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Abstract

Fuzzy inference systems provide a simple yet effective solution to complex non-linear
problems, which have been applied to numerous real-world applications with great
success. However, conventional fuzzy inference systems may suffer from either too
sparse, too complex or imbalanced rule bases, given that the data may be unevenly
distributed in the problem space regardless of its volume. Fuzzy interpolation addresses
this. It enables fuzzy inferences with sparse rule bases when the sparse rule base does
not cover a given input, and it simplifies very dense rule bases by approximating certain
rules with their neighbouring ones. This chapter systematically reviews different types
of fuzzy interpolation approaches and their variations, in terms of both the interpolation
mechanism (inference engine) and sparse rule base generation. Representative applica-
tions of fuzzy interpolation in the field of control are also revisited in this chapter, which
not only validate fuzzy interpolation approaches but also demonstrate its efficacy and
potential for wider applications.

Keywords: fuzzy inference systems, fuzzy interpolation, adaptive fuzzy interpolation,
sparse rule bases, fuzzy control

1. Introduction

Fuzzy logic and fuzzy sets have been used successfully as tools to manage the uncertainty of

fuzziness since their introduction in the 1960s, which have been applied to many fields, includ-

ing [1–6]. The most widely used fuzzy systems are fuzzy rule-based inference systems, each

comprising of a rule base and an inference engine. Different inference engines were invented to

support different situations, such as the Mamdani inference engine [7] and the TSK inference

engine [8]. The rule bases are usually extracted from expert knowledge or learned from data. The

TSK model produces crisp outputs due to its polynomial rule consequences in TSK-style rule

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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bases, while the Mamdani model is more appealing in handling inferences based on human

natural language due to its fuzzy rule consequences. Despite of the wide applications, these

conventional fuzzy inference mechanisms are only workable with dense rule bases which fully

cover the entire input domain.

Fuzzy interpolation systems (FISs) were proposed to address the above issue [9], and they also

help in complexity reduction for fuzzy models with too complex (dense) rule bases. If there is

only a spare rule base available and a given input does not overlap with any rule antecedent,

conventional fuzzy inference systems will not be applicable. However, FISs are still able to

generate a conclusion by means of fuzzy interpolation in such situations, thus enhancing the

applicability of conventional fuzzy inference systems. FISs can also improve the efficiency of

complex fuzzy inference systems by excluding those rules that can be accurately interpolated

or extrapolated using other rules in a complex rule base. Various fuzzy interpolation methods

based on Mamdani-style rule bases have been proposed in the literature such as Refs. [9–20],

with successful applications in the fields of decision-making support, prediction and control,

amongst others.

FISs have also been developed to support TSK-style sparse fuzzy rule bases by extending the

traditional TSK fuzzy inference system [21]. This approach was developed based on a modi-

fied similarity degree measure that enables the effective utilisation of all rules during inference

process to generate a global result. In particular, the modified similarity measure guarantees

that the similarity degree between any given input and any rule antecedent is greater than

0 even when they do not overlap at all. Therefore, all the rules in the rule base can be fired to

certain degrees such that they all contribute to the final result to some extents and conse-

quently a conclusion still can be generated even when no rule antecedent is overlapped with

the given observation. The extended TSK fuzzy model enjoys the advantages of both TSK

model and fuzzy interpolation, which is able to obtain crisp inference results from either

sparse, dense or unevenly distributed (including dense parts and spare parts) TSK-style fuzzy

rule bases.

FISs have been successfully applied to real-world problems. In some real world scenarios,

neither complete expert knowledge nor complete data set is available or readily obtainable to

generate evenly distributed dense rule bases. FISs therefore have been applied in such situa-

tions. For instance, a FIS has been applied to building evaluation in the work of Molnárka et al.

[22] in an effort to help estate agencies making decisions for residential building maintenance,

when some necessary relevant data have been lost. In Ref. [23], a FIS system was applied

successfully to reduce the complexity and improve the efficiency of a fuzzy home heating

control system. The work of Bai et al. [24] applied a FIS to calibrate parallel machine tools for

industry use. A behaviour-based fuzzy control system is introduced in Ref. [25], which applied

a FIS to make decisions when only incomplete knowledge base has been provided or available.

Most recently, FISs have also been used to support network quality of service [26] and network

intrusion detection [27].

