hopefully, the scientific 
community will soon be able to document the impact of these efforts in the livelihood of mil-
lions of people affected by VAD.
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