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Abstract

The human arterial wall contains progenitors and mesenchymal stem cells (MSCs)  acting 
as a postnatal reservoir of stem cells during lifetime. They are nestled in distinct arte-
rial zones close to blood support, that is, the intima and the media-adventitia vasa vaso-
rum plexus, representing vascular stem cell niches. In previous studies, MSCs were 
 successfully isolated from fresh and cadaveric human large- and middle-sized arteries; 
these cells have a mesenchymal phenotype, self-renewal ability, and tri-lineage plasticity 
with high endothelial and smooth muscle cell differentiation potential. Here we  present 
an overview of human MSCs derived from the vascular wall (hVW-MSCs) of different 
anatomical sites focusing on their phenotypic expression, multilineage potency, and 
stemness properties based on the localization in the arterial tree. We describe the isolation 
protocols as well as immunophenotyping, functional, and ultrastructure methods used 
to investigate these cell properties. hVW-MSCs from distinct portions of the vascular tree 
exhibit distinct phenotypic expression, multilineage potency, and stemness properties. 
This observation may contribute to explain the regional differences seen in vascular dis-
ease; moreover the different attitudes that hVW-MSCs exhibit in vascular differentiation 
should be taken in consideration whenever cell therapy, regenerative medicine, and tis-
sue engineering strategies are attempted to replace tissues and organs.

Keywords: human arteries, vascular wall, mesenchymal stem cells, endothelial 
progenitors, smooth muscle progenitors, stem cell niche
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1. Introduction

1.1. Mesenchymal stem cells: phenotype, mesodermal differentiation, and 
immunomodulation properties

The scientific community has been investigating since decades the stemness properties of the 
mesenchymal stromal/stem cells (MSCs). Due to their multiple properties, MSCs are the favor-

able candidates for cell- and gene-based therapy, regenerative medicine, and tissue engineer-

ing applications. They are a rare and multipotent cell population characterized by  self-renewal 

and multilineage differentiation such as bone, cartilage, and adipose tissue as well as myocytes 
and bone marrow stromal cells [1, 2]. In 1976, Friedenstein discovered MSCs in the bone mar-

row [3] as adherent cells able to form colonies starting from single cells and to differentiate 
in osteoblasts. Several studies demonstrated that it is possible to successfully isolate a similar 

populations in multiple adult tissues other than the bone marrow including the amniotic fluid 
[4], cartilage [5], peripheral blood [6, 7], adipose tissue [8, 9], dental pulp [10, 11], fetal mem-

branes [12], umbilical cord [13, 14], and human large- and medium-sized blood vessels such 

as the aorta and femoral artery [15, 16], pulmonary artery [17], internal mammary artery [18], 

and saphenous vein [19, 20]. According to the minimal criteria proposed by the International 

Society for Cellular Therapy [21], human MSCs are in vitro defined by the following proper-

ties: spindle-shape fibroblast-like morphology, the capacity to grow in adhesion on plastic 
surfaces, and to expand under appropriate experimental conditions. Phenotypically, MSCs 

express an array of surface markers usually detected by flow cytometry and exhibit differenti-
ation capacity toward the tri-potential mesodermal  adipogenic, osteogenic, and chondrogenic 

lineages. Due to the absence of specific markers useful to  discriminate MSCs from other cyto-

types, many attempts have been made to develop a mesenchymal profile in order to improve 
the purification and identification of MSCs. MSCs express numerous mesenchymal antigens 
such as CD73, CD90, CD105, CD44, and CD106 and are negative for the most common hema-

topoietic lineage markers like CD34, CD45, CD14, CD19, and HLA-DR.

MSCs isolated from different tissues show minimal changes in phenotype and growth;  moreover 
they have been reported to be heterogeneous for their multilineage differentiation potential [22]; 

tissue-specific MSCs are also more prone to differentiate into one specific type of lineage. A similar 
behavior was seen in clones derived from MSCs in relation to the state of early commitment [23].

In addition to multilineage mesodermal differentiation, several studies reported the high 
immunosuppressive property of MSCs both in vitro and in vivo [24]. Although initially 

described in BM-derived cells [25], the immunomodulatory functions were also described in 

different human sources [26–28]. The MSC therapeutic effect is exerted not only by their low 
immunogenicity, migratory capacity, and direct reparative differentiation into cells of the 
residing tissue but also by the secretion of several bioactive molecules capable to inhibit the 

inflammatory milieu [29, 30].

1.2. Arterial wall structure

Three concentric layers compose the arterial wall: the intima, the media, and the adventitia. 