The remainder of this chapter is organised as follows. Section 2 reviews the theoretical under-

pinnings of conventional fuzzy inference systems, that is, the Mamdani inference system

and the TSK inference system. Section 3 discusses different fuzzy interpolation approaches to
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support sparse Mamdani-style rule bases. Section 4 presents the extension of the conventional

TSK inference system in supporting sparse TSK-style rule bases. Section 5 reports two repre-

sentative examples of fuzzy interpolation systems in the field of system control. Section 6

concludes the chapter and points out the directions for future work.

2. Fuzzy inference systems

The process of fuzzy inference is basically an iteration of computer paradigm based on fuzzy

set theory, fuzzy-if-then-rules and fuzzy reasoning. Each iteration takes an input which can be

an observation or a previously inferred result, crisp or fuzzy. Then, these inputs are used to fire

the rules in a given rule base, and the output is the aggregation of the inferred results from all

the fired rules. There are generally two primary ways to construct a rule base for a given

problem. The first way is directly translating expert knowledge to rules, and the fuzzy infer-

ence systems with such rule bases are usually called fuzzy expert systems or fuzzy control-

lers [28]. In this case, rules are fuzzy representations of expert knowledge, and the resultant

rule base offers a high semantic level and a good generalisation capability. The difficulty of

building rule bases for complex problems has resulted in the development of another approach

of rule base construction, which is driven by data, that is, fuzzy rules are obtained from data

by employing machine learning techniques rather than expert knowledge [29, 30]. In contrast,

the rule bases built in this way lack comprehensibility and transparency. There are two types of

rule bases depending on the expression of the consequences of the fuzzy rules composing the

rule base. Mamdani-style fuzzy rules consider fuzzy terms or linguistic values in the conse-

quence, while TSK-style fuzzy rules represent the consequences as polynomial functions of

crisp inputs.

2.1. Inference with Mamdani-style rule bases

There are a number of fuzzy inference mechanisms that can be utilised to derive a consequence

from a given observation using a Mamdani rule base. The two most significant modes are the

compositional rule of inference (CRI) [31] and analogy-based reasoning [24, 33], which are

introduced below.

2.1.1. Compositional rule of inference

The introduction of CRI marks the era of fuzzy inference [31]. Given a rule ‘IF x is A, THEN y is

B”’ and an observation ‘x is A*
’, the conclusion B* can be generated through CRI as:

μB�ðvÞ ¼ supu∈Ux
T
�

μA�ðuÞ,μRðu, vÞ
�

, ð1Þ

where T is a triangular norm, sup represents supremum, and R is the relationship between

variables x and y. Essentially, CRI is a fuzzy extension of classical modus ponens which can be

viewed from two perspectives. Firstly, classical modus ponens only supports predicates

concerning singleton elements, but CRI is able to deal with predicates which concern a set of
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elements in the variable domain. This is achieved by representing a fuzzy rule as a fuzzy

relation over the Cartesian product of the domains of the antecedent and consequent variables.

Various fuzzy implication relations have been proposed [7, 32–34], each of which may have its

own properties and therefore is suitable for a certain group of applications. Secondly, classical

modus ponens only supports Boolean logic, but CRI supports multi-value logic. That is, CRI is

able to deal with predicates with partial truth values, which are implemented by a composi-

tional operator sup T, where T represents a t-norm [35].

A number of existing fuzzy reasoning methods based on CRI have been developed [36, 37],

including the first successful practical approach, that is, the Mamdani inference [28]. This

approach is also the most commonly seen fuzzy methodology in physical control systems thus

far. It was originally proposed as an attempt to control a steam engine and boiler combination

by synthesising a set of linguistic control rules obtained from experienced human operators.

Mamdani inference implements CRI using minimum as the t-norm operator due to its simplic-

ity. In particular, the inferred result from each fired rule is a fuzzy set which is transformed

from the rule consequence by restricting the membership of those elements whose member-

ships are greater than the firing strength. The firing strength is also sometimes termed the

satisfaction degree, which is the supremum within the variable domain of the minimum of the

rule antecedent and the given observation. A defuzzification process is needed when crisp

outputs are required.

