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Abstract

Mobilisation into groundwater of many trace elements are redox dependant and of health 
concern. A short list includes arsenic, manganese, chromium, selenium, nitrogen as nitrate 
and uranium. Arsenic is mobile in groundwater essentially under two conditions, under 
reducing conditions mobilising ferrous iron and arsenite and at high pH when the fer‐
ric oxyhydroxides lose their positive charge. Manganese is mobilised under moderately 
reducing conditions as Mn2+ and might affect the mental capacity at chronic exposure 
from drinking water. Chromium is mobile as carcinogenic chromate under oxidising con‐
ditions. Manganese oxides may oxidise Cr(III) solids. Chromium may come from natural 
as well as anthropogenic sources. Selenium, an essential element, rarely exceeds permis‐
sible limits but irrigation with groundwater with elevated selenium could cause toxic 
selenium intake via food. Selenium is mobile in groundwater under oxidising conditions. 
Nitrate from excess use of fertilisers may be a problem for bottle-fed children below the 
age of 1 year, forming methaemoglobinemia. Uranium is mobile under oxidising condi‐
tions as U(VI). Mobility and toxicity depends on numerous factors. The threat from ura‐
nium is its effect on the readsorption in the kidney of water and salts from the primary 
urine. Oxidation state and speciation govern uranium mobility.

Keywords: redox, groundwater, trace elements, mobility, health

1. Introduction

Groundwater is by far the largest fresh water resource on the globe. It is often a safe drinking 

water source from bacteriological point of view, and the development of safe wells in many coun‐

tries has saved millions of children in particular. However, the development of deeper sources 

of groundwater has implied redox reactions that may mobilise elements that are toxic, such as 

arsenic and manganese. Other elements of health concern whose mobility is redox‐dependant 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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may be introduced from natural and/or anthropogenic sources such as chromium, uranium and 

nitrogen. This contribution will present the processes behind the mobility with examples from 

hydrogeology and hydrochemistry on a global scale.

To get a simple overview of the redox reactions in nature a so‐called aerobic/anaerobic stair 

case including only major redox‐sensitive species in groundwater could be used (Figure 1). 

In reality, the ‘steps’ are numerous if all elements, including trace elements are taken into 

account.

While pH is related to the activity of protons, Eh or redox potential is related to the activity 

of electrons (Figure 2). To define a specific redox level, Eh measurements with a platinum 
electrode and a reference electrode, commonly an Ag/AgCl electrode, are helpful but often 

difficult to interpret [1]. However, it is essentially the Fe(II)/Fe(III) couple that can be relied 

upon provided the concentrations of both species are not too small. Most redox measure‐

ments mirror a mixed potential [2]. Many species are not electrically active at the platinum 

electrode. ZoBell’s solution is commonly used to check the electrodes [3]. The redox potential 

should preferably be measured in a so-called flow-through cell to avoid any air to come in 
contact with the groundwater. Speciation of the form of the elements is another tool that can 

be applied for instance for separating As(III) from As(VI). Numerous methods of speciation 

are published (e.g. [1, 4]).

In general, the species that are more mobile are anions as the cations in the form of most heavy 

metals are quite strongly adsorbed to clay minerals and organic matter at around neutral and 
alkaline pH while anions, adsorbed onto ferric oxyhydroxides and aluminium compounds, are 

less adsorbed at moderately alkaline conditions and not at all above zero points of charge (ZPC) 

(Figure 3) which is at a pH of 8.2 for ferric oxyhydroxides. Reducing conditions with the reduc‐

tion of ferric iron to soluble ferrous iron is another case of the failure of adsorption of anionic 

species.

Figure 1. The aerobic/anaerobic ‘staircase’ for major elements in groundwater.
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2. Arsenic

Arsenic is an element that has been known and used by mankind since the Bronze Age to 

make bronze stiffer. It has been introduced in society for different purposes such as for the 
removal of air bubbles in glass in medieval times. In the eighteenth century, it was used to 

cure different ailments. Its toxicity has been known for long time. A step forward in detection 

Figure 2. The Eh‐pH diagram for arsenic with an overlay of iron.