A single and continuous layer of endothelial cells leaned on basal membrane, and a thin 
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subendothelial matrix characterizes the tunica intima, the most internal layer, in contact with 

the flowing blood. The tunica media is sandwiched between the intima and adventitia, from 
which it is separated by the internal and external elastic lamina, respectively. It represents the 

major component of the vessel wall and contains smooth muscle cells embedded in a matrix 

rich in elastic fibers, collagens, and proteoglycans. The adventitia is placed externally to the 
external elastic lamina; it is a loose connective tissue containing fibroblasts, adipocytes, small 
vascular structures (vasa vasorum), and nerve fibers; the adventitia is critical for numerous 
functions, that is, dampening the systolic force, nurturing the outer portion of the media, 

modulating the contractile response, and regulating vascular wall homeostasis.

Based on the architecture, diameter, and function, the arteries are divided into elastic and 

muscular arteries. Elastic arteries are characterized by large diameters, richness in elastic tis-

sue, and low contractile ability. Pulmonary trunks, aortic arch, and their principal branches, 

that is, pulmonary, common carotid, subclavian, and common iliac arteries, belong to this 

category. The medium-sized arteries, called muscular arteries, are characterized by a low 

blood flow; they have a thin intima, a well-developed internal elastic lamina, and a media that 
is composed by concentric layers of smooth muscle cells. The peripheral arteries and those 

of the internal organs such as femoral arteries, external carotid artery, bronchial arteries, and 

mesenteric arteries are medium-sized arteries.

1.3. Mesenchymal stem cells resident in the human artery wall

Recent findings indicate that the adventitia of large- and medium-sized adult human arter-

ies contains resident MSCs with multilineage differentiation capacity acting as a postnatal 
reservoir of stem cells.

In the human pulmonary artery, human vascular adventitial fibroblasts (hVAFs) were iso-

lated from adventitia showing a strong ability to differentiate in mesenchymal cells. Immuno-
phenotypically, these multipotent cells express vimentin, type-1 collagen, CD29, CD44, and 

CD105 markers and are negative for the most common monocyte markers. Under appropriate 

differentiation medium, the hVAFs were committed to adipocytes and  osteocytes as well as 
myogenic cells positive to calponin and alpha smooth muscle cells (αSMA) in response to 
transforming growth factor-beta 1 (TGF-β1) [17].

Our group has demonstrated for the first time the presence of MSCs in large- and medium-
sized vessels, including the thoracic aorta, aortic arch, and femoral artery from healthy and 

heart-beating donors [15, 16]. The vascular wall resident mesenchymal stem cells (VW-MSCs) 

were isolated from the adventitia with mechanical and enzymatic digestion and selected 

using plastic adherence-based cultures. These cultured-isolated cells expressed stemness 

markers (Notch-1 and Oct-4) and mesenchymal antigens (CD44, CD90, CD105, CD73, CD29, 

CD166, and STRO-1). As the bone marrow-derived MSCs, these multipotent cells displayed 
mesengenic potential to differentiate into the cartilage, adipose tissue, and, albeit to a lesser 
extent, also bone; consistent with their vascular localization, VW-MSCs were able to originate 

endothelial and smooth muscle cells [16].

In an interesting morphogenetic study performed on adult fresh human internal thoracic artery 

fragments, the authors [31] identified a CD44+ multipotent stem cell population (VW-MPSCs) 
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residing in the arterial adventitia; these cells exhibited typical MSC properties, including cell 

surface antigens (CD44+, CD90+, CD73+, CD34−, and CD45−) without expression of CD146 
and platelet-derived growth factor receptor beta (PDGFR-β) pericyte markers and multilin-

eage plasticity into adipocytes, chondrocytes, and osteocytes, when cultured under appropri-

ate differentiation media. Moreover, VW-MPSCs were able to generate smooth muscle cells 
particularly after TGF-β1 stimulation and pericytes. In vivo experiments performed on SCID 
mice, coculture of VW-MPSCs, and human umbilical vein endothelial cells (HUVECs) in a 
(three-dimensional) 3D Matrigel model resulted in the formation of a spontaneous vascular 

network where pericytes or smooth muscle cells derived from implanted VW-MPSCs cells 

were incorporated into new capillary-like structures.

The search for inexhaustible sources without ethical restrictions allowed to identify and iso-

late a population of VW-MSC residents in the human epiaortic wall collected from cadaveric 

donors; these progenitors were able to support prolonged ischemic injury and to survive in 

the explanted vascular tissues after 4 days of donor death and 5 years of cryopreservation 

in liquid nitrogen without losing their stemness characteristics. These multipotent human 

cadaveric mesenchymal stem cells (hC-MSCs) showed rapid expansion, clonogenic capabil-

ity, immunomodulatory function, and ability to originate vascular and mesodermal tissues 

[28]. The possibility of obtaining stem cells from cadavers also represents a demonstration of 

the ability of these cells to survive adverse conditions, including long-time cryopreservation.

As a further demonstration of this capability, VW-MSCs obtained from abdominal aneu-

rysms and exposed to extremely adverse culture conditions, for example, media acidification, 
hypoxia, starving, drying, and hypothermia, remained alive while keeping their morphology 

and stemness features [32].

1.4. Other stem cells resident in the human vascular wall

Other studies have reported the existence of stem cell and stem cell-like populations residing 

in the vascular wall.

Pericytes or mural cells represent a distinct cell embracing endothelial cells which share the 

basal membrane [33, 34]; although considered a contractile cell, when seen with electron 

microscopy, they contain only small quantities of assembled contractile filaments, raising 
uncertainties as to their actual vascular role. Using functional studies, pericytes have been 

found crucial for the control of endothelial cell growth and differentiation, capillary tone, 
caliber, and permeability; they are essential for supporting the capillary stability establishing 

mutual contacts with endothelial cells and producing proteins of the basal lamina [35].

Pericytes have a heterogeneous morphology, phenotype, and embryological origin (meso-

dermal and neuroectodermal). These peri-endothelial cells were found in intimal and adven-

titial niches sharing a common phenotype and multilineage plasticity with MSCs [36, 37]. In 

situ, they are identified through the expression of CD146, neural glial antigen (NG2), and 
PDGFR-β; they also express MSC markers (CD44, CD73, CD90, CD105, CD29, and alkaline 
phosphatase); pericytes do not express hematopoietic and endothelial cell antigens (CD31, 

CD34, CD45, CD14, and von Willebrand factor (vWF)).
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In vitro pericytes acquire several MSC-like properties including a spindle-shape morphol-

ogy; high proliferation; clonogenicity; ability to differentiate in several mesodermal lineages 
including the bone, cartilage, adipose tissue, smooth muscle cells, and skeletal muscle [38, 39]; 

immunomodulation functions [40]; as well as paracrine activity, promotion of the angiogen-

esis, and tissue regeneration [41, 42]. This finding supports the recent evidences that pericytes 
may represent the MSC in situ counterpart.

Recently, the presence of a novel stromal cell type called telocyte was documented in several 
organs and tissues [43]. The main features used to distinguish them from other stromal and 

interstitial cells are the presence of thin and long telopodes [44] and the co-expression of CD34 

and CD117/c-kit, vimentin, PDGFR-α, or PDGFR-β markers [45].

Based on electron microscopy techniques, telocytes appear to be located in the stem cell niche 

[46, 47] where they probably serve as nursery for stem and progenitor cells influencing their 
survival and destiny. Here, telocytes form an intricate 3D network by contacting the resident 
stem cells, vessels, nerve endings, and neighboring stromal and immune reactive cells; this 

suggests that they have a potential role in tissue repair and regeneration [43, 48] as well as in 

tissue homeostasis, development, and immunosurveillance [43].

1.5. Vasculogenic niches

Progenitor cells are nestled in a three-dimensional (3D) hypoxic microenvironment localized 

in a specific anatomic district keeping them in their native undifferentiated and quiescent state, 
regulating their self-renewal, differentiation, and destiny. In the better-characterized niches, 
that is, the bone marrow stem cell niche, progenitors are found close to blood-bedewed areas.

In adult human vascular wall, a “vasculogenic zone” localized in between the media and 

adventitia was identified. In this hypothetical “vascular niche,” endothelial progenitor cells 
(EPCs) and MSCs have been described along with hematopoietic progenitor cells (HPCs) as 
well as precursors of smooth muscle cells, fibroblasts, and pericytes [18]. According to this 

view, the vasculogenic zone contains a complete hierarchy of resident stem cells.

Despite EPCs have been intensely studied for years, there are conflicting results on their true 
identity; they were initially discovered in the peripheral blood [49] as circulating angioblasts 

involved in new blood vessel generation in response to various stimuli; it is still unclear 

whether these cells can also reside permanently in the vessel wall where they are expected to 

contribute to vascular homeostasis.

Studies performed on human aortic endothelial cells [50], coronary [51], and internal thoracic 

arteries [15, 18] have demonstrated that postnatal EPCs are localized in between the endothe-

lium and in the innermost portion of adventitia; these observations corroborate the existence 

of EPCs resident in the human vascular wall. Peripheral blood EPCs express CD45, CD31, 

CD34, CD133, KDR (vascular endothelial growth factor receptor-2 (VEGFR-2)), Tie-2, the 
ligand for lectin ulex europaeus agglutinin-1 (UEA-1), and the low density lipoprotein (LDL) 
receptor [52]; different methods of EPC isolation have been proposed including the colony 
formation as spindle adherent cell [53]. Moreover, EPCs are hierarchy organized showing 
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different clonogenicity, variable proliferative potential, ability to differentiate into functional, 
differentiated, and mature endothelium and to form capillary-like structures under appropri-
ate induction [50, 54].

Within the human media, the presence of postnatal smooth muscle cell progenitors have been 

hypothesized but not sufficiently demonstrated yet. Most of the knowledge about resident 
smooth muscle cell progenitors comes from animal models even if some studies hypothesize 

their presence and role in the human vascular wall. After enzymatic digestion of the human 

carotid arteries, a multipotent vascular stem cell (MVSC) with in vitro self-renewal, clono-

genicity, and plasticity to differentiate into mesodermal and neural lineage was discovered 
in the tunica media. Additionally, these vascular progenitor cells showed a propensity to 

give rise to smooth muscle cells after stimulation with basic fibroblast growth factor (bFGF), 
PDGF-BB, and TGF-β1. Furthermore, in a vascular disease model such as endothelial denuda-

tion, the MVSC contributed to the formation of neointima producing new synthetic smooth 

muscle cells, and deposition of extracellular matrix [55].

The human adventitia of large vessels also contains a branched plexus of vasa vasorum or 

“vessels of vessels” in close proximity with the vasculogenic niche. These capillary vessels 

ensure the oxygenation and the nourishment of the deeper layers of vascular wall as well as 

the removal of waste products. Recently hot spot areas of intensely positive nestin and WT1 
vasa vasorum were described by our group [56]; nestin, an intermediate filament of neural 
stem cells that is under WT1 control, marks endothelial cells that are functional to the vascu-

lar niche, possibly regulating mononuclear cell traffic as demonstrated in an ApoE knockout 
murine model of atherosclerosis [57].

2. Immunophenotype and plasticity of hVW-MSCs derived from human 

arterial segments

In this chapter, we present an overview of human VW-MSC derived from the vascular wall 

of different anatomical sites focusing on their phenotypic expression, multilineage potency, 
and stemness properties based on the localization in the arterial tree. For this purpose, several 

human variously sized arteries as subclavian, brachiocephalic, common carotid, aortic arch, 

thoracic, renal, and femoral collected from multiorgan or multitissue donors were employed 

to recover hVW-MSCs.

2.1. Isolation procedure

After decontamination for 72 hours in an antibiotic mixture, each arterial segment was washed 

in physiological solution, cut lengthways and into small pieces, and enzymatically digested 

with 0.3 mg/ml liberase type II (Roche, Milan, Italy) in serum-free Dulbecco’s Modified Eagle’s 
Medium (DMEM) (Lonza, Basel, Switzerland) overnight at 37°C using a rotor apparatus. The 
following day, the remaining digested tissue was filtered using cell strainers (100-70-40 μm) 
(Becton Dickinson, Franklin Lakes, NJ) pelleted, counted, seeded at 1 × 105/cm2 on T75 flasks 
plates with DMEM plus 20% fetal bovine serum (FBS), and incubated at 37°C in a humidified 
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atmosphere with 5% CO
2
. After the removal of nonadherent cells using phosphate-buffered 

saline (PBS), the cells were cultured near confluence changing culture medium every 2 days. 
For expansion, the cells were detached with trypsin-EDTA (Sigma, Milan, Italy), replated in a 

new culture flasks in DMEM supplemented with 10% FBS, and expanded in vitro for immu-

nophenotype and differentiation analysis.

2.2. Phenotype characterization

To determinate their mesenchymal and stemness identity, early passages (P2 or P3) of each 

hVW-MSCs cell population was analyzed using flow cytometry accompanied by immunoflu-

orescence detection. For surface antigen, the cells were washed in PBS and stained using the 

following extensive conjugated monoclonal antibody (moAb) panel: anti-CD90- phycoerythrin-

cyanine 5 (PC5), anti-CD105-phycoerythrin (PE), anti-CD73-PE, anti-CD44-fluorescein 
isothiocyanate (FITC), anti-CD146-PE, anti-CD34-FITC, anti-CD31-PE, anti-CD14-FITC, 

anti-CD45-allophycocyanin (APC) (all from Beckman Coulter), anti-vWF (DakoCytomation), 

anti-NG2 (R&D System), anti-PDGFR-β (R&D System), anti-STRO-1 (R&D System), anti-
Notch-1 (Santa Cruz Biotechnology), and anti-Oct-4 (Santa Cruz Biotechnology). The anti-

mouse IgG-APC (Beckman Coulter) and anti-rabbit IgG-FITC (DakoCytomation) were used 

as a secondary antibody for the detection of unconjugated primary moAbs. For nuclear or 

cytoplasmic antigens, the cells were permeabilized with IntraPep Kit (Beckman Coulter). 

Negative controls were stained with secondary antibodies only. Samples were analyzed using 

a Navios FC equipped with two lasers for data acquisition (Beckman Coulter) and Kaluza FC 

Analysis software (Beckman Coulter) for data analysis.

In addition, further antigens were analyzed using a single immunofluorescence staining. In 
parallel experiments to flow cytometry, 6 × 105 hVW-MSCs were seeded on glass overnight 

that allowed to adhere, fix, and permeabilize in 2% paraformaldehyde plus 1% Tryton X-100 
in PBS for 4 minutes at room temperature (rt). After washing in PBS, the sample was blocked 

with 1% bovine serum albumin (BSA) in PBS for 30 minutes at rt in humid chamber to reduce 

nonspecific staining and incubated with antihuman αSMA (1:9000, Sigma); Nestin (1:400, 
Millipore); fibroblast surface protein (FSP) (1:100, Abcam); and ki-67 (1:100, Novocastra) 
antibodies. After prolonged washing, the cells were stained with Alexa Fluor-488 (1:250, Life 
Technology; Carlsbad, CA, USA) secondary antibody in the dark and counterstained with 

ProLong antifade reagent with DAPI (4,6-diamidino-2-phenylindole, Molecular Probes). All 
incubations were performed for 1 hour at 37°C in humid chamber; antibodies were diluted 
in 1% PBS/BSA. Negative controls were stained with secondary antibodies only. Specimens 

were observed and the pictures captured with Leica DMI6000 B inverted fluorescence 
microscope (Leica Microsystems; Wetzlar, Germany). No signal was detected in the negative 
controls.

2.3. In vitro multilineage differentiation

The mesengenic potential of hVW-MSCs was proved inducing the differentiation into osteo-

genic, adipogenic, chondrogenic as well as angiogenic lineage considering their vascular 

origin.
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For adipogenic differentiation, 6 × 104 hVW-MSCs/well were plated in a 24-well culture plate 

using the Mesenchymal Stem Cell Adipogenesis Kit (Chemicon International, Temecula, CA, 

USA) in accordance to the manufacturer’s instructions. Induction medium was replaced every 
2–3 days alternating with maintenance medium (DMEM 10% FBS and 10 μg/mL insulin). 
After three complete cycles of induction/maintenance medium (about 3 weeks), the presence 

of cytoplasmic lipid droplets was assessed by Oil Red O staining and confirmed by trans-

mission electron microscopy (TEM) analysis. Control cells were cultured in DMEM basal 

medium plus 10% FBS.

For osteogenic differentiation, 6 × 104 hVW-MSCs per well were seeded in a 24-well culture 

plate using the osteogenic induction medium Mesenchymal Stem Cell Osteogenesis Kit 

(Chemicon International) plus 10% FBS and cultured for 3 weeks changing the medium every 

2–3 days according to manufacturer’s recommendations. Control cells were cultured in basal 
medium (DMEM with 10% FBS). The identification of calcium salt extracellular deposition 
was evaluated using Alizarin Red staining and confirmed by TEM analysis.

For chondrogenic differentiation, a 3D model was employed; the hVW-MCS cells were pel-
leted at the concentration of 2.5 × 105 in 15 ml polypropylene conical tubes containing 500 μl 
of differentiation basal medium chondrogenic (Poietics, Lonza) supplemented with hMSC 
Chondrogenic Single Quotes (Poietics, Lonza) and 10 ng/ml transforming growth factor-
beta 3 (SIGMA, Lonza). For control cells, the same medium without TGF-β3 was used. The 
medium was refreshed every 2 days for 3 weeks of culture. Each pellet was formalin-fixed, 
paraffin embedded, and stained with Alcian blue to identify the deposition of extracellular 
matrix rich in sulfated proteoglycans and confirmed by TEM analysis.

For angiogenic differentiation, 6 × 105 hVW-MSCs were cultured in T25 flasks for 7 days in 
DMEM plus 2% FBS with 50 ng/ml vascular endothelial growth factor (VEGF; Sigma) as well 

as in DMEM plus 10% FBS for 25 × 104 control cells. To demonstrate whether VEGF could 

prompt MSCs to differentiate into the endothelium, a tube formation assay (Matrigel assay) 
was used for evaluating the ability to form capillary-like structures. At the end of induction, 

50 μl of Matrigel (BD Bioscience) solution was dispensed into a 96-well plate and incubated 
for 30 minutes at 37°C to allow the solidification of the Matrigel solution. Meanwhile, the cells 
were detached from plastic supports and counted in order to have a final cellular suspension 
containing 5 × 103 in 50 μl of DMEM. The cellular suspension was seeded onto Matrigel and 
incubated at 37°C 5% CO

2
 taking images after 2, 4, 6, and 24 hours with a camera connected to 

CKX41 Olympus inverted microscope. HUVECs were used as a positive control.

For each differentiation assay, the control and induced hVW-MSCs were fixed with 2.5% buff-

ered glutaraldehyde directly in culture plate for 20 minutes at rt, scarpered, collected in an 

microtubes, pelleted, fixed again for 24 hours at 4°C, and processed for TEM analysis.

2.4. Results and Discussion

Human VW-MSCs derived from the vascular wall of different anatomical sites such as 
 subclavian, brachiocephalic, common carotid, aortic arch, thoracic, renal, and femoral  arteries 

showed the distinctive features of mesenchymal stem cells such as the fibroblast-like 

Mesenchymal Stem Cells - Isolation, Characterization and Applications26



 spindle-shaped morphology, growth in adhesion on plastic culture flasks, and high prolifera-

tive capacity. Further stemness skills such as the capability to form spheroids when grown in 

suspension were found in all vascular segments, while the clonogenic activity was reserved 

to the brachiocephalic artery and thoracic aorta only (Figure 1).

Focusing on hVW-MSC phenotype, flow cytometry and immunofluorescence analysis 
revealed that the 90% of hVW-MSCs derived from each vascular segment express the typical 

mesenchymal markers (CD44, CD90, CD105, CD73, CD146, and STRO-1) even if the same 
antigens were reduced to 80% in renal and femoral arteries, and no expression of CD146 and 

STRO-1 was seen in these same segments.

After cell isolation, a contamination with mature endothelial cells (CD31+ and vWF+) was 
found when hVW-MSCs were derived from the aorta and its branches; they were losing 

during the culture passages and completely absent in isolates from distal and peripheral 

 arteries. In each segment, vascular and hematopoietic antigens (CD31, CD14, and CD45) were 

expressed by a minority of the isolated cells; CD31 was seen in less than 11% of hVW-MSC 

and CD14 and CD45 in less than 3%; in contrast, the vWF endothelial marker expression 

gradually increased from 26% in aortic branches to 60% in the thoracic aorta, while it was 

Figure 1. Representative images of hVW-MSC in adhesion to plastic support (A) and their stemness features including 
clonogenicity (B), high proliferation (C) and ability to form spheroids (D). Scale bars: 50 μm.
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completely absent in distal (renal) and peripheral (femoral) arteries. Besides, a subset of 

CD34+ EPC was seen in the cell harvested from almost all segments; the CD34+ cells peaked 
in subclavian (26%) and renal (22%) arteries; this observation strengthens the belief that EPCs 

are resident in the human vascular wall.

Regarding the pericyte phenotype, about 94% of hVW-MSCs derived from the aortic por-

tion and its branches expressed the PDGFR-β surface antigen; this percentage was drastically 
reduced to about 0.8 and 1.8% in renal and femoral arteries, respectively. As to NG2, a pro-

portional increase, from 33 to 75.2%, was seen in hVW-MSC recovered from aortic branches to 

the thoracic aorta remaining very low in the other segments (4 and 10%). hVW-MSCs derived 

from the aorta (aortic arch and thoracic aorta) and its branches (subclavian, brachiocephalic, 

and common carotid) display a hybrid phenotype, that is, mesenchymal/pericytic, coherent 

with their presumed origin from pericytes of the adventitial vasa vasorum; on the contrary 

hVW-MSCs derived from distal and peripheral (renal and femoral) arteries present an almost 

pure mesenchymal phenotype without significant evidence of pericyte marker expression; 
this finding suggests that, in these districts, hVW-MSCs may have a different origin; either 
telocytes or perivascular fibroblasts could be robust candidates.

The analysis of ancestral antigens highlighted that Oct-4 and Notch-1 were constitutively 

expressed in a high percentage (54.6 and 38.5%, respectively) of hVW-MSC in all arteries and 

were significantly expressed (until to 88.9% for Oct-4 and 61% for Notch-1) in direction of 
the thoracic aorta; the same markers were not detected in hVW-MSC derived from renal and 

femoral arteries. Nestin and αSMA immunostainings were used to explore intermediate and 
contractile filaments. Few nestin-expressing hVW-MSCs were observed except for brachioce-

phalic, common carotid, and thoracic arteries where nestin-positive cells increased; a similar 

trend was seen also for αSMA that was found diffusely expressed in the brachiocephalic 
artery exclusively. The high density of cells expressing stemness markers, that is, nestin, Oct-

4, and Notch-1, in thoracic segments as well as aortic arch may explain why intimal sarcomas, 

the most undifferentiated tumors of the vascular wall, primarily affect large vascular trunks 
[58].

To determine the percentage of cycling cells, a single immunofluorescence staining for ki-67 
proliferation marker was performed. The semiquantitative analysis revealed that hVW-MSCs 

were highly proliferating when derived from the thoracic aorta (92.3%); the percentage of 

ki-67 proliferating cells decreased when hVW-MSCs were recovered from femoral (50.6%), 

subclavian (40%), renal (37.9%), common carotid (11.9%), and brachiocephalic (6.9%) arteries. 

All arteries, antigens, and percentage of expression analyzed are listed in Table 1 and mapped 

in Figure 2.

To prove the multipotency into adipo-osteo-chondrocytes, hVW-MSCs derived from brachio-

cephalic, thoracic, renal, and femoral vascular segments were stimulated using appropriate 

experimental conditions; in addition, their angiogenic potential was also investigated consid-

ering their vascular origin (Figure 3). Results were analyzed using Oil Red O for adipogenic, 
Alizarin Red for osteogenic, and Alcian blue for chondrogenic differentiation; ultrastructural 
analysis was used for definitive confirmation. The mesengenic and angiogenic potentials are 
reported in Table 2.
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CD90 CD105 CD73 CD44 CD146 STRO-1 CD34 CD31 CD14 CD45 vWF PDGFR-B NG2 FSP Notch-1 Oct-4 Nestina ASMA KI-67

Subclavian 

artery

93.3 99.4 99.5 99.6 45.3 82.1 26.1 4.4 1.3 0.9 26.3 97.7 42.3 Few 38.5 54.6 Few Few 40

Brachiocephalic 

artery

90.8 99.6 99.7 99.8 12.2 73.4 6.8 1.3 0 0.3 33.4 96.4 33 Diffuse 33.9 36.4 Diffuse Diffuse 6.9

Common 

carotid artery

99 99.5 99.6 99.3 25.5 96.4 9.34 11.2 3.1 1.5 37.2 95 65.1 Few 49.1 72.5 Diffuse Few 11.9

Aortic arch 95.6 97.9 97.1 98 29.7 82.9 11.1 3.7 1.3 1.3 47 97.8 63.7 Few 58.7 78.1 Diffuse Few 18.8

Thoracic aorta 99.2 98.8 99 99.5 14.5 82.9 7.1 5.6 1.3 1.2 60.7 85.6 75.2 Few 61 88.9 Diffuse Few 92.3

Renal artery 81 NA NA 91 NA 0.8 22.8 0.6 NA 1 NA 0.8 9.8 NA 0.4 NA NA Few 37.9

Femoral artery 82.7 99.95 NA 100 0.7 0.7 0.7 NA NA 0.6 Negative 1.8 4 Few 1 NA Negative Few 50.6

Table 1. Phenotypic characterization of MSCs derived from human vascular wall (hVW-MSCs).
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Figure 2. Phenotypic mapping of hVW-MSCs resident in human artery wall.

Figure 3. Representative images of hVW-MSCs potential to differentiate into mesodermal and angiogenic lineages. Scale 
bars: 50 μm.
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In particular, adipogenesis had the same high efficiency in each investigated artery. In 
hVW-MSC cytoplasm, Oil Red O staining revealed the presence of multiple lipid droplets 
that intensely stained red; the lipid droplets increased in number and size with the time 

of stimulation; adipocyte formation was confirmed by TEM analysis. Osteogenesis was 

very intense and diffuse in brachiocephalic and renal arteries, moderate but equally diffuse 
in the thoracic aorta and almost absent in the femoral artery. Changes in cell morphol-

ogy as well as progressive deposition of calcium were seen during the induction period 

and confirmed at the end of treatment by Alizarin Red staining. TEM revealed osteoid 
matrix and hydroxyapatite crystals in the extracellular space. A successful chondrogenesis 

was documented using Alcian blue staining and TEM observation. In the brachiocephalic 

artery, thoracic aorta, and, with lesser intensity, femoral and renal arteries, hVW-MSCs 

were prone to produce an alcianophilic proteoglycan-rich extracellular matrix accompa-

nied by the presence of clear, glycogen-rich, cytoplasm vacuoles. TEM displayed proteo-

glycan particles and bodies in the matrix and adherent to the cell plasma membrane. The 

distinctive features of each mesodermal commitment were not observed in uninduced 

hVW-MSCs used as controls. These results highlighted quantitative functional differences 
among hVW-MSCs collected from distinct vascular segments. The different attitudes to dif-
ferentiate should be helpful for explaining pathological events occurring in specific arterial 
districts. For example, osteogenesis and chondrogenesis are efficient in hVW-MSCs derived 
from the common carotid artery and thoracic aorta; this high efficiency may have an impact 
on the type of calcification seen in atherosclerosis where the calcified plaque represents the 
result of an active process that involves hVW-MSC reversibly primed by the inflammatory 
context; on the contrary the inefficient angiogenesis and low osteo-chondrogenesis seen 
in hVW-MSCs derived from the femoral artery could explain the prevalent occurrence of 

non- atheromatous calcified arterial lesions seen in this vascular bed and ultimately explain 
the burden of trophic and ischemic lesions observed in patients with peripheral arterial 

obstructive disease.

Angiogenesis was assayed using a 3D semisolid model. In brachiocephalic and renal arter-

ies, hVW-MSCs pretreated with VEGF rapidly aligned themselves emitting thin cytoplasmic 
projections; they formed an intricated and evident capillary-like network when seeded on 

Matrigel after 6 hours. A similar attitude was seen in hVW-MSCs from the thoracic aorta, 
while it was decreased in cells from the femoral artery. In untreated hVW-MSCs used as 

control, most of the cells remained single and dispersed in the culture medium without any 

hint of tube formation. These differences in angiogenic potential are essential when repair or 
regenerative cell therapies are to be established; in this case a source of hVW-MSCs capable of 

responding to the angiogenic stimulus effectively would be preferable.

Adipogenesis Osteogenesis Chondrogenesis Angiogenesis

Brachiocephalic 

artery

High and diffuse High and diffuse High and diffuse High

Thoracic aorta High and diffuse Moderate and diffuse High and diffuse Moderate

Renal artery NA High and diffuse Moderate and diffuse High

Femoral artery High and diffuse Low and patchy Moderate and diffuse Low

Table 2. Mesengenic and angiogenic potential of hVW-MSCs derived from human vascular wall.
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3. Conclusion

The human vascular wall contains progenitors and stem cells that reside in distinct niches 

identified in the intima, media, and adventitia. Different anatomic portions of the vascular 
tree were used to perform a phenotypic and functional sketch of mesenchymal stem cells 

harvested from the human arterial wall. Although it is well known that the bone marrow 

remains the best hMSC source, MSCs can be isolated from almost all the arterial districts; 

subclavian, brachiocephalic, common carotid, aortic arch, thoracic aorta, renal, and femoral 

arteries are sources of stem cells residing in their wall as the lack of CD45 expression dem-

onstrates consistently. Based on their topographical derivation, hVW-MSCs show a hybrid 

phenotype (mesenchymal/pericytic) in the aorta and its branches or pure mesenchymal 

phenotype in distal and peripheral arteries and contain a subset of CD34+ EPCs resident in 
the vascular wall of all investigated segments and a high cellular density expressing ances-

tral markers in thoracic segments as well as aortic arch districts. Furthermore, hVW-MSCs 

show a different predisposition to differentiate in a specific mesodermic lineage rather than 
another. This aspect should be considered for future clinical applications based on regenera-

tive cell therapies and be helpful to improve the knowledge on pathological events occurring 

in specific arterial districts.

Abbreviations

MSCs Mesenchymal stromal/stem cells

hVAFs Human vascular adventitial fibroblasts

αSMA Alpha smooth muscle cells

VW-MSCs Vascular wall resident mesenchymal stem cells

VW-MPSCs CD44+ multipotent stem cell population

PDGFR-β Platelet-derived growth factor receptor beta

TGF-β1 Transforming growth factor-beta 1

hC-MSCs Human cadaveric mesenchymal stem cells

NG2 Neural glial antigen

vWF von Willebrand factor

3D Three dimensional

EPCs Endothelial progenitor cells

HPCs Hematopoietic progenitor cells

KDR Vascular endothelial growth factor receptor-2

UEA-1 Ulex europaeus agglutinin-1

LDL Low-density lipoprotein

MVSC Multipotent vascular stem cell

bFGF Basic fibroblast growth factor
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PBS Phosphate-buffered saline

DMEM Dulbecco’s Modified Eagle’s Medium

FBS Fetal bovine serum

moAbs Monoclonal antibodies

PC5 Phycoerythrin-cyanine 5

PE Phycoerythrin

FITC Fluorescein isothiocyanate

APC Allophycocyanin

rt Room temperature

BSA Bovine serum albumin

FSP Fibroblast surface protein

DAPI 4,6-Diamidino-2-phenylindole

VEGF Vascular endothelial growth factor

TEM Transmission electron microscopy

HUVECs Human umbilical vein endothelial cells
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