2.1.2. Analogy-based fuzzy inference

Despite the success of CRI in various fuzzy system applications, it suffers various criticisms

including its complexity and vague underlying semantics [34, 38]. This has led to another

group of fuzzy reasoning approaches which are based on similarity degree, usually called

analogy-based fuzzy reasoning [38–41]. Similarity considerations play a major role in human

cognitive processes [42], so do they in approximate reasoning. It is intuitive that if a given

observation is similar to the antecedent of a rule, the conclusion from the observation should

also be similar to the consequence of the rule. Different to CRI-based fuzzy reasoning, analogy-

based fuzzy reasoning does not require the construction of a fuzzy relation. Instead, it is based

on the degree of similarity (given a certain similarity metric) between the given observation

and the antecedent of a rule. Utilising the computed similarity degree, the consequence of the

fired rule can be modified to the consequence of the given observation.

Approximate analogical reasoning schema is a typical analogy-based fuzzy inference

approach [34, 38]. In this method, rules are fired according to the similarity degrees between

a given observation and the antecedents of rules. If the degree of similarity between the given

observation and the antecedent of a rule is greater than a predefined threshold value, the rule

will be fired and the consequence of the observation is deduced from the rule consequence by a

given modification procedure. Another analogy-based fuzzy inference approach was pro-

posed in Refs. [39, 40], which particularly targets medical diagnostic problems. This approach

is based on the cosine angle between the two vectors that represent the actual and the user’s

specified values of the antecedent variable. Several modification procedures can be found in

Refs. [43, 44]. Particularly, a fuzzy reasoning method which employs similarity measures based
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on the degree of subsethood between the propositions in the antecedent and a given observa-

tion is proposed in Ref. [45]. This method has also been extended to consider the weights of the

propositions in the antecedent [46]. Analogy-based fuzzy inference approaches usually arrive

at solutions with more natural appeal than those introduced in the last section.

2.2. Inference with TSK-style rule bases

The TSK fuzzy inference system was proposed for the direct generation of crisp outputs [8]. In

difference with the Mamdani-style fuzzy rule bases, TSK-style rule bases are usually generated

from data using a clustering algorithm such as K-Means and an algorithm to determine the

number of clusters such as Ref. [47]. Also, the consequence of a TSK fuzzy rule is a polynomial

function rather than a fuzzy set. A typical TSK fuzzy rule can be defined as:

IF x1 is A1 ∧… ∧ xm is Am THEN z ¼ f ðx1,…, xmÞ, ð2Þ

where A1,…Am are fuzzy values with regard to antecedent variables x1,…, xm respectively, and

f(x1,…,xm) is a crisp polynomial function of crisp inputs determining the crisp output value.

The rule consequent polynomial functions f(x1,…,xm) are usually zero order or first order. For

simplicity, suppose that a TSK-style rule base is formed by two-antecedent rules as follows:

Ri : IF x is Ai ∧ y is Bi THEN z ¼ f iðx, yÞ
Rj : IF x is Aj ∧ y is Bj THEN z ¼ f jðx, yÞ:

ð3Þ

Suppose that (x0,y0) is the crisp input pair, then the inference process can be shown in Figure 1.

As the input values overlap with both rule antecedents, both rules are fired. Using rules Ri

and Rj, the given input then leads to system outputs fi(x0,x0) and fj(x0,x0), respectively. The

consequences from both rules are then integrated using weighted average function, where

Figure 1. TSK fuzzy inference [21].
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the values of weights represent the matching degrees between the given input and the rule

antecedents (often referred to as firing strengths). Assume that μAi
ðx0Þ and μBi

ðy0Þ are the

matching degree between inputs (x0 and y0) and rule antecedents (Ai and Bi), respectively.

The firing strength of rule Ri, denoted as αi, is calculated as:

αi ¼ μAi
ðx0Þ ∧μBi

ðy0Þ, ð4Þ

where ∧ stands for a t-norm operator. Different implementations can be used for the t-norm

operator, with the minimum operator being used most widely. Of course, if another system

input (x1, y1) is presented and it is not covered by the rule base, the matching degrees between

this new input and rule antecedents of Ri and Rj are equal to 0. In this case, no rule will be fired,

and thus traditional TSK is not applicable. In this case, fuzzy interpolation is required, which is

introduced in Section 4.

3. Fuzzy interpolation with sparse Mamdani-style rule bases

FISs based on Mamdani-style rule bases can be categorised into two classes. One group of

approaches were developed based on the decomposition and resolution principle, termed as

‘resolution principle-base interpolation’. In particular, the approach represents each fuzzy set

as a series of α-cuts (α ∈ (0,1]), and the α-cut of the conclusion is computed from the α-cuts of

the observation and the α-cuts of rules. The final fuzzy set is assembled from all the α-cut

consequences using the resolution principle [48–50]. The other group of fuzzy interpolation

approaches were developed using the analogy reasoning system, thus termed as ‘analogy-

based fuzzy interpolation’. This group of approaches firstly generates an intermediate rule

whose antecedent maximally overlaps with the given observation, then the system output is

produced from the observation using the intermediate rule. Two representative approaches

of the two classes, the KH approach [10] and the scale and move transformation-based

approach [9, 51, 52], are discussed in this section based on simple rule bases with two anteced-

ent rules. Despite of the simple examples used herein, both of these approaches have been

extended to work with multiple multi-antecedent rules.

3.1. Resolution principle-based interpolation

Single step interpolation approaches are computationally efficient, such as the KH approach

proposed in Refs. [9, 10, 53]. Following these approaches, all variables involved in the reason-

ing process must satisfy a partial ordering, denoted as ≺ [31]. According to the decomposition

principle, a normal and convex fuzzy set A can be represented by a series of α-cut intervals,

each denoted as Aα, α ∈ (0,1). Given fuzzy sets Ai and Aj which are associated with the same

variable, the partial ordering Ai ≺ Aj is defined as:

inffAiαg < inffAjαg and supfAiα} < sup{Ajαg, ∀α∈ ð0, 1�, ð5Þ

where inffAiαg and sup{Aiα} denote the infimum and supremum of Aiα, respectively.
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Take the KH approach as an example here. For simplicity, suppose there are two fuzzy rules: If

x is Ai, then y is Bi, and If x is Aj then y is Bj, shorten as Ai ⟹ Bi and Aj ⟹ Bj, respectively. Also,

suppose that these two rules are adjacent, in other words, there is no rule A ⟹ B existing such

that Ai ≺A≺Aj or Aj ≺A≺Ai. Given an observation A* which satisfies Ai ≺A�
≺Aj or

Aj ≺A�
≺Ai, a conclusion B* can be computed as:

DðAiα, A
�
α
Þ

DðA�
α
, AjaÞ

¼
DðBiα, B

�
α
Þ

DðB�
α
, BjaÞ

, ð6Þ

where given any 0 < α ≤ 1, the distance DðAiα, AjαÞ between the α-cuts Aiα and Ajα is defined by

the interval ½DLðAiα, AjαÞ, D
UðAiα, AjαÞ� with:

DLðAiα, AjαÞ ¼ inf fAjαg � inf fAiαg, D
UðAiα, AjαÞ ¼ supfAjαg � supfAiαg: ð7Þ

Following Eqs. (4) and (5), the following is resulted:

minfB�
α
g ¼

inf ðBiαÞ

DLðAiα, A
�
α
Þ
þ

inf ðBjαÞ

DLðA�
α
, AjαÞ

1

DLðAiα, A
�
α
Þ
þ

1

DLðA�
α
, AjαÞ

maxfB�
α
g ¼

supðBiαÞ

DUðAiα, A
�
α
Þ
þ

supðBjαÞ

DUðA�
α
, AjαÞ

1

DUðAiα, A
�
α
Þ
þ

1

DUðA�
α
, AjαÞ

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð8Þ

For simplicity, let

Λ
L
α
¼

inffA�
α
g � inf{Aiα}

inffAjαg � inf{Aiα}

Λ
U
α
¼

supfA�
α
g � sup{Aiα}

supfAjαg � sup{Aiα}

8

>

>

>

<

>

>

>

:

ð9Þ

Also, denote Λ ¼ ½ΛL
α
,ΛU

α
� hereafter. From this, Eq. (8) can be re-written as:

minfB�
α
g ¼ ð1�ΛL

α
ÞinffBiαg þΛ

L
α
inffBjαg

maxfB�
α
g ¼ ð1�ΛU

α
ÞsupfBiαg þΛ

U
α
supfBjαg

(

ð10Þ

This means B�
α
¼ ½minfB�

α
g, maxfB�

α
g] is generated. The final consequence B* is then

reassembled as:

B� ¼ Uα∈ ð0,1�αB
�
α
: ð11Þ

The KH approach may generate invalid interpolated results [54], which is usually called ‘the

abnormal problem’. To eliminate this deficiency, a number of modifications or improvements
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have been proposed, including Refs. [9, 10, 13, 14, 18, 53, 55–60]. Approaches such as Refs.

[15, 16, 61–63] also belong to this group.

3.2. Analogy-based interpolation

The scale and move transformation-based fuzzy interpolation [51, 52, 64] is a representative

approach in the analogy-based interpolation group. For simplicity, following the same

assumption of a simple rule base containing two rules with two antecedents, the

transformation-based approach is shown in Figure 2 and outlined as follows.

Given neighbouring rules If x is Ai, then y is Bi, and If x is Aj then y is Bj and observation A*,

this method first maps fuzzy sets Ai, Aj and A* to real numbers ai, aj and a* (named as

representative values) respectively, using real function f1. Then, the location relationship between

A* and rule antecedents (Ai and Aj) is computed. This is achieved by another mapping function

f2, which results in the relative placement factor λ. In contrast to the resolution-based interpola-

tion approaches, the generated relative placement factor in analogy-based fuzzy interpolation

approach is a crisp real number. Finally, linear interpolation is implemented using mapping

function f3 of λ, which leads to the intermediate rule A�
0

) B�
0

.

Note that the representative value of intermediate rule antecedent A�
0

equals to that of A* (the

given observation), although A�
0

and A* are not identical for most of the situations. In the scale

and move transformation-based fuzzy interpolation approach, the similarity degree between

two fuzzy sets A* and A*’ with the same representative value is expressed as the scale rate s,

scale ratio S and move rateM, which is obtained by real function f4. From this, the consequence

B* is calculated from B�
0

using a transformation function f5 which imposes the similarity degree

between A* and A*’. Different approaches have been developed for intermediate rule genera-

tion and final conclusion production from the intermediate rule [17, 55, 63, 65].

3.3. Adaptive fuzzy interpolation

Fuzzy interpolation strengthens the power of fuzzy inference by enhancing the robustness of

fuzzy systems and reducing the systems’ complexity. Common to both classes of fuzzy

Figure 2. Transformation-based fuzzy interpolation [12].
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interpolation approaches discussed above is the fact that interpolation is carried out in a linear

manner. This may conflict with the nature of some realistic problems and consequently this

may lead to inconsistencies during rule interpolation processes. Adaptive fuzzy interpolation

was proposed to address this [12, 66–68]. It was developed upon FIS approaches, which

detects inconsistencies, locates possible fault candidates and modifies the candidates in order

to remove all the inconsistencies.

Each pair of neighbouring rules is defined as a fuzzy reasoning component in adaptive fuzzy

interpolation. Each fuzzy reasoning component takes a fuzzy value as input and produces

another as output. The process of adaptive interpolation is summarised in Figure 3. Firstly, the

interpolator carries out interpolation and passes the interpolated results to the truth mainte-

nance system (ATMS) [69, 70], which records the dependencies between an interpolated value

(including any contradiction) and its proceeding interpolation components. Then, the ATMS

relays any β0-contradictions (i.e. inconsistency between two different values for a common

variable at least to the degree of a given threshold β0 (0 ≤ β0 ≤ 1)) as well as their dependent

fuzzy reasoning components to the general diagnostic engine (GDE) [71] which diagnoses the

problem and generates all possible component candidates. After that, a modification process

takes place to correct a certain candidate to restore consistency by modifying the original linear

interpolation to become first-order piecewise linear.

The adaptive approach has been further generalised [11, 72, 73], which allows the identifica-

tion and modification of observations and rules, in addition to that of interpolation procedures

that were addressed in Ref. [12]. This is supported by introducing extra information of cer-

tainty degrees associated with such basic elements of FIS. The work also allows for all candi-

dates for modification to be prioritised, based on the extent to which a candidate is likely to

lead to all the detected contradictions, by extending the classic ATMS and GDE. This study has

significantly improved the efficiency of the work in Ref. [12] by exploiting more information

during both the diagnosis and modification processes. Another alternative implementation of

the adaptive approach has also been reported in Ref. [74].

3.4. Sparse rule base generation

A Mamdani-style fuzzy rule base is usually implemented through either a data-driven

approach [75] or a knowledge-driven approach [76]. The data-driven approach using artificial

intelligence approach extracts rules from data sets, while the knowledge-driven approach

generates rules by human expert. Due to the limited availability of expert knowledge, data-

driven approaches have been increasingly widely applied. However, the application of such

Figure 3. Adaptive fuzzy interpolation [12].
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approaches usually requires a large amount of training data, and it often leads to dense rule

bases to support conventional fuzzy inference systems, despite of the availability of rule

simplification approaches such as Refs. [77, 78].

A recent development or rule base generation has been reported with compact sparse rule

bases targeted [79]. This approach firstly partitions the problem domain into a number of sub-

regions and each sub-region is expressed as a fuzzy rule. Then, the importance of each sub-

region is analysed using curvature value by artificially treating the problem space as a geogra-

phy object (and high-dimensional problem space is represented as a collection of sub-three-

dimensional spaces). Briefly, the profile curvature of a surface expresses the extent to which the

geometric object deviates from being ‘flat’ or ‘straight’, the curvature values of the sub-regions

are then calculated to represent how important they are in terms of linear interpolation. Given

a predefined threshold, important sub-regions can be identified, and their corresponding rules

are selected to generate a raw sparse rule base. The generated raw rule base can then be

optimised by fine-tuning the membership functions using an optimisation algorithm. Generic

algorithm has been widely used for various optimisation problems, such as Ref. [80], which

has also been used in the work of Ref. [79].

Compared to most of the existing rule base generation approaches, the above approach differs

in its utilisation of the curvature value in rule selection. Mathematically, curvature is the

second derivate of a surface or the slope of slope. The profile curvature [81] is traditionally

used in geography to represent the rate at which a surface slope changes whilst moving in the

direction, which represents the steepest downward gradient for the given direction. Given a

sub-region f(x, y) and a certain direction, the curvature value is calculated as the directional

derivative which refers to the rate at which any given scalar field is changing. The overall

linearity of a sub-region can thus be accurately represented as the maximum profile curvature

value on all directions. From this, those rules corresponding to sub-regions with higher profile

curvature values (with respect to a given threshold) are selected, which jointly form the sparse

rule base to support fuzzy rule interpolation.

FISs relax the requirement of complete expert knowledge or large data sets covering the entire

input domain from the conventional fuzzy inference systems. However, it is still difficult for

some real-world applications to obtain sufficient data or expert knowledge for rule base

generation to support FISs. In addition, the generated rule resulted from most of the existing

rule base generation approaches are fixed and cannot support changing situations. An

experience-based rule base generation and adaptation approach for FISs has therefore been

proposed for control problems [82]. Briefly, the approach initialises the rule base with very

limited rules first. Then, the initialised rule base is revised by adding accurate interpolated

rules and removing out-of-date rules guided by the performance index from a feedback

mechanism and the performance experiences of rules.

4. Fuzzy interpolation with sparse TSK-style rule base

The traditional TSK inference system has been extended to work with sparse TSK fuzzy rule

base [21]. This approach, in the same time, also enjoys the benefit from its original version,
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which directly generates crisp outputs. The extended TSK inference approach is built upon a

modified similarity measure which always generates greater than zero similarity degrees

between observations and rule antecedents even when they do not overlap at all. Thanks to

this property, a global consequence can always be generated by integrating the results from all

rules in the rule base.

4.1. Rule firing strength

The modified similarity measure is developed from the work described in Ref. [83]. Suppose

there are two fuzzy sets A and A0 in a normalised variable domain. Without loss generality, a

fuzzy set with any membership can be approximated by a polygonal fuzzy membership

function with n odd points. Therefore, A and A0 can be represented as A ¼ ða1, a2,…anÞ and

A0 ¼ ða01, a
0
2,…a0n0Þ, as shown in Figure 4. The similarity degree S(A,A0) between A and A0 is

computed as:

SðA,A
0

Þ ¼ 1�

Xn

i¼1
jai � a

0

ij

n

 !

ðDFÞ
~BðsuppA , suppA0 Þ

min
�

μðCAÞ,μðCA
0 Þ
�

max
�

μðCAÞ,μðCA
0 Þ
� , ð12Þ

where cA is the centre of gravity of fuzzy sets A, and μ(cA) is the membership of the centre of

gravity of fuzzy set A; DF represents a distance factor which is a function of the distance

between two concerned fuzzy sets, and BðsuppA, suppA0 Þ is defined as follows:

BðsuppA, suppA0 Þ ¼
1, if suppA þ supp

A
0 6¼ 0,

0, if suppA þ supp
A
0 ¼ 0,

�

ð13Þ

where suppA and suppA0 are the supports of A and A0, respectively.