Figure 3. Adsorption of cationic and anionic species.
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of low concentrations of arsenic was done by Berzelius, a Swedish chemist, who invented a 

qualitative but sensitive analysis [6]. Arsenic in groundwater has been known for quite some 

time; however, an extensive epidemiological investigation warranted the lowering of the safe 

level from 50 to 10 μg/l by WHO and that was adopted in most countries.

Arsenic is mobile in groundwater under two conditions, in a reducing environment as arse‐

nite (As(III)) and in an oxidising environment at elevated pH as arsenate As(V). The mobility 

is closely related to the chemistry of iron oxyhydroxides. Under ferric‐reducing conditions, 

the arsenite adsorbed onto the ferric compounds is released when the adsorbent is mobilised 

as soluble ferrous iron. Under oxidising conditions, the arsenate is mobilised at pH above 8.2, 

the ZPC for ferric oxyhydroxides.

In the 1990s, it was discovered that groundwater in many aquifers in south and southeast 

Asia had levels of arsenic that threatened the health of millions of people. In the Bengal delta 

in Bangladesh, 35–75 million people are exposed to excess arsenic depending on whether the 

50 or the 10 μg/l level limit is used. Symptoms of arsenicosis were seen by a doctor in West 

Bengal in India and groundwater analysis showed high contents of arsenic [7]. In Bangladesh, 

the child mortality was high before the 1960s due to the use of bacteriologically polluted 

surface water. The switching over to cheap wells down to a depth of ~30–50 m meant a radi‐

cal decrease in mortality but after 10–15 years, the slow poisoning with arsenic from those 

wells became evident. The discovery evoked a discussion about the mechanisms behind the 

elevated levels of arsenic amounting even up to mg/l. An initial hypothesis was that the intro‐

duction of wells had lowered the groundwater level and allowed oxygen to diffuse into the 
sub‐ground level causing oxidation of arsenopyrite (Figure 4). However, a common feature 

of the polluted groundwater was high contents of dissolved iron and it turned out to be a 

completely internal process in the sediments where organic matter degraded under anaerobic 
conditions by bacteria using ferric iron as an oxidant dissolving ferric oxyhydroxides, releasing 

arsenic in the form of arsenite into the groundwater [8] (Figure 4). The arsenic content in the sedi‐

ments is moderately higher than elsewhere due to sources like rocks in the Himalayas [9]. This is, 

however, not the cause for the mobilisation of arsenic in the groundwater in the Bengal delta 

and the Gangetic plain; the redox level in the sediments is the reason.

Further work has shown that deeper wells are safe with a higher redox level than the shallower. 

This can be traced back to glacial times. The sediments deposited during Pleistocene, before the 

last glacial maximum (LGM) when the sea level was lowered at a geologically rather fast rate, 

Figure 4. A hypothesis regarding the mobilisation of arsenic in the Bengal delta.
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were deposited under rather oxidising conditions, and they were due to the lowering of the 

sea level subject erosion and resedimentation. Contrary, after the LGM when the sea level rose, 

there was more formation of wetlands allowing the introduction of more organic matter in the 
postglacial sediments.

While the removal of arsenic from the groundwater functions technically, it does not work 

socially as women who are expected to handle the filters are too burdened by daily tasks [10, 11].  

However, it has been found that safe sediments can be identified by their colour. This is a 
practice that was found out by local drillers in search for low‐iron groundwater. What they 

did not know was that low‐iron groundwater is also low in arsenic (Figure 5) [12]. The colour 

code tool has been developed from a large number of sediment samples paired with many 

groundwater analyses. The colour scheme that has been used is the Munsell Colour code [13]. 

As indicated above, the Pleistocene sediments at around 100 m depth were likely to be a good 

target. The colour code was tested on 243 wells drilled to around that depth [14]. The predic‐

tion of safe groundwