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Abstract

In this book chapter, we review some of the progress made in nanoplasmonics and
related optoelectronics phenomena in the field of two-dimensional (2D) materials and
the recent 3D Weyl semimetals. We give a brief overview of plasmonics for three-
dimensional (3DEG) and two-dimensional electron gases and draw comparisons with
graphene, 3D topological insulators, 3D Weyl semimetals, and nanoplasmonics in
nanogeometries. We discuss the decay of plasmons into electron-hole pairs and the
subsequent thermalization and cooling of the hot carriers. We present our recent results
in the fields of plasmonics in different nanostructures made of noble metals, such as
Silver, and plasmonics in Dirac systems such as graphene and 3D topological insulators.
We show a possibility of dynamically shifting the plasmon resonances in hybrid metal-
semiconductor nanostructures. Plasmonics in 3D topological insulator and 3D Weyl
semimetals have been least explored in nanoplasmonics although it can provide a
variety of interesting physical phenomena involving spin plasmonics and chirality. Due
to the inherent large spin-orbit coupling, locked spin-momentum oscillations can exist
under special conditions and in the presence of an external laser field. We explore
symmetric and antisymmetric modes in a slab of 3D TIs and present their dependences
on the thickness of the slab.

Keywords: surface plasmon polaritons, metal, Dirac fermions

1. Introduction

Electromagnetic properties of metal-dielectric interfaces have attracted a vast amount of research

efforts. Ever since, the work of Mie [1] for small particles and Ritchie [2] for flat interfaces, a wide
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variety of scientists ranging from physicist, chemists, material scientists to biologists have

explored plasmonics-based phenomena and their potential applications in practical life. In

nanostructures, under the right circumstances, light waves propagating at metal-dielectric

interface excite collective modes of electrons at the metal surface, resulting in the generation

of charge density waves called surface plasmons (SPs), which can be divided into localized

modes called localized surface plasmons (LSPs) and propagating modes called surface

plasmon polaritons (SPPs), propagating along the interface like ripples across the surface of

water with an effective wavelength much less than that of incident electromagnetic wave. Free

electrons respond collectively by oscillating in resonance with the light waves. In optics,

scientists have investigated methods to use plasmonics for concentrating, channeling, and

changing the phase of light using subwavelength metallic structures. This would lead

to miniaturized plasmonic circuits with length scales much smaller than those in current use

[3–13]. A creatively engineered metal-dielectric interface can generate surface plasmons with

the same frequency as the outside electromagnetic waves but with several times shorter

wavelength. This interesting phenomenon can be utilized in a way in which surface plasmons

carry information in microprocessors faster than current electronic transistors [14]. Plasmonics

holds promise for a higher information density than conventional electronics [15]. While this

proposed application needs still to be proven feasible, metallic nanostructures much smaller

than the wavelength of light have already been successfully built for amplifying signals in

surface enhanced Raman spectroscopy (SERS), providing a powerful method to detect a single

molecule [16–27]. Plasmonically enhanced electric fields are already being used for sensing

biomolecules [28–36]. The efficient heating property of plasmonic fields can be used for

photothermal cancer treatment [37, 38] and also for thermally assisted magnetic recording

[39–41]. Plasmonic lasers are able to achieve ultrafast dynamics with sub-wavelength mode

confinement [42–50].

Metallic nanoparticles can be made in different sizes and shapes, and the distance among them

can be controlled as well. These parameters can be used to tune the plasmon resonance

frequency [51–62]. The use of optically excited plasmons as a tunable frequency source that

can be mixed with a laser through Raman scattering enables dynamical shifting of the wave-

length of light in a controlled manner [63]. Fluegel et al. [64] used a continuous laser beam of a

few microwatts power to excite carriers in a carefully engineered narrow GaAs quantum well.

These photogenerated carriers are selectively passed through a thick barrier of AlAs into a

wide GaAs quantum well in which the two-dimensional electron gas (2DEG) supports high

charge density waves with collective electron motion normal to the layer. A signal laser beam

operating at a different wavelength undergoes inelastic Raman scattering from the plasmon-

phonon (longitudinal optical phonon) modes in the two-dimensional (2D) quantum well. The

result is that a signal with 13–15 nm redshifted frequency is generated. Plasmonics can also be

exploited in optical tweezers to confine nanoparticles to small dimensions [63]. Grigorenko

et al. [65, 66] have made electromagnetically coupled gold pillars. A trapping beam simulta-

neously excites gap plasmon (GP) modes in the gap between the pillars when they are used as

a substrate, resulting in an enhanced field at the trapping site.

In a metallic nanoshell containing a core of dielectric material, due to different dielectric

environments in the core and outside of the nanoshell, plasmons are excited in the inner and
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outer surface of the metallic nanoshell, which can be tuned by varying the ratio of inner to the

outer radii of the nanoshell and by altering the dielectric materials [67, 68]. Figure 1 shows that

the plasmon resonance energy can be tuned over a wide range by varying the material and/or

shaping parameters. Figure 1 compares the plasmon resonance wavelengths of gold, silver,

graphene, and topological insulator nanostructures. For a particle diameter much smaller than

the wavelength of light, the light-matter interaction leads to an oscillating homogeneous

polarization of the particle volume, resulting in an oscillating dipole field. For spherical Au

and Ag nanoparticles, the dipole plasmon resonance occurs in the visible part of the spectrum.

In particle ensembles, additional shifts are noticed due to electromagnetic coupling between

LSP modes. For example, in case of a dimer, plasmons can be viewed as bonding and anti-

bonding combinations, in analogy to molecular orbitals, i.e., hybridization of the individual

nanoparticle LSPs occurs, giving rise to resonance shifts following the 1/d3 interaction between

two classical dipoles [69]. The observed shifts in LSP resonance and the linewidth narrowing

can be understood by means of the Mie scattering theory [1]. Due to the coupling of LSPs, the

arrays support one longitudinal and two transverse modes of propagating polarization waves.

The transport of energy along such a chain is the main idea for transmitting information using

plasmonics [70, 71]. Large heat dissipation has so far slowed down the progress in this field.

Nevertheless, we proposed a method of guiding electromagnetic waves along a chain below

the diffraction limit in a controlled manner using a chain of nanoshells [72, 73]. The dynamic

control over the plasmon resonances and their coupling gave rise to the idea of an optically

controlled plasmonic switch. In this chapter, we present a concept of dynamical control over

the plasmon resonances that can be obtained by controlling the dielectric environment of the

LSPs using a pump probe technique. In Ref. [74], we show that a shift up to 125 nm can be

achieved in an Ag core-TiO2 coated nanostructure.

Figure 1. Comparison of the plasmon resonance wavelength spectra of gold, silver, graphene, and topological insulator

(TI) nanostructures. The lifetime of plasmon for gold and silver ( τ ¼ 1� 100 f s) is shorter than that of graphene and

TI ( τ ¼ 10� 100 f s).
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In addition to that, we also review plasmonics in Dirac systems. Like in the case of a two-

dimensional electron gas (2DEG), the surface plasmon mode in 2D materials such as graphene

is tunable by changing the gate voltage through shifting the Fermi energy. Exciting surface

plasmons give rise to light absorption enhancement in graphene, which can be utilized for

photodetectors based on surface plasmon polaritons [75], optical switching of infrared

plasmon polariton [76], and THz plasmonic lasing [77]. Plasmonics in Dirac systems show

interesting features due to massless electrons around the Dirac nodes. In particular, we focus

on surface plasmons in graphene, in Bismuth-based 3D topological insulators (3DTIs), and in

3D Weyl semimetals. Graphene, 3DTIs, and 3D Weyl semimetals are interesting due to their

special electronic and optical properties arising from the linear dispersion relation around the

Dirac cones in the Brillouin zone [78]. Around these points, energy dispersion of electrons can

be described by a low energy Dirac Hamiltonian: HG(k) = h(k) � σ, where h(k) = [hx(k), hy(k), 0]

and σ = [σx, σy, σz]. For a small wave vector, q = k - K, we have h(k) = ħυFq, showing that the

electronic states are helical in nature, therefore allowing for “one-way traffic.” This helical

nature of electronic states significantly enhances the charge mobility, resulting in reduced

plasmonic loss, and therefore high-quality factor in doped graphene.

Due to the excitation of surface plasmons, it is now possible to engineer the behavior of light

on nanometer length scales and to increase the light-matter interaction [79–82]. This interaction

is an outcome of the near-field enhancement close to the metal surface, which also leads to

plasmon damping through radiative decay and through nonradiative decay inside the mate-

rial, due to Landau damping, i.e., creation of electron-hole pairs via interband or intraband

transitions, electron-phonon interaction, and boundary effects. The intraband transition hap-

pens in the conduction band and the interband transition occurs between other bands (such as

the d-band) and the conduction band, as shown schematically in Figure 2a [83–85].

The radiative decay part of plasmon damping is due to the direct photon emission by coherent

electron oscillation. As the size of the nanoparticle increases, the radiative decay of the

plasmon is more significant. For larger nanoparticle elements, the radiative decay component

is the main reason of plasmon resonance broadening and weakening of the dipole strength. In

contrast, decreasing the size of the nanoparticle lets the nonradiative component dominate the

plasmon decay. For applications in information technology, a slow dephasing of optical polar-

ization by electron oscillation is essential, which is characterized by the dephasing time (T2).

The dephasing time can be found experimentally by measuring the plasmon linewidth Г = 2ħ/

T2, where T2 is related to the time constant of the inelastic decay of the plasmons T1 and elastic

scattering time constant T* by the authors of Refs. [82–84].