In Eq. (13), BðsuppA, suppA0 Þ is used to determine whether distance factor is considered. That

is, if both A and A0 are of crisp values, the distance factor DF will not take into consideration

during the calculation of the similarity degree; otherwise, DF will be considered. The centre of

gravity of a fuzzy set is commonly approximated as the average of its odd points. That is:

Figure 4. An arbitrary fuzzy set with n odd points.
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cA ¼
a1 þ a2 þ…þ an

n
, ð14Þ

μðcAÞ ¼
μða1Þ þ μða2Þ þ…þ μðanÞ

n
: ð15Þ

The distance factor DF is represented as:

DF ¼ 1�
1

1þ e�hdþ5
ð16Þ

where d is the distance between the two fuzzy sets, and h(h > 0) is a sensitivity factor. The

smaller the value of h is, the more sensitive the similarity degree to their distance is. The value

of h is usually within the range of (20, 60), but the exact value is problem specific.

4.2. Fuzzy interpolation

Using the modified similarity measure as traduced above, the similarity between any given

observation and a rule antecedent is always greater than zero. This means that all the rules in

the rule base are fired for inference. Therefore, if only a sparse rule base is available and a given

observation is not covered by the sparse rule base, a consequence still can be generated by

firing all the rules in the rule base. The inference process is summarised as below:

1. Calculate the matching degree SðA�, AiÞ and SðB�, BiÞ between each pair of rule antecedent

(Ai, Bi) and the input values (A*, B*) based on Eq. (12).

2. Determine the firing strength of each rule by integrating the matching degrees between

the input items and rule antecedents as calculated in Step 1:

αi ¼ SðA�, AiÞ ∧ SðB
�, BiÞ: ð17Þ

3. Compute the consequence of each rule in line with the given input and the polynomial

function in rule consequent:

f iðA
�, AiÞ ¼ αi � cA� þ bi � cB� þ ci: ð18Þ

4. Obtain the final result z by integrating the sub-consequences from allm rules in the rule base:

z ¼

Xn

i¼1
αif iðA

�, B�Þ
Xn

i¼1
αi

: ð19Þ

5. Applications of fuzzy interpolation

Fuzzy interpolation systems have been successfully applied to a number of real-world prob-

lems including Refs. [23, 22, 25, 52, 57], two of which are reviewed in the section below.
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5.1. Truck backer-upper control

Backing a trailer truck to a loading dock is a challenging task for all yet the most skilled truck

drivers. Due to the difficulties, this challenge has been used as a control benchmark problem

with various solutions proposed [75, 84, 85]. For instance, an artificial neural network has

been applied to this problem, but a large amount of training data is required [84]. An

adaptive fuzzy control system was also proposed for this problem, but the generation of the

rule base is computationally expensive. Another solution combines empirical knowledge

and data [85]. That is, a combined fuzzy rule base is generated by joining the previously

generated rules (data-driven) and linguistic rules (expert knowledge-driven). More recently,

a supervisory control system was proposed with fewer number of state variables required

due to its capability to the decomposition of the control task, thus relieving the curse of

dimensionality [86].

Fuzzy interpolation system has also been applied to the trailer truck backer-upper problem [52]

to further reduce the system complexity. The problem can be formally formulated as

θ ¼ f ðx, y,∅Þ. Variables x and y represent the coordinate values corresponding to horizontal

and vertical axes; ∅ refers to the azimuth angle between the truck’s onward direction and the

horizontal axis; and θ is the steering angle of the truck. Given that enough clearance is present

between the truck and loading lock in most cases, variable y can be safely omitted and hence

results in a simplified formula to θ ¼ f ðx,∅Þ. By evenly partitioning each variable domain into

three fuzzy sets, nine (i.e. 3*3) fuzzy rules were generated using FISMAT [87] and each of

which is denoted as IF x is A AND ∅ is B THEN θ is C, where A, B and C are three linguistic

values. Noting that domain partitions appear to be symmetrical in some sense, the three rules

which are flanked by other rule pairs were removed from the rule base resulting a more

compact rule base with only six fuzzy rules.

If the traditional fuzzy inference system were applied, the sparse rule base would cause a

sudden break of the truck for some situations as no rule would be fired when the truck is in the

position that can be represented by the omitted rules. In this case, fuzzy interpolation is

naturally applied and the sudden break problem can be avoided. In addition, thanks to the

great generalisation ability of the fuzzy interpolation systems, smooth performance is also

demonstrated compared to the conventional fuzzy inference approaches. This study clearly

demonstrates that fuzzy interpolation systems are able to simplify rule bases and support

inferences with sparse rule bases.