1

T2
¼

1

2T1
þ

1

T∗
: ð1Þ

T1 is a combination of time constants related to the radiative and nonradiative decay processes

T1 = T1,r + T1,nr. Nonradiative decay of surface plasmon through Landau damping gives rise to

electron-hole pair generation. When the energy of these excited carriers is much larger than the

thermally excited electron-hole pairs at ambient temperature, they are called hot carriers. This

phenomenon of hot-carrier generation finds lots of applications in energy harvesting, photo
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detection, and photocatalysis. The hot carriers can be used directly to drive chemical reactions

[86] in metals and to drive photocurrents in a semiconductor for the photovoltaic effect or for

photoelectrochemical processes [87, 88]. The energy distribution of the generated hot carriers is

sensitive to the detailed band structure of the metal. For example, the energy of the excited

holes in copper and gold is higher than for electrons; however, in aluminum and silver, the

electron and hole energies are almost equal. The advantage of the asymmetry between the

produced hot electron and holes by the surface plasmon helps to collect more hot carriers

before inelastic scattering occurs. The energy distribution of the carriers generated by decay of

plasmons, the subsequent elastic and inelastic scatterings and their transport are important for

the design of the hot-carrier-based devices. The inelastic scatterings due to the Coulomb

interaction lead to the thermalization of the hot carriers among each other, thereby reaching

their carrier equilibrium temperature. The inelastic scatterings due to the electron-phonon

interaction result in the cooling of the carriers, thereby reaching the equilibrium temperature

of the lattice of the material. For example, in graphene, thermalization takes place on a time

scale of 100 fs, while cooling is much slower and happens on a time scale of 10 ps.

This book chapter is organized as follows: in Section 2, we discuss the SP resonances in hybrid

metal-semiconductor nanostructures. By altering the dielectric environment of nanostructures

Figure 2. (a) Different types for decay of plasmon. The plasmon is damped by radiative (left) or nonradiative decay

through Landau damping (right). (b) Schematic representation of the surface plasmon excitation followed by damping

through hot-carrier generation. Schematics for the surface-assisted excitation of hot electron-hole (e-h) pair with energy

ħωp. (c) An external electric field incident on a metal nanoparticle with characteristic size of L excites surface plasmon. (d)

It leads to geometry-assisted hot e-h excitation (e) followed by momentum relaxation through surface scattering in a

region with size of the order of vF=ω.
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dynamically using pump-probe techniques, we show that it is possible to shift the SP reso-

nance wavelength. In Section 3, we discuss in detail the plasmon excitations and their damping

pathways in a three-dimensional electron gas (3DEG). We discuss both the radiative and

nonradiative damping mechanisms of SPs in 3DEGs. In Section 4, we give a brief overview of

plasmons in a two-dimensional electron gas (2DEG). In Section 5, we present the size depen-

dent properties of the SPs in nanostructures. Graphene plasmonics and losses are discussed in

Section 6. Section 7 is dedicated to the description of the SPs in Dirac systems. We focus on the

SPs in 3DTI materials and 3D Weyl semimetals, and we discuss graphene plasmons as a

limiting case of the 3DTI plasmons in the limit where the thickness of the 3DTI slab d ! 0.

Finally, we wrap up the book chapter with the conclusion in Section 8.

2. Surface plasmon resonances in metal nanostructures

A nanoparticle shows tunable optical properties under controlled variation of its geometry. In

a pure Ag spherical nanoparticle in vacuum, for example, the plasmon resonance occurs at 320

nm. These plasmon modes are shifted if the nanoparticle is coated with dielectric materials. It

has been shown that with increasing shell thickness, the local electric field enhancement factor

peak increases and redshifts for ε2 > ε3, whereas the local field enhancement factor peak

decreases and blueshifts nonlinearly for ε2 < ε3, where ε2 and ε3 are dielectric functions of the

shell and the surrounding materials, respectively [89]. The electric field enhancement factor is

defined by EF = |E/E0|
2. It can be easily calculated by means of the finite-difference time

domain (FDTD) technique. Figure 3 shows the example of an Au nanoparticle with a radius

of 50 nm in air with index of refraction n = 1.

Figure 3. The resonant excitation of the Au nanoparticle causes large local electric fields close to the particle surface,

which is obtained by means of finite-difference time domain (FDTD) calculations. Here, EF(x,y) is shown in the xz plane at

494 nm.

Nanoplasmonics - Fundamentals and Applications54



The quasi-static approximation provides a good estimate for a nanoparticle size of around 1/10

or smaller of the incident light wavelength. For larger nanoparticles, due to the finite speed of

light, retardation effects lead to a redshift of the plasmon resonance [90]. In Ref. [91], authors

have found an analytical expression for a spheroid that takes into account the depolarization

factors and that gives a good approximation for nanogeometries of size up to 150 nm. Figure 4

shows our results for the local field enhancement in the presence of an Ag nanocube. As

expected from electrostatics, the largest enhancement occurs at the vertices of the Ag nanocube.

The optical resonances of a nanoshell exhibit enhanced sensitivity to its local dielectric envi-

ronment relative to the solid nanoparticle, as shown in Figure 5. For a particle diameter less

than the wavelength of light, the light-matter interaction leads to an oscillating homogeneous

Figure 4. Local field enhancement EF for an Ag nanocube of 20 nm size. The surrounding medium has a refractive index

of n = 1.65, which is the case for boron nitride (BN). The green arrow points in the propagation direction of the

electromagnetic wave, and the red double arrow shows the polarization of the electromagnetic wave.

Figure 5. Surface plasmons (SPs) field enhancement in a hybrid nanoshell with a Ag core and TiO2 shell of size of 15 nm

at different shell thickness using the quasi-static field approximation (a), and different positions inside the shell (b) [see

Ref. [74]. The inset in Figure 5a shows a scheme of a core-shell nanoparticle.
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polarization of the particle volume, resulting in a dipole field. Figure 5a and b shows the

dependence of plasmon resonances on the shell thickness and the size of a hybrid metal-

semiconductor nanostructure of 15 nm diameter with an Ag core coated by TiO2 shell obtained

in the quasi-static approximation. The expressions are given in Ref. [67].

Plasmon resonances in a nanoshell can be tuned dynamically by letting a pump laser pulse of

energy equal to the band gap or above generate electron-hole pairs in a semiconducting

material surrounding the nanoshell. A probe laser pulse at a plasmon resonance frequency is

used to excite plasmons on the metal surface. The generation of free electron-hole pairs alters

the dielectric function of the surrounding semiconducting material. Due to the reduced dielec-

tric function caused by the excitation of the electron-hole pairs, the excitation of surface

plasmons by a probe pulse requires a higher energy. The frequency of the probe pulse is

smaller than that of the pump pulse ensuring that no excitons are excited in the semiconductor

during the probing. The change in the dielectric function of the surrounding medium due to

the pump pulse can be calculated using Fermi’s golden rule:

ImðεðωÞÞ ¼
4π2e2

m2ω2

X

k, c, v
je�Pc,vj

2f ðEvðkÞÞ½1� f ðEcðkÞÞ�δðEcðkÞ � EvðkÞ � ħωÞ, ð2Þ

where Pc,v is a transition dipole matrix element between conduction and the valence band, e is

the direction of the polarization and f(E) is the Fermi-Dirac distribution function. At zero

temperature, the factor f ðEvðkÞÞ½1� f ðEcðkÞÞ� ¼ 1 before the optical excitation and becomes

less than 1 after optical excitation.

Figure 6 shows shifts in the resonance peak of the surface plasmons occurring at around 620

nm before the generation of excitons in a nanoshell structure (as shown in inset of Figure 5a)

with diameter of 15 nm. After the pump pulse, depending on the density of the excitations, the

Figure 6. Local field enhancement factor EF on the surface of a nanoshell of 15 nm diameter. The core is made of Ag with a

diameter of 7 nm. At higher density of excitation, the resonance peak is gradually blueshifted.
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plasmon resonance peaks are excited by the probe pulse shift. The larger the density of excited

free electron-hole pairs in the semiconductors, the larger is the blueshift of the plasmon reso-

nance peak. For a density of excitation of 5 · 1021 cm�3, a resonance shift of up to 125 nm can be

achieved.

3. Plasmon excitation and damping for a three-dimensional electron gas

(3DEG)

In this section, we discuss the plasmon excitation and their damping pathways in 3D materials

made of metal. The plasmonic damping pathways in 3D materials include radiative decay,

Landau damping, and resistive loss, as depicted in Figure 7. During Landau damping,

plasmon quasi-particles lose their energy by exciting hot electron-hole pairs via direct

interband or phonon/geometry-assisted intraband transitions. In the case of geometry-assisted

intraband transition, the translational symmetry is broken due to electric field confinement or

boundaries of the material [92]. In the case of resistive loss, single carriers, electrons or holes

that are the building blocks of the plasmon quasi-particle, are kicked out of the phase-coherent

collective plasma oscillation through electron-electron or electron-phonon scattering, giving

rise to plasmon damping. In 2D materials, the plasmons follow similar damping pathways.

Figure 7 shows the stages of the plasmon decay, the initial nonequilibrium configuration after

the excitation, the thermalization, and the cooling of the hot carriers. Some of these damping

Figure 7. The stages of energy relaxation of excited plasmon. (a) The incident electric field on a graphene nanostructure

excites the surface plasmon. (b) The plasmon quasi-particles lose their energies by different scattering processes to excite

hot carriers, which have nonthermal distribution on the order of tens to hundreds of femtoseconds. (c) Electron-electron

and other scattering processes redistribute the hot carriers and thermalized them in the order of one to hundreds of

picoseconds to generate ling-lived hot carrier distribution. (d) Cooling stages and energy transferring to the substrate

happen by phonon and geometry-assisted scattering processes over a longer time scale (hundreds of picoseconds to tens

of nanoseconds) for relaxation of the hot carrier distribution to the equilibrium.

Nanoplasmonics in Metallic Nanostructures and Dirac Systems
http://dx.doi.org/10.5772/67689

57



pathways can be used to inject hot carriers into other materials. For example, at a metal-

semiconductor interface, hot electron-hole pairs can be separated by means of the Schottky

barrier for the purpose of energy harvesting. In metal-graphene or metal-MoS2 junctions, the

surface plasmons can generate hot electron-hole pairs, thereby injecting electrons/holes into

n/p-doped 2D materials, giving rise to hot carrier-induced doping [93] or even insulator-to-

metal phase transitions [94].

The initial distribution of the hot carriers can be estimated using the jellium model for metal

nanoparticles and nanoshells [95, 96], but this approach cannot explain the material depen-

dence of this process because the specific band structure of the metal is completely neglected.

In order to capture the material properties, it is necessary to combine FDTD calculations for

obtaining the plasmon modes with ab initio density functional theory (DFT) calculations to

determine the initial energy distribution of generated hot carriers by decay of surface plasmon.

Figure 7b shows the schematic of plasmonic hot-carrier generation [97].

The plasmon resonance frequency and dispersion can be obtained by evaluating the dynamic

polarizability in the presence of the carrier-carrier Coulomb interaction. The dynamic polariz-

ability in the random phase approximation (RPA) is given by

χ
RPAðq,ωÞ ¼

χ
0ðq,ωÞ

ε
RPAðq,ωÞ

, ð3Þ

where χ
0(q,ω) is the noninteracting (zeroth-order) polarizability (single pair bubble) and

ε
RPAðq,ωÞ ¼ εm � vcðqÞχ

0ðq,ωÞ, with εm being the permittivity of the environment, and

vcðqÞ ¼ e2=2ε0q the Coulomb interaction between the carriers. The RPA method corresponds

to the expansion of 1=εRPAðq,ωÞ, leading to an infinite power series over the bubble diagrams.

If optical phonons are also considered, the effective dielectric function in the RPA expansion

takes the form [98, 99]

ε
RPAðq,ωÞ ¼ εm � vcðqÞχ

0ðq,ωÞ � εm

X

l

vsph, lðq,ωÞχ
0ðq,ωÞ � εmvophðq,ωÞχ

0
j, jðq,ωÞ, ð4Þ

where εm is the average of dielectric constants of the environment. The second term represents

the effective Coulomb interaction of electrons in graphene, and vcðqÞ ¼ e2=2qε0 is the direct

Coulomb interaction. The third term is the effective dielectric function for different phonon

modes (l) coming from electron-electron interaction mediated by substrate optical phonons,

which couple to the electrons by means of the Fröhlich interaction, i.e.,

vsph, lðq,ωÞ ¼ jMsphj
2G0

l ðωÞ, ð5Þ

where |Msph|
2 is the scattering and G0

l is the free phonon Green’s function. The last term of

Eq. (4) corresponds to the optical phonon mediated electron-electron interaction.
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vophðq,ωÞ ¼ jMophj
2G0ðωÞ: ð6Þ

Here |Moph|
2 defines the scattering matrix element and Go(ω) is the free phonon Green’s

function. In Eq. (4), χ0
j, jðq,ωÞ is the current-current correlation function. This description is

very general and can be applied to any metallic system.

For the simplest case, when only the carrier-carrier Coulomb interaction is present, we can

derive the dynamical plasmon dispersion relation following standard textbooks [100]. The first

step is to calculate noninteracting dynamical polarizability.

χ0ðq,ωÞ ¼
1

Ω

X

k, s

n0kþq, s � n0k, s

εkþq � εk � ħω� iħη
, ð7Þ

where Ω is the volume of the sample, n0k, s is the equilibrium electron density, and εk is the

single-particle energy dispersion of the electrons. Assuming |q| ≪ kF, we can expand χ0

(q, ω) in q by taking advantage of the expansions εkþq ¼ εk þ q � ∇kεk þ⋯ and n0kþq ¼ n0k

þ ∂n0
∂ε q � ∇kεk þ⋯. At zero temperature, we have ∂n0

∂εk
¼ �δðεk � εFÞ and the velocity can be

approximated by the Fermi velocity, i.e., ∇kεk ¼ ħvk ≈ ħvF, leading to the approximation

χ0ðq,ωÞ ≈ �
2

ð2πÞ3

ð

d3k
q � vFδðεk � εFÞ

q � vF � ω� iη

¼
2

ð2πÞ2

ð

1

�1

dð cosθÞ

ð

∞

0

k2dk
qvF cosθ

qvF cosθ� ω� iη
δðεk � εFÞ

¼
k2F

2π2ħvF

2

3

qvF
ωþ iη

� �2

þ
2

5

qvF
ωþ iη

� �4

þ⋯

" #

≈
k3Fq

2

3π2mðωþ iηÞ2
1þ

3

5

q2v2F
ðωþ iηÞ2

" #

¼
n0q

2

mðωþ iηÞ2
1þ

3

5

q2v2F
ðωþ iηÞ2

" #

:

ð8Þ

Using the equation kF ¼ ð3π2n0Þ
1=3
⇔ n0 ¼

k3F
3π2 for 3D metals, one obtains

χ0ðq,ωÞ ≈
ρ0q

2

mðωþ iηÞ2
1þ

3

5

q2v2F
ðωþ iηÞ2

" #

¼
ρ0q

2

mðωþ iηÞ2
Rðq,ωÞ2 ð9Þ

with

Rðq,ωÞ2 ¼ 1þ
3

5

q2v2F
ðωþ iηÞ2

" #

: ð10Þ

Consequently, the dynamical polarizability in the RPA and long wavelength regime is
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χRPAðq,ωÞ ¼ χ0ðq,ωÞ
εðq,ωÞ ¼

ρ0q
2

mðωþ iηÞ2
Rðq,ωÞ2

1� 4πe2ρ0

mðωþ iηÞ2
Rðq,ωÞ2

¼ ρ0q
2Rðq,ωÞ2

mðωþ iηÞ2 � 4πe2ρ0Rðq,ωÞ
2

¼ ρ0q
2Rðq,ωÞ
2mωp

1

ωþ iη� ωpRðq,ωÞ
� 1

ωþ iηþ ωpRðq,ωÞ

� �

,

ð11Þ

where the quantum plasma frequency of a 3D metal in the free electron approximation is given

by the Pines and Bohm equation [101, 102]

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πn0e2

m

r

, ð12Þ

with n0 being the equilibrium electron density and m the electron mass. Using

lim
η!0þ

1
z�iη ¼ P 1

z

� �

þ iπδðzÞ, it follows that

Im½χRPAðq,ωÞ� ≈ πρ0q
2Rðq,ωÞ

2mωp
δ
	

ω� ωpRðq,ωpÞ



� δ
	

ωþ ωpRðq,ωpÞ

n o

, ð13Þ

which yields the bulk plasmon dispersion relation for 3D metals, i.e.,

ωq ¼ ωpRðq,ωpÞ ¼ ωp 1þ 3

10

q2v2F
ðωp þ iηÞ2

þ⋯

" #

: ð14Þ

The same result can be obtained by solving ε
RPAðq,ωÞ ¼ 0. Note that the slope of the parabolic

dependence at q ¼ kF is

3v2FkF
5ωp

¼ 3v2FkF

5 4πe2n0
m

¼ 9πmv2FkF

20e2k3F
¼ 9πmv2F

20e2 mvF
ħ

� �2
¼ 9πħ2

20e2m
¼ 0:67

m

s
≪

c
ffiffiffiffiffi

εd
p : ð15Þ

This difference in slopes between the 3D bulk plasmon and the photon-like surface plasmon

polariton is clearly visible in Figure 8 (see below).

It is well known that in 3D metals Landau damping occurs when the plasmon resonance

energy enters the electron-hole continuum, which is determined by the condition

ħω ¼ εkþq � εk ¼ ħ
2ðkþ qÞ2 � ħ

2k2

2m
¼ ħ

2q2 þ 2ħ2k � q
2m

¼ ħ
2q2 þ 2ħ2kq cosθ

2m

¼ ħ
2qðqþ 2k cosθÞ

2m
≥ 0:

ð16Þ

Since �1 ≤ cosθ ≤ 1 and 0 ≤ k ≤ kF, the electron-hole continuum is given by the gray shaded area

in Figure 8. The plasmon can decay into an electron-hole pair when the plasmon dispersion
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curve enters the electron-hole continuum limit. This decay corresponds to intraband Landau
damping.

The presence of a planar boundary for a 3D metal adds a new mode known as surface plasmon,
which propagates at the metal-dielectric interface. Since the electron charge density of a metal
leaks outside the interface into the dielectric in the order of 1=kF ≈ 1 Å, a macroscopic description
based on Maxwell’s equations is sufficient to understand the surface plasmon qualitatively.
Taking the boundary conditions into account, the dispersion relation of the surface plasmon is
determined by Ritchie and Eldridge [103]

qx ¼
ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εmεd

εm þ εd

r

¼ ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
2 � ω2

p

1þ 1
εd

	 


ω
2 � ω

2
p

εd

v

u

u

t ð17Þ

in the Drude model, where εmðωÞ ¼ 1� ω2
p=ω

2. This biquadratic equation can be solved

analytically, yielding

ωspðqxÞ ¼ � 1
ffiffiffiffiffiffiffi

2εd
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2q2xð1þ εdÞ þ εdω
2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4q4xð1þ εdÞ2 þ 2c2q2xð�1þ εdÞεdω2
p þ ε

2
dω

4
p

q

r

: ð18Þ

Since ωspðqxÞ ≥ 0, there are only two physical solutions, which are drawn in Figure 8. While the
upper branch corresponds to the photon-like plasmon polariton, the lower branch represents
the plasmon-like surface plasmon polariton (SPP) with the following asymptotics:

Figure 8. Dispersion curves of the RPA bulk plasmon resonance (red), the semi-classical surface plasmon polaritons
(blue), and the RPA 2DEG plasmons. The shaded area marks the electron-hole continuum. When the bulk plasmon
resonance enters the shaded area, the plasmon decays into electron-hole pairs which is called Landau damping.

Nanoplasmonics in Metallic Nanostructures and Dirac Systems
http://dx.doi.org/10.5772/67689

61



ωspðqxÞ ¼

c
ffiffiffiffiffi

εd
p qx 1� 1

2

c

ωp

� �2

q2x þ…

" #

, qx ≪
ωp

c

ωp
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εd

p 1� 1

2

ωp

c

	 
2 εd

1þ εd

� �2

q�2
x þ…

" #

, qx ≫
ωp

c

8

>

>

>

>

<

>

>

>

>

:

ð19Þ

which in the nonretarded regime reduces to Ritchie’s equation [2],

ωsp ¼ ωp
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εd

p ¼ ωp
ffiffiffi

2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πn0e2

m

r

¼ 4e2
ffiffiffiffiffiffiffi

2m
p

3πħ3

� �1=2

εF
3=4 ð20Þ

for wave vectors q in the range of ωs=c≪ q≪ qF, where qF is the Fermi wave vector [104]. Since

kF ¼ ð3π2n0Þ1=3 in 3D metals, the bulk plasmon frequency exhibits a εF
3=4

∝n
1=2
0 dependence.

To estimate the plasmon decay rate, the band structure of the materials should be calculated by

means of DFT to find out the exact quasi-particle orbitals and energies. Different electronic

structures can be used to calculate the band structure of noble metals. To estimate the decay

rate, the electronic states and energies of the metals resulting from PBEsol + U DFTmethod are

used in Eq. (2). To find the plasmon decay distribution, energy conservation is used to deter-

mine the regions of the first Brillouin zone, which are responsible for the electron-hole gener-

ation [97]. Since aluminum, which is a nearly free electron metal, has a band crossing close to

the Fermi level at the W point, interband transitions from the valence band with energies ħω

from zero to the plasmon energy are allowed for creating a symmetric amount of both hot

electrons and holes. There is an extra possibility for interband transitions at the K point, which

mostly contribute to the generation of hot holes with energies >2 eV, giving rise to a modest

asymmetry between hot electron and hole distributions. For copper, the interband transitions

happen at the X, L and K, points, and for gold they occur at the X and L points [97]. In these

two noble metals, since all the transitions originate from the “d” band, the hot hole energies are

larger than 2 eV and consequently they have larger kinetic energies than the electrons. In

metal-semiconductor interface, this asymmetry between hot hole and electron energy distribu-

tion plays a dominant role in the hot-carrier collection efficiency. For gold and copper, the

holes have more kinetic energy than the electrons. This means that in a metal-semiconductor

Schottky junction such as gold-n type gallium arsenide junctions, the hot electrons do not have

enough energy to pass the Schottky barrier and therefore need to tunnel or get more thermal

energy to overcome Schottky barrier. However, in gold-p type gallium arsenide junctions, the

hot holes have sufficient kinetic energy to overcome the Schottky barrier. This means for

copper and gold, the metal-p type semiconductor junction is more efficient for the collection

of hot holes. But for aluminum and silver, the efficiency is almost the same for hot holes and

electrons. According to the Fowler theory [96], the angular distribution of the hot-carriers

should be isotropic. However, experiments show that none of the noble metals exhibit an

isotropic distribution [97].

In nanoconfined structures, because of lack of translational symmetry, the crystal momentum q

is not a good quantum number and there is no momentum conservation anymore. Therefore
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the transition creating an electron-hole pair is allowed to be nonvertical. This is the case for

geometry-assisted intraband transition, where no phonon is required. A vector potential for

one quantum of each symmetric and antisymmetric modes can be used in Fermi’s golden rule

to calculate the decay rate of an LSP to an electron-hole pair. By decreasing the thickness, the

effect of confinement is to be more pronounced and more hot electrons can be generated by

intraband transitions. This effect is more noticeable for the antisymmetric mode, because a

smaller part of the light is located inside the gold film, which leads to reduction of interband

transitions [97].

In metals, plasmons decay is not only in the ultraviolet and visible spectrum but also in the

infrared and microwave regimes [105, 106]. Due to the conservation of momentum in infinite

crystal lattices, the direct interband transition induced by plasmon decay is only possible for

energies larger than the band gap energy. However, for energies below the visible spectrum,

typically phonon-assisted and surface-assisted intraband electron-hole pair generations are

able to bypass this selection rule [92].

The plasmon decay rate is related to the imaginary part of the dielectric tensor Im ε ðωÞ [92],

i.e.,

ΓðrÞ ¼
1

2πħ
E∗ðrÞ � ImεðωÞ � EðrÞ: ð21Þ

Let us consider a 3D semi-infinite metal slab extending in the negative z-direction with a single

surface in the xy-plane at position z = 0. Using the electric field profile of a single quantum of

the surface plasmon polariton with wave vector k and frequency ω and integration over the

space gives the total nonradiative (nr) decay rate.

ΓnrðrÞ ¼
1

2LðωÞjγðz < 0Þj
λ
∗ � Im ε ðωÞ � λ ð22Þ

The decay rate of plasmon as a function of frequency can be calculated by substituting the

experimental data for the complex dielectric function measured by ellipsometry. Within the

random phase approximation (RPA), the nonradiative decay rate induced by direct interband

transition is [97]

ΓnrðdirectÞ ¼
2π2e2

LðωÞjγðz < 0Þjme
2ω2

ð

BZ

dq

ð2πÞ3

X
n0n

ðf qn � f qn0Þδðεqn0 � εqn � ħωÞ· jλ � 〈p〉
q
n0nj

2 ð23Þ

where 〈p〉
q
n0n ¼ �Ψ σ∗

qn0ðrÞiħ∇Ψ
σ
qnðrÞ are momentum matrix elements between the quasi-particle

orbitals Ψ σ∗
qn0ðrÞ and Ψ σ

qnðrÞ. fqn are the Fermi occupation functions of the quasi-particles,

λ � k̂ � ẑk=γðz < 0Þ is the polarization vector, and γ(z) is the imaginary part of the wave vector

in z-direction. Eq. (23) can also be obtained in first quantization and is based on the electric

dipole approximation, which means the plasmon mode function slowly changes on the atomic

scale. To include the effect of electron-electron and electron-phonon scattering on the decrease
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in the lifetime of carriers, the δ function is replaced by a Lorentzian with half width

ImΣqn þ ImΣqn0 , where ImΣqn is the total carrier lifetime due to the scatterings.

The contribution of the electron-phonon interaction to the plasmon decay through intraband

transitions can be calculated in second-order perturbation theory [107, 108], giving

ΓnrðphononÞ ¼
2π2e2

LðωÞjγðz < 0Þjme
2ω2

ð

BZ

dq0dq

ð2πÞ6

X

n0nα�
ðf qn � f q0n

0
Þ Nq0�q,α þ

1

2
∓

1

2

� �

· δðεq0n0 � εqn � ħω∓ ħωq0�q,αÞ λ �
X

n1

g
q0�q,α
q0n0,qn1

〈p〉qn1n

εqn1 � εqn � ħωþ iη
þ

〈p〉
q0

n0n1
g
q0�q,α
q0n1 ,qn

εq0n1 � εqn ∓ ħωq0 � q,αþ iη

 !�

�

�

�

�

�

�

�

�

�

2

,

ð24Þ

where ħωk,α is the energy of a phonon with wave vector k and polarization index α, Nk,α is the

Bose occupation factor for the phonons, gk,αq 0n0,qn is the electron-phonon matrix element with q

and n being the wave vector and band index of the electronic states, and the � signs distin-

guish between absorption and emission of phonons.

Excitation of surface plasmon generates a strong field confinement on the surface with the

exponential decay length ðjγðz < 0Þj�1Þ inside the metal, which creates a Lorentzian distribu-

tion for the momentum of the plasmon in the z-direction. This momentum distribution leads to

diagonal intraband transition and introduces a “surface-assisted” plasmon decay [92]

Im εsurfaceðωÞ ¼
ω2

p

ω3
·

3

4
jγðz < 0ÞjvF

� �

2k2

k2 þ jγðz < 0Þj2
, ð25Þ

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πne2=me

p

is the bulk plasma frequency of the metal, vF ¼ ðħ=meÞð3π
2nÞ3=2 is the

Fermi velocity, and n is the bulk carrier density of the metal.

Numerical studies based on the free electron jelliummodel show that in nanostructures, due to

the localization of electronic states and the nonconservation of the crystal momentum,

intraband transitions are enhanced [95, 96, 109]. Using Fermi’s golden rule together with the

free electron eigen states and the dipole field profile, the nanoconfinement contribution is

ImεsphereðωÞ ¼
ω2

p

ω3
·

6vF
π2R

, ð26Þ

where R is the radius of the spherical nanoparticle.

In the Landau damping theory, the lowest-order processes consisting of direct, phonon-

assisted, and surface/geometry-assisted electron-hole pair excitation contribute to the decay

of plasmons [102, 110]. Higher-order processes leading to the excitation of many electron-hole

pairs or many phonons are suppressed due to the phase-space factors at small energies [111].

Only at large energies, the higher-order processes become significant. Being completely
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different from Landau damping, another source of plasmon damping is the resistive loss in the

metal, which can be calculated by means of the linearized Boltzmann equation in the relaxa-

tion time approximation [92], giving

Im εresistðωÞ ¼
4πσ0

ωð1þ ω2τ2Þ , ð27Þ

where σ0 is the zero frequency conductivity and τ is the momentum relaxation time, which can

be derived from the carrier-carrier Coulomb and electron-phonon matrix elements.

4. Plasmons in a two-dimensional electron gas (2DEG)

According to Ritchie [2] and Stern [112], the dispersion relation for 2DEG plasmons is

ω2DEG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nse2

2m�
ε0εðq,ωÞ

qx

s

, ð28Þ

where ns is the surface carrier density. A typical dispersion curve is shown in Figure 8. In the

case of a typical metal-oxide-semiconductor (MOS) system, the effective dielectric function is

given by

εðq,ωÞ ¼ 1

2
εSCðωÞ þ εOXðωÞcothðdqxÞ
� 

, ð29Þ

where εSCðωÞ and εOXðωÞ are the dielectric constants of the semiconductor and oxide layers,

respectively. The oxide layer has a thickness of d. For example, Heitmann [113] and Wilkinson

[114] were able to observe this type of 2DEG plasmons in AlGaAs-GaAs heterostructures. This

result shows clearly that the dispersion curve can be tuned by changing the thickness of the

oxide layer and by altering the gate voltage. Similarly, the plasmon dispersion can be tuned in

atomically thin 2D materials. Since the dispersion relation in Eq. (28) exhibits a
ffiffiffiffiffi

qx
p

depen-

dence for a 2DEG, it is plausible to assume that atomically thin metallic 2D materials follow a

similar dependence, which is indeed the case, as we discuss below in Sections 6 and 7. Since in

a 2DEG

ns ¼
1

Ω

X

jkj ≤ kF, s
1 ¼ 2

ð

d2k

ð2πÞ2
1 ¼ 2

πk2F
ð2πÞ2

¼ k2F
2π

¼ m�
εF

πħ
2
, ð30Þ

the 2DEG plasmon frequency exhibits a
ffiffiffiffiffi

ns
p

∝

ffiffiffiffiffi

εF
p

dependence. Note that the electron-hole

continuum in a 2DEG is determined by a similar formula to Eq. (16). Therefore the gray shaded

area in Figure 8 has similar forms for 3DEGs and 2DEGs.
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5. Static geometry of metallic objects and environment

When the size of the nanoparticle is much smaller than the wavelength of the incident light, the

particle exhibits a dipolar oscillation mode (Fröhlich mode). As the diameter of the nanoparti-

cle is increased, the electrostatic limit is not a good approximation anymore and the multipolar

oscillation modes start to appear. Excitation of these modes gives rise to the broadening of the

resonance [115], as seen from Figure 9b. The LSP resonance redshifts with increasing diameter

of the sphere, which is due to retardation effects [90]. Decreasing the size of nanoparticle less

than mean free path of electrons moves the material band structure and dielectric function

away from the bulk properties and increases the surface scattering that gives rise to broaden-

ing of the absorption spectrum [115], as shown in Figure 9a. The internal field enhancement of

an illuminated spherical nanoparticle is

EiðωÞ

E0
¼

3εm
εðωÞ þ εm

, ð31Þ

where ε and εm are the dielectric functions of the nanoparticle and the medium, respectively.

An ellipsoidal nanoparticle with a shape defined by ðx=aÞ2 þ ðy=bÞ2 þ ðz=cÞ2 ¼ 1 supports an

internal field enhancement given by

EiðωÞ

E0
¼

εm

εm þ LðεðωÞ � εmÞ
, ð32Þ

where L is the shape factor, whose value lies between 0 and 1. For the resonance frequency, the

real part of the denominator is zero, which means the resonance occurs at frequencies when

εðωÞ ¼ εm 1�
1

L

� �

ð33Þ

is satisfied. The shape factor for the axis parallel to the polarization of the incident light (e.g.,

the axis a) is given by

L ¼
abc

2

ð

∞

0

dq

ða2 þ qÞf ðqÞ
, ð34Þ

where

f ðqÞ ¼ ða2 þ qÞðb2 þ qÞðc2 þ qÞ
� 1=2

: ð35Þ

For the core-shell spherical nanoparticles the resonance condition is given by

εc ¼ �2εs
εsð1� f Þ þ εhð2þ f Þ

εsð1þ 2f Þ þ 2εhð1� f Þ

� �

, ð36Þ
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where f ¼ ðrc=rsÞ
3 is the core fill fraction and εc, εs, and εh are the core, shell, and host dielectric

functions, respectively. The resonance frequency is tunable by modifying the shell thickness

and the radius of the core. As shown in Figure 10, due to the hybridization of the plasmon

modes, even in the electrostatic limit there are multiple resonance frequencies [116].

Figure 9. Calculated extinction coefficient per unit volume for a spherical Aluminum nanoparticle of various diameters.

(a) For the case when the size of the nanoparticle becomes smaller than the mean free path of the electron, the linewidth

becomes wider due to increased surface scattering. (b) For the case when the size of the nanoparticle becomes much larger

than the mean free path of the electron, excitation of multipole modes leads to broadening of the linewidth and the

retardation effect leads to a redshift of the LSP resonance peak.

Figure 10. Energy-level diagram of plasmon hybridization in metallic core-shell nanoparticles. The hybridization results

from the coupling between the cavity and sphere surface plasmons.
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6. Plasmon theory for graphene

Graphene is a two-dimensional (2D) material comprised of a single layer of carbon atoms in

a honeycomb lattice. It has unique electrical, optical, and mechanical properties due to its

tunable band dispersion relation and atomic thickness. Because of its unique band structure

graphene possesses a very high mobility and a fast carrier relaxation time [117–121], making it

an attractive candidate for ultrafast electronics and optoelectronics. Exciting surface plasmons

on graphene is a distinct technique to increase absorption with low damping rate. The surface

plasmon couples the electromagnetic (EM) wave to the conductive medium, giving rise to

direct absorption of light by monolayer graphene and providing the opportunity of electrical

tunability of the plasmon resonance frequency, high degree of electric field confinement, and

low plasmon damping rate [122–125]. The increased light-matter interaction results in an

enhanced spontaneous emission rate close to the nanostructure edges [126, 127]. Recent exper-

iments have achieved an absorption of 90% in the mid-IR range by connecting graphene with

high carrier mobility to a silicon diffractive grating [128] and designing graphene nanoribbons

[128, 129], nanodisks [130], and antidot array [125] theoretically. These high carrier mobilities

can be achieved only for mechanically exfoliated graphene. Exciting plasmon on CVD-grown

monolayer graphene with lower mobility than the mechanically exfoliated one reduces the

absorbance to 19% and 28% for graphene nanoribbons [99, 127, 131] and nanodisks [132, 133],

respectively. We show in experiments that the coupling of a patterned CVD-grown graphene

sheet to an optical cavity amplifies the excited LSPs and enhances the light absorption to a

current world record of 45% [134]. We also show that the theoretically achievable enhancement

is 60% for a square lattice of holes [134].

The electric current of graphene in the interaction picture is given by

jxxðωÞ ¼ σðωÞEðωÞ, ð37Þ

where E(ω) is the in-plane electric field and σ(ω) is the interband optical conductivity

σinterðωÞ ¼ �
ie2

ωA

X

k

vx
2 ρvv � ρcc
εc,k � εv,k � ħðωþ iηÞ

ð38Þ

with A being the cross-section area, vx the velocity operator along x-direction, ρvv and ρcc the

digonal elements of the density matrix, εc,k /εv,k the conduction/valence band energy, and η an

infinitesimal value. Using the energy dispersion, εn,k ¼ nvFħjkjwith n ¼ þ1=� 1 for conduction/

valence band and vF ¼ 106m=s, and replacing the summation by the integration inEq. (38) leads to

σinterðωÞ ¼
e2vf

2

2ω

g

4π

ð

∞

0

2πkdkðρvv � ρccÞδðεc,k � εv,k � ħωÞ

¼
e2vf

2

ω

ð

∞

0

kdkðf ðεvÞ � f ðεcÞÞδðεc,k � εv,k � ħωÞ

¼
e2

4ħ
f �

ħω

2

� �

� f
ħω

2

� �� �

,

ð39Þ
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Where g = 4 is the graphene degeneracy and ρ is replaced by the Fermi distribution function f.

By inserting the explicit expression of the Fermi distribution, Eq. (39) is reduced to

σinterðωÞ ¼
e2

4ħ

sinh ħω

2kBT

	 


cosh εF
2kBT

	 


þ cosh ħω

2kBT

	 
 , ð40Þ

where εF is the Fermi energy of graphene, kB is the Boltzmann constant and T is the tempera-

ture. Eq. (40) is the graphene optical conductivity due to interband transition, which is valid in

the visible light spectrum. This result can be derived from the Kubo formula too. When the

energy of the incident light (ħω) and kBT are of the same order and εF is much larger than kBT,

the interband optical conductivity is constant, i.e.,

σinterðωÞ ¼
e2

4ħ
: ð41Þ

For infrared and THz radiation, the Fermi energy can be tuned to become much larger than the

incident photon energy, and therefore due to Pauli blocking there are only intraband transi-

tions. According ot the Boltzmann equation and under the relaxation time approximation, the

carrier distribution in the presence of a constant electric field with x-polarization is given by

f ðkÞ ¼ f 0ðkÞ � qExvxðkÞτðkÞ
∂f 0ðkÞ

∂ε
, ð42Þ

where f 0(k) is the carrier distribution in the absence of the electric field, q is the carrier charge,

and τ(k) is the relaxation time in the presence of electron-phonon interaction, electron-

impurity interaction, and other scattering processes. By using Eq. (42), the electric current is

given by

jx ¼
q

A

X

k

f ðkÞνxðkÞ ¼
�q2Ex

A

X

k

νx
2ðkÞτðkÞ

∂f 0ðkÞ

∂ε
: ð43Þ

In the absence of the external electric field, the net electric current is zero, so the summation of

the first part of Eq. (43) in the electric current is zero. Since ∂f 0ðkÞ
∂ε

is so narrow around the Fermi

surface, only the wave vectors near the Fermi energy contribute to the integration, and τ(k) is

approximately constant. By replacing νx
2ðkÞ with νF

2=2, the intraband optical conductivity

becomes

σintra ¼ �
q2τ

A

νF
2

2

X

k

∂f 0ðkÞ

∂ε
¼ �

q2τvF
2

2π2

ð

∞

0

dk2πk
∂f 0ðkÞ

∂ε
: ð44Þ

For each k there are two energy values in the conduction and the valence bands. Using the

linear dispersion relation, the intraband optical conductivity is reduced to
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σintra ¼ �
q2τ

πħ
2

ð

∞

0

εdε
∂f 0ðεÞ

∂ε
þ

ð

�∞

0

εdε
∂f 0ðεÞ

∂ε

0

@

1

A

¼ �
q2τ

πħ
2

ð

∞

�∞

jεjdε
∂f 0ðεÞ

∂ε

¼
e2τ

πħ
2
2kBTln 2cosh

εF

2kBT

� �� �

,

ð45Þ

where q is replaced by the electron charge (�e) . Assuming εF ≫ kBT, which is usually the case,

the intraband optical conductivty simplifies to

σintra ¼
e2

πħ
2
εF: ð46Þ

In the presense of an oscillating electric field, the relaxation time is a complex function

ðτ�1 ! τ
�1 � iωÞ and the intraband conductivity is given by

σintraðωÞ ¼
e2

πħ
2

2kBT

τ
�1 � iω

ln 2cosh
εF

2kBT

� �� �

, ð47Þ

which in the case of εF ≫ kBT is reduced to [118, 120]

σintraðωÞ ¼
e2

πħ
2

εF

τ
�1 � iω

, ð48Þ

where τ is determined by impurity scattering and electron-phonon interaction

τ
�1 ¼ τ

�1
imp þ τ

�1
e�ph.

The dielectric function of graphene can be obtained via its AC conductivity by means of [135]

εðωÞ ¼ 2:5þ i
σðωÞ

ε0ωd
ð49Þ

where εg = 2.5 is the dielectric constant of graphite. Here d is the thickness of graphene.

The bandstructure of graphene is linear in the tight-binding approximation, as shown in

Figure 11b. The dispersion relation for the TM mode in the geometry depicted in Figure 11a,

which consists of graphene surrounded by dielectrics with constants εr1 and εr2, is given by

[122]

εr1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � εr1ω
2

c2

q þ
εr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � εr2ω
2

c2

q ¼ �
σðq,ωÞi

ωε0
, ð50Þ
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where σ(ω,q) is the conductance of graphene. The semiclassical conductivity σ(ω) does not

depend on q. In the nonretarded regime (q = ω/c), the dispersion relation of the TM mode is

reduced to [122]

q ≈ ε0
εr1 þ εr2

2

2iω

σðq,ωÞ
: ð51Þ

The larger the q (smaller plasmon wavelength), the higher is the transversal confinement of

the TM mode due to excitation of the surface plasmon (SP) on graphene, which is similar to

the case of regular metals. The main difference of SPs on metal and 2D materials is due to

their band structures. While normal metals have parabolic bands, graphene has Dirac cones,

which leads to a novel dispersion relation for the SPs on graphene, as shown in Figure 11c.

The interactions between the substrate and graphene optical phonons and the graphene

plasmons open a band gap in the graphene plasmon dispersion relation, as shown in

Figure 11d, showing the plasmon loss function in the presence of plasmon-optical phonons

interaction given by Eqs. (4)–(6) [134]. The electrons in 2D materials are bound in the

normal direction, which leads to more confinement of the coupled electromagnetic wave

due to plasmon excitation. In graphene, thermalization takes place on a time scale of 100 fs,

while cooling is much slower and happens on a time scale of 10 ps, as seen from Figure 11

[136, 137].

There are two different approaches to obtain the dispersion relation of the surface plasmon. In

the semiclassical approximation, the Drude-like conductivity is used to obtain the plasmon

dispersion relation [122, 138]

qðωÞ ¼
πħ

2
ε0ðεr1 þ εr2Þ

e2εF
1þ

i

τω

� �

ω
2 ð52Þ

and the plasmon loss

Figure 11. (a) Schematic of the patterned graphene layer surrounded by two media of dielectrics εr1 and εr1. (b) The

sketch of intraband (green arrow) and interband (red arrow) transitions after absorbing a photon on the Dirac cone. (c)

The graphene plasmon loss function for the structure shown in part (a) without plasmon-optical phonon coupling. This

function shows the graphene plasmon dispersion relation. (d) The graphene dispersion relation in presence of substrate/

graphene optical phonons.
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Req

Imq
¼ ωτ ¼

2πcτ

λair
: ð53Þ

Another approach that works for both intraband and interband regimes is based on the

selfconsistent linear response theory, known as random phase approximation (RPA) along

with the relaxation time approximation defined by Mermin [139]. The dispersion relation of

the plasmon can be obtained by solving

εRPAðq,ωÞ ¼ 0, ð54Þ

with the complex wave vector q ¼ q1 þ iq2. Considering the Coulomb interaction of electrons

in graphene and the medium dielectric, first and second terms of Eq. (4), one obtains the

plasmon dispersion relation

εr1 þ εr1

2
þ

e2

2ε0q1
Reχðq1,ωÞ ¼ 0 ð55Þ

and the plasmon loss relation [122]

q2 ¼
Imχðq1,ωÞ þ

1
τ

∂

∂ωReχðq1,ωÞ þ
1
ωτReχðq1,ωÞ 1�

χðq1,ωÞ
χðq1, 0Þ

h i

1
q1
Reχðq1,ωÞ �

∂

∂q1
Reχðq1,ωÞ

: ð56Þ

The plasmon losses ðReq=ImqÞ, wave localization ðλair=λpÞ, and the group velocity of the

graphene plasmon ðνg ¼ ∂ω=∂qÞ are calculated by means of the semiclassical approximation

and RPA, as shown in Figure 12 for the Fermi level of εF ¼ 0:135 eV and relaxation time of

τ ¼ 1:35 · 10�13s [122]. Below the interband regime, the plasmon loss, the wave localization,

and the group velocity calculated by RPA are in very good agreement with the semiclassical

approach.

For 2D materials such as graphene, the amount of plasmon loss can be calculated by using

the effective dielectric function of the material. The dynamical polarizability

Figure 12. (a) Plasmon loss, (b) filed confinement, and (c) the group velocity of the graphene surface plasmon for εF ¼ 0:135 eV

and the carrier mobility of μ ¼ 10000 cm2=Vs. The solid and dashed line represent the RPA and semiclassical results, respec-

tively, and the rose shaded area is the high-interband loss region.
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χðq, iωnÞ ¼ �
1

A

ðβ

0

dτeiωnτ〈TρqðτÞρ�qð0Þ〉 ð57Þ

determines several important quantities, such as the effective electron-electron interaction,

plasmon spectra, phonon spectra, and Friedel oscillations. ωn ¼ 2πn
β are the Matsubara frequen-

cies, ρq is the density operator in q-space and A denotes the area. This quantity is calculated in

the canonical ensemble for both of the sub-lattice density operators (ρ = ρa + ρb). The dynamical

polarizability in zeroth-order in the electron-electron interaction in the long wavelength limit is

[140]

χ0ðq, iωnÞ ¼
gsgv
4π2

ð

d2k
X

s, s0¼�

f ss
0

ðk, qÞ
f ðεsðkÞÞ � f ðεs

0
ðjkþ qjÞÞ

εsðkÞ � εs0ðjkþ qjÞ þ iħωn
, ð58Þ

where gs ¼ gv ¼ 2 are the spin and valley degeneracy, f ðεsðkÞÞ is the Fermi distribution func-

tion, and εsðkÞ ¼ sħvFk� εF is the graphene energy. The band overlap of the wavefunctions

f ss
0

ðk, qÞ ¼
1

2
1þ ss0

kþ q cosϕ

jkþ qj

� �

ð59Þ

is a specific property of graphene, where ϕ signifies the angle between k and q. At zero

temperature, the Fermi-Dirac distribution functions are step functions. In that case, using

ωn ! ωþ iδ, Eq. (58) is simplified to

χ0�
T¼0ðq,ωÞ ¼

gsgv
4π2ħ

ð

d2k
X

α¼�

αf�ðk,qÞ

ωþ αvFðk∓ jkþ qjÞ þ iδ
, ð60Þ

where the + and – signs denote the intra and interband transitions, respectively. Integration

over ϕ and k gives the retarded polarizability or charge-charge correlation function

χ0ðq,ωÞ ¼ χ0
εF¼0ðq,ωÞ þ Δχ0ðq,ωÞ, ð61Þ

where

χ0
εF¼0ðq,ωÞ ¼ �iπ

Iðq,ωÞ

ħ
2ν2F

, ð62Þ

and

Δχ0ðq,ωÞ ¼ �
gεF

2πħ2v2F
þ
Iðq,ωÞ

ħ
2v2F

ℵ
ħωþ 2εF
ħvFq

� �

�Θ
2εF � ħω

ħvFq
� 1

� �

· ℵ
2εF � ħω

ħvFq

� �

� iπ

� �

�Θ
ħω� 2εF
ħvFq

þ 1

� �

·ℵ
ħω� 2εF
ħvFq

� �

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

ð63Þ

The two functions Iðq,ωÞ and ℵðxÞ are defined by
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Iðq,ωÞ ¼ g

16π

ħv2Fq
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 � ν2Fq
2

q ð64Þ

and

ℵðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

� lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

Þ, ð65Þ

Where g ¼ gsgv ¼ 4. For ω > qvF and in the long wavelength limit q ! 0, x ¼ jðħω� 2εFÞ=ħ
vFqj≫1, thus x2 � 1 ≈ x2 and ℵðxÞ ≈ x2 � 2lnðxÞ. We derive here the dynamical polarizability in

Eq. (63) in these regimes. The expansion of Iðq,ωÞ gives

Iðq,ωÞ ¼ g

16π

ħv2Fq
2

ω
1� v2Fq

2

ω2

� ��1=2

≈

g

16π

ħv2Fq
2

ω
1þ v2Fq

2

2ω2

� �

: ð66Þ

In this condition and for intraband transitions ħω < 2εF ( ħω < 2μ)

ℵ
ħωþ 2εF
ħvFq

� �

� ℵ
2εF � ħω

ħvFq

� �

¼ 8ħωεF

ħ
2v2Fq

2
þ 2lnj 2εF � ħω

2εF þ ħω
j: ð67Þ

As a result, Δχ0ðq,ωÞ reduces to

Δχ0ðq,ωÞ ¼ � gεF

2πħ2v2F
þ Iðq,ωÞ

ħ
2v2F

8ħωεF

ħ
2v2Fq

2
þ 2lnj 2εF � ħω

2εF þ ħω
j þ iπ

( )

¼ gq2

8πħω

2εF
ħω

þ 1

2
ln

2εF � ħω

2εF þ ħω

�

�

�

�

�

�

�

�

�

�

þ iπ

2

( )

:

ð68Þ

If 2εF ≫ ħω, then

Δχ
0ðq,ωÞ ¼ gq2

8πħω

2εF
ħω

þ iπ

2

� �

: ð69Þ

By taking the decay rate ω ! ωþ iτ�1 into account and inserting Eq. (62) into Eq. (61), the

dynamical polarizability reduces to

χ
0ðq,ωÞ ≈ εFq

2

πħ
2ðωþ iτ�1Þ2

: ð70Þ

In the presence of optical phonons, the effective dielectric function in the RPA regime is given

by Eq. (4), which we restate here for convenience [98, 99]:

ε
RPAðq,ωÞ ¼ εm � vcðqÞχ0ðq,ωÞ � εm

X

l

vsph, lðq,ωÞχ0ðq,ωÞ � εmvophðq,ωÞχ0
j, jðq,ωÞ, ð71Þ

where εm ¼ ðε1 þ ε2Þ=2 is the average of dielectric constants of graphene’s environment. The

collective oscillation modes of the electrons can be obtained by solving ε
RPAðq,ωÞ ¼ 0. The
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extinction function is identified by Z ¼ � δT
T0
, or for the plasmonic structure coupled to an

optical cavity Z ¼ � δR
R0
, where δR ¼ R� R0 and R/R0 is the reflectance with/without plasmon

excitation, which corresponds to the enhanced absorbance at resonance frequencies [129, 131]

Z∝� Im
1

εRPA

� �

: ð72Þ

The loss function represents the amount of energy dissipated by exciting the plasmon coupled

to the substrate and graphene optical phonons. The collective oscillation modes of the electrons

can be obtained by solving ε
RPAðq,ωÞ ¼ 0. Considering the first two terms in Eq. (71) gives the

plasmon dispersion relation of graphene

ħωpðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gαGεFħvFq

2ε0

s

, ð73Þ

where the graphene fine structure constant is given by

αG � e2

εħvF
¼ c

εvF
α, ð74Þ

with α ¼ e2=ħc being the fine structure constant. In the case of graphene on a SiO2 substrate,

εr1 ¼ 1 for air and εr2 ¼ 3:9 for SiO2, which yield αG ¼ 0:9. For suspended graphene,

εr1 ¼ εr2 ¼ 1 and therefore αG ¼ 2:2. Thus, it is possible to tune αG by altering the dielectric

materials surrounding the graphene sheet [141].

It is also interesting to note that in contrast to the εF
3=4
∝n

1=2
0 dependence of the bulk plasmon

resonance frequency in Eq. (20) and the εF
1=2
∝n

1=2
s dependence of the 2DEG plasmon, the

graphene plasmon exhibits a ε
1=2
F ∝n

1=4
s dependence.

In order to show the results for εF > 0, we define two regimes for ℵðxÞ, i.e.,

ℵ>ðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

� cosh�1ðxÞ, for x > 1

ℵ<ðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

� cosh�1ðxÞ, for x < 1
ð75Þ

Using Eq. (60), the imaginary part of dynamical polarization is given by [140]

ImΔχ0ðq,ωÞ ¼ Iðq,ωÞ
ħ
2v2F

·

ℵ>ð
2εF � ħω

ħvFq
Þ � ℵ>ð

2εF þ ħω

ħvFq
Þ, ! 1A

π ! 1B

�ℵ>ð
2εF þ ħω

ħvFq
Þ, ! 2A

�ℵ<ð
ħω� 2εF
ħvFq

Þ, ! 2B

0, ! 3A
0: ! 3B

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ð76Þ

and the real part is obtained by the Kramers-Kronig relation, yielding
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ReΔχ0ðq,ωÞ ¼ �
gεF

2πħ2v2F
þ
Iðq,ωÞ

ħ
2v2F

·

π, ! 1A

�ℵ>ð
2εF � ħω

ħvFq
Þ þ ℵ>ð

2εF þ ħω

ħvFq
Þ, ! 1B

�ℵ<ð
ħω� 2εF
ħvFq

Þ, ! 2A

ℵ>ð
2εF þ ħω

ħvFq
Þ, ! 2B

�ℵ<ð
ħω� 2εF
ħvFq

Þ þ ℵ<ð
2εF þ ħω

ħvFq
Þ, ! 3A

ℵ>ð
2εF þ ħω

ħvFq
Þ � ℵ>ð

ħω� 2εF
ħvFq

Þ: ! 3B

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð77Þ

Different regions are shown in Figure 13. As we mentioned, the plasmon dispersion relation is

determined by εðq,ωp � iγÞ ¼ 0, where γ is the decay rate of the plasmon. For weak damping,

the plasmon dispersion relation and damping are given by

ε0 ¼ vcReΔχ
0ðq,ωpÞ, γ ¼

ImΔχ0ðq,ωpÞ

ð∂=∂ωÞReΔχ0ðq,ωÞ
�

�

ωp

: ð78Þ

The solution of the first part of Eq. (78) exists only for ReΔχ0ðq,ωpÞ > 0, which is valid only for

finite graphene doping andω > vFq. Interestingly, a plasmon does not decay if ImΔχ0ðq,ωpÞ ¼ 0,

which is the case in region 1B shown in Figure 13. For the finite doping ðεF > 0Þ, the acoustic

phonon at long wavelength is inside the region 1A in Figure 13.

Figure 13. Different regions related to the dynamical polarization. The regions are separated by the straight line ω ¼ vFq

(solid), ħω ¼ ħvFq� 2εF (dashed), and ħω ¼ 2εF � ħvFq (dotted). The red-shaded area depicts the region of interband

Landau damping while the green-shaded area marks the region of intraband Landau damping. The radiative interband

Landau damping originating from direct (vertical) transitions occurs at q = 0. The red-shaded area with q 6¼ 0 corresponds

to the region of nonradiative interband Landau damping.
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7. Surface plasmon resonances in 3D topological insulators

So far, we have discussed nanoplasmonics in 3D metals and graphene and their damping

mechanisms. Now we focus on the RPA theory of nanoplasmonics in 3D topological insulator

(TI) materials. In particular, we are going to identify the graphene plasmons as a limiting case of

3DTI plasmons in the case when the thickness of the 3DTI slab becomes atomically thin. Bismuth

selenide (Bi2Se3) is the prime example of a 3DTI material that has a rhombohedral crystal

structure and consists of five atomic layers arranged along the z-direction, known as quintuple

layers (QLs). Two such QLs are coupled by a weak interaction, predominantly of the van der

Waals type. At the vicinity of the Γ point in the Brillouin zone of Bi2Se3, the low energy of Dirac

particles in the xy-plane can be described by the effective Hamiltonian [142, 143],

HTI ¼ ħvf ðσ ·k � ẑÞ � EF, where z is the unit vector in a z-direction. In the case of graphene, it is

the pseudospin, representing the two sub-lattice indices, which is locked to themomentum of the

electron. The chiral nature of the electronic states with the spin locked in perpendicular direction

to the momentum results in a unique type of collective excitations which are, indeed, accompa-

nied by transverse spin fluctuations [142, 143].

Let us consider a slab of a 3DTI material of thickness d > 5 nm, which is large enough to suppress

any overlap of the single-electron states between the top and the bottom layers. In contrast, long-

range Coulomb interaction exists and couples the opposite surfaces as in 2D electron plasmas.

We consider a Hamiltonian that describes the properties of collective oscillations on the top

and the bottom surfaces of a 3DTI material as [142]

Hl=l 0 ¼ ħvf
X

α, β, k, l, l0
aþk, l,αðτ ·kÞ � ẑak, l,β þ

1

2S

X

q, l, l0
υ
l, l

0 ðqÞnq, ln�q, l
0 , ð79Þ

where lðl
0

Þ indicates the top (bottom) surface, α, β are spin indices, a is the annihilation

operator, and S is the surface area. nq, l ¼

X

k,α

aþk�q, l,αak, l,α is the density operator, and

τ ¼ fτx, τyg are the Pauli matrices. With a long-range Coulomb interaction within the RPA,

the response function can be written as

χ2x2
RPA ¼

χ2x2
0 ðq,ωÞ

1� υðqÞχ2x2
0 ðq,ωÞ

, ð80Þ

where χ2x2
0 ðq,ωÞ ¼

χ11 0
0 χ22

� �

is a 2 · 2 matrix. υðqÞ is a 2 · 2 matrix whose diagonal and

off diagonal elements are the two-dimensional Fourier transforms of Coulomb potentials and

can be obtained by solving Poisson’s equation [144]. Similar to the RPA dielectric function for

graphene shown in Eq. (71), the equivalent equation for the RPA dielectric function in 3DTIs is

ε2x2RPAðq,ωÞ ¼ 1� vðqÞχ2x2
0 ðq,ωÞ: ð81Þ

Compared to graphene, the main difference is that υðqÞ is a 2 · 2 matrix accounting for the

intrasurface and intersurface interactions. Here we write these expressions as
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υ
11=22ðqÞ ¼

4πe2ε2

	

coshðqdÞ þ ðε3=1=ε2ÞsinhðqdÞ



q
	

ε2ðε1 þ ε3ÞcoshðqdÞ þ ðε1ε3 þ ε2ÞsinhðqdÞ

 ð82Þ

for the intrasurface interaction, and

υ
12ðqÞ ¼ 4πe2ε2

q
	

ε2ðε1 þ ε3ÞcoshðqdÞ þ ðε1ε3 þ ε2ÞsinhðqdÞ

 ð83Þ

for the intersurface interaction. εi (i = 1, 2, 3) are the dielectric functions for the top, middle, and

bottom layers, respectively. In the limit of equal dielectric constant, ε1 ¼ ε2 ¼ ε3 ¼ ε,

V11 ¼ V22 ! 2π2e2=εq, and V12 ¼ V21 ! ð2π2e2=εqÞe�qd. This shows that for a given wave

vector the intrasurface Coulomb interaction depends on the dielectric constant of the materials,

the intersurface Coulomb interaction not only depends on the dielectric constant, but is also

modulated by the negative distance-dependent exponential factor. For a sufficiently thick slab,

i.e., qd ! ∞, the top and the bottom surfaces are completely decoupled and therefore we obtain

the limit of V12 ¼ V21 ! 0, and thus we only have a nonzero intrasurface potential. This is the

case that is equivalent to the Coulomb interaction in a sheet of graphene.

The response function χ provides important information about the collective states that are

excited at small transferred momentum. The collective mode frequencies of the system can be

obtained by solving Det½1� υðqÞχ2x2
0 ðqÞ� ¼ 0. In the region vf q < ω < 2Ef =ħ� vf q, collective

modes of oscillations are undamped. Beyond that limit, such modes are not observed because

the energy of the modes is transferred to the particle-hole excitations. In Section 6, we derived

the dynamical polarizability for the case of a graphene sheet. For vf q < ω with Im½χ� ¼ 0, the

linear response function can be written as [144]

χ
l=l

0

nn ðq,ωÞ ¼ � E
l=l
F

0

2πħ2υF2
þ 1

16πħ

q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 � ðυFqÞ2
q · G

2E
l=l
F

0 þ ħω

ħυFq

 !

� G
2E

l=l
F

0 � ħω

ħυFq

 !" #

, ð84Þ

where GðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

� cosh�1ðxÞ. Using the relation for the relative permittivity εr ¼ 1þ χ,

the linear response function given by Eq. (84) is obtained from Eq. (61) in the long wavelength

limit. This charge-charge response function describes explicitly the dispersion of the collective

modes exist on the two sides of a slab geometry of a 3DTI slab. Using Eq. (80), the pole of

Det½1� υðqÞχ2x2
0 ðqÞ� ¼ 0 can be solved with the help of Eq. (35). The potential υ(q) is a 2· 2

block diagonal (corresponding to spin and charge) for two surfaces. In the limit of an infinitely

thick slab, we recover the intrasurface potential for υðqÞ and the corresponding mode for

graphene. The two modes in the long wavelength limit are: the symmetric (photon-like) mode

and the antisymmetric (plasmon-like) mode. At a thickness below the Thomas-Fermi screening

length, the symmetric mode is highly Landau damped. In Figure 14, we show the antisym-

metric mode for a slab of thickness 120 nm at different Fermi energies of 0.3, 0.2, and 0.1 eV,

taking into account the inter and intrasurface potentials given in Eqs. (82) and (83) in the q! 0

limit of the RPA response function. This result can be compared with the experimental obser-

vation of the Dirac plasmon dispersion in Bi2Se3 [145].
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In the limit of small thickness of the slab, when the condition qd ! 0 is satisfied, the antisym-

metric photon-like mode behaves as

ω2
ant ¼

v2f kfαD

ε1 þ ε3

1þ ξ

2

� �1=2

þ 1� ξ

2

� �1=2
" #

q ð85Þ

and the symmetric plasmon-like mode as

ω2
sym ¼

v2f kfαD
ffiffiffi

2
p

ε2

ð1� ξÞ1=2ð1þ ξÞ1=2

ð1� ξÞ1=2 þ ð1þ ξÞ1=2

" #

dq2, ð86Þ

where ξ ¼ ðn1 � n2Þ=ðn1 þ n2Þ is the density polarization and kf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πðn1 þ n2Þ
p

is the total

Fermi wave vector. αD ¼ e2=ħvf is the fine structure constant for the Dirac system. It is to be

noted that indices 1 and 2 indicate two different surfaces. For equal Fermi energy at the top and

the bottom surfaces, the density polarization reduces to zero, resulting in an equilibrium situa-

tion. When the thickness of the slab tends to zero, we recover only the antisymmetric mode,

which is the mode obtained for a sheet of graphene. As the slab thickness goes to infinity, the two

surfaces interact weakly and the intersurface potential falls rapidly as the thickness increases. In

this case, we obtain that the two antisymmetric modes each correspond to a single sheet of

graphene. Using a series expansion of the frequency, it is possible to obtain a more accurate

solution for the symmetric mode, which is derived elsewhere [144]. The solution is given by

ωsym ¼
ffiffiffi

2
p

ε2 þ αDkf d
	 


vf q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ε2 ε2 þ
ffiffiffi

2
p

αDkf d
	 


r
� �

ð87Þ

Figure 14. Plasmon dispersion in Bi2Se3 slab of thickness 120 nm at different Fermi energy with top and bottom dielectric

constant of 1 and 9.3, respectively, taking full potential and q ! 0 limit. Only the antisymmetric mode is shown here.
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For a size of the slab smaller than the mode wavelength, i.e., d < λp, the antisymmetric mode is

independent of thickness, and the symmetric mode has a d2 dependence. The plasmon disper-

sions for the limit of qd! 0 for symmetric and antisymmetric modes with 10 and 20 nm of slab

width at different dielectric environments are shown in Figure 15a. The electric field profiles

along (Ex) and perpendicular (Ez) to the plasmon polarization direction are shown in

Figure 15b for a thin slab of thickness 10 nm with ε1 ¼ ε3 ¼ 3:8 for an antisymmetric mode.

We also show the Landau damping regions with a blue shade given by the line segments

ω ≤ υFq and ω ≥ 2EF � υFq, in complete analogy to Figure 13. The distribution of excited “hot”

carriers is limited to a narrow region around the Fermi level. In quasi-equilibrium, the hot

carrier distribution can affect the plasmon lifetime.

The topological surface states are extended inside the bulk with a localization length given by

lo ¼ ħvf =Eg where Eg is the bulk bandgap. lo is equal to 1.5 nm (~2 quintuple layer (QL)) in

Bi2Se3. Due to the quantum confinement of the carriers, two different conductivities arise: one

due to the topological surface states that extend to 2 QL and the other one due to the 2DEG

trapped below the surface, which extends up to 8 QL [146]. Theoretically, it should be possible

to separate out the two different effects and write the response functions as χ ¼ χTI þ χ2DEG for

two independent channels. The contribution of the 2DEG to the plasmon dispersion can be

calculated separately [147].

Surface plasmons in 3DTI surfaces do not consist only of charge density waves but are also

accompanied by spin density waves due to inherent nature of spin-momentum locking. This

can be qualitatively understood by calculating the surface current in terms of the spin and

charge quantity by J ¼ vfσ · ẑ. The continuity equation ∂nq=∂t ¼ �∇ � J shows that the charge

density nq oscillates in phase with the transverse spin sT ¼ ẑ � ðq̂ · sÞ, and the amplitude of

their ratio is given by sT=nq ¼ 1=ħvf EFαDvf =2q
� 1=2

, which can be much larger than unity in the

Figure 15. (a) Symmetric (dotted) and antisymmetric (solid) modes of plasmon dispersion in 3DTI in the limit of qd ! 0

for the slab thickness of 10 and 20 nm (Eqs. (7) and (9)). The Landau damping region is shown with the blue shade,

determined by ω ≤ υFq and ω ≥ 2EF � υFq. (b) The electric field profile of surface plasmons along and perpendicular

direction of polarization for antisymmetric mode (plasmon-like mode) in a slab of thickness 10 nm.
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long wavelength limit [142]. To understand the electromagnetic response of spin and charge

oscillations in a selfsustained mode, we write the induced potential V ind ¼ υðqÞχ4x4
0 ðq,ωÞV ind

under vanishing external perturbation [147]. One can solve again for the pole
	

1� υðqÞχ4x4
0 ðq,ωÞ




V ind ¼ 0 in order to obtain the explicit expression for the induced poten-

tial. This time, both the spin and charge part of the response functions are included, i.e., the

solutions include the explicit information of the spin and charge oscillations. The solutions to

the induced potential proportional to

V�
ind ∝

1
0
y�

0

0

B

B

@

1

C

C

A

, ð88Þ

where yþ ¼ 1 and y� ¼ �
El
F

El
0

F

. The induced charge density is calculated from the response

function ρ ¼ χ4x4
0 ðq,ωÞV ind. Spins are inherently attached to the momentum as accounted by

the complete response function given by Eq. (80). The symmetric and antisymmetric modes are

purely spin-like and purely charge-like for a slab of 3DTI. This can be seen in the following

expressions in the limit of qd ! 0 as
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� �
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�
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for the antisymmetric mode, and
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� �

¼ ρ

1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αDdðE
l
F ·E

l
0

FÞ

ħυFqεTIðE
l
F þ El

0

FÞ

v

u

u

t

�1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αDdðE
l
F ·E

l
0

FÞ

ħυFqεTIðE
l
F þ El

0

FÞ

v

u

u

t

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

ð90Þ

for the symmetric mode, where ϕ1 ¼
ρl

sl

� �

and ϕ2 ¼
ρl

0

sl
0

 !

, and the indices l and l0 can be

chosen to represent the top and the bottom surfaces. Clearly, charges oscillate in phase and

spins oscillate out of phase for antisymmetric mode, whereas spins oscillate in phase and

charges oscillate out of phase for the symmetric mode on the top and the bottom surfaces.
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It has been observed that the phonon modes in Bi2Se3 have frequencies of around 2 THz. Since

the phonon modes overlap with the plasmon modes in energy space, there is a possibility of

mode hybridization, similar to the case of graphene. In a micro-ring structure of Bi2Se3, there

are bonding (lower) and antibonding (upper) plasmon modes [148]. The antibonding plasmon

mode frequency is much larger than the phonon mode frequency, and the bonding plasmon

mode overlaps with the phonon mode, resulting in hybridization in two branches with an

interaction frequency of around 0.35 THz.

Recently, in Ref. [149], authors investigated the possibility of obtaining SPPs in Weyl semi-

metals. In Weyl semimetals such as TaAs, NbAs, YbMnBi2, and Eu2Ir2O7 [150–152] the valence

and the conduction band touch in isolated points of the Brillouin zone close to the chemical

potential, and their dispersion is described by an equation similar to the one for Dirac metals.

A pair of Weyl nodes appears with opposite chiralities with a distance of b in the reciprocal

space. Their topological properties are described by Sθ ¼ e2

4πħc

ð
dt

ð
d
3
r θ E:B, where

θ ¼ 2ðbr� botÞ. Sθ is an important parameter that alters the electrodynamics of the bulk

response to an applied electric field. In such a system, the authors found that the SPPs with

b 6¼ 0 have properties similar to those in ordinary metal SPPs in the presence of an external

magnetic field, despite their unique origin. Therefore, the θ term that contributes to the

dielectric tensor originating from the anomalous Hall displacement current induces an anom-

alous surface magnetoplasmon. Interestingly, for certain orientations of the surface of the Weyl

semimetal, the authors predict the nonreciprocal dispersion of SPPs, i.e., the propagation of the

SPP is unidirectional.

8. Conclusion

In this book chapter, we present descriptions of the plasmonic properties of metal nanostructures

of different geometry, their size dependence, and applications in modern nanotechnology. We

show dynamic control over the plasmon resonances where a shift up to 125 nm at a density of

1022 cm�3 can be achieved using a pump-probe technique. This provides the opportunity to

utilize plasmonics in modern information processing devices. In addition to plasmonics in 3D

metal nanostructures, we present a description of graphene and 3DTI plasmonics using classical

and quantum perspectives. Using the RPA theory, we obtain symmetric and antisymmetric

modes in a slab of 3DTI, which reduces to a graphene plasmonics in the limit of zero thickness

of the slab. Surface plasmon (SP) damping mechanisms are interesting due to their potential

applications for enhanced current density that comes from SPs nonradiative damping in

nanostructures smaller than the skin depth. We present a quantum theory of SPs damping in

metals and layered materials like graphene.

There are several potential applications of the nanoplasmonics in graphene and 3DTI. Graphene

and 3DTI are potential candidates for nanospasers that utilize Dirac fermions, unlike the massive

electrons or holes in the originally proposed spasing scheme by Bergman and Stockman in

2003 [153]. The spaser is a nanoplasmonic counterpart of a laser, where photons are not

emitted. In Ref. [154], the authors have proposed a scheme of nanospasing using a sheet of

graphene with an electrically pumped cascaded quantum well structure working as a gain
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medium. For the range of Fermi energy, it was shown that spasing could be potentially

obtained for a plasmon relaxation time of several femtoseconds in the mid-IR range. A similar

scheme with an optically pumped nanospaser for a slab 10 nm of 3DTI was proposed in Ref.

[155]. It is advantageous to use a 3DTI, such as Bi2S3, as a nanospaser due to the possibility of

using its bulk as a gain medium and the surface as a medium that supports SPPs. This

configuration avoids the use of a separate gain medium to provide the feedback for the SPPs.

Therefore, a 3DTI nanospaser can be truly nanoscopic and can be used for various applications

in physics, chemistry, and biology.
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