5.2. Heating system control

The demotic energy waste contributes a large part of CO2 emissions in the UK, and about 60%

of the household energy has been used for space heating. Various heating controllers have

been developed to reduce the waste of energy on heating unoccupied properties, which are

usually programmable and developed using a number of sensors. These systems are able to

successfully switch off heating systems when a property is unoccupied [88–92], but they

cannot intelligently preheat the properties by warming the property before users return home

without manual inputs or leaving the heating systems on unnecessarily for longer time. A

smart home heating controller has been developed using a FIS, which allows efficient home
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heating by accurately predicting the users’ home time using users’ historic and current location

data obtained from portable devices [23].

The overall flow chart of the smart home heating system is shown in Figure 5. The controller

first extracts the resident’s location and moving information. There are four types of residents’

location and moving information that need to be considered: At Home, Way Back Home,

Leaving Home and Static (i.e. at Special Location). The user’s current location and moving

states are obtained effectively using the GPS information provided by user’s portable devices.

From this, if the resident’s current state is At Home, the algorithm terminates; and if the

residents’ current state is Leaving Home, that is the residents are moving away from home,

Begin
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Location State

Special Location

Meet ?

Compare

T
WARM, TETA

Heating System ON

Home Yet ?

Heating System

OFF

END
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Figure 5. The flow chart of the heating controller [23].
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the boiler is off and the systemwill check the resident’s location andmoving information again in

a certain period of time. Otherwise, the time to arriving home (denoted as TAH) is predicted and

the time to preheat the home to a comfortable temperature (denoted as TPH) is also calculated,

based on the resident’s current situation and the current environment around home.

The user’s current travel modes (i.e. driving, walking or bicycling) can be detected by

employing a naïve Bayes classifier [93] using the GPS information. Then the travel distance

and time between the current location and home can be estimated using Google Distance

Matrix API. Note that the time spent on different locations may vary significantly, and also

different residents usually spend different amount of times at the same special location as

people have their own living styles. The time that the residents spent at the current location is

therefore estimated using fuzzy interpolation systems, thanks to the complexity of the prob-

lem. In particular, the fuzzy interpolation engine takes five fuzzy inputs and produces one

fuzzy output which is the estimate of the time to getting home. The five inputs are the current

location, the day of the week, the time of the day, the time already spent at the current location

and the estimated travel between the current location and home.

If each input domain is fuzzy partitioned by 5 to 13 fuzzy, tens of thousands of rules will be

resulted which requires significant resources during inferences. The proposed system, how-

ever, has selected the most important 72 rules forming a sparse rule base to support fuzzy

rule interpolation, which significantly improve the system performance. Once the home time

is calculated, the home can then be accurately preheated based on a heating gain table devel-

oped based on the particular situation and environment of a concerned property [91]. This

work has been applied to a four-bedroom detached house with a total hearing space of

100 m2ðf loor areaÞ � 2:4 mðhightÞ. The house is heated by a 15 kW heating boiler. The study

has shown that the controller developed using fuzzy inference has successfully reduced the

burning time of the boiler for heating and more accurately preheat the home.

Despite of the success of the applications introduced above, there is a potential for FISs to be

applied to more and larger scales real-world problems, especially in the field of system control.

Note that robotics has taken the centre in the control field to perform tasks from basic robot

calligraphy system [94] to complex tasks which require hand-eye (camera) coordination [95].

FISs can also be applied to such advanced areas in the field of robotics, which require further

investigation.

6. Conclusions

This chapter reviewed fuzzy interpolation systems and their applications in the field of control.

There are basically two groups of fuzzy interpolation approaches using the two most common

types of fuzzy rule bases (i.e. Mamdani-style rule bases and TSK-style rule bases) to supple-

ment the two groups of widely used fuzzy inference approaches (i.e. the Mamdani inference

and the TSK inference). The applications of fuzzy interpolation systems have also been

discussed in the chapter which demonstrate the power of the approaches. FISs can be further

improved despite of its promising performance. Firstly, type-2 FISs have already been
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proposed in the literature, but how type-2 FISs can be applied in real-world applications

requires further investigation. Also, more theoretical analysis for FISs is needed to mathemat-

ically prove the convergence property of the approaches. In addition, most of the existing

fuzzy interpolation approaches are proposed as a supplementary of the existing fuzzy infer-

ence models. It is interesting to investigate the development of a united platform which

integrates both the existing fuzzy models and fuzzy inference systems such that the new

system can benefit from both approaches.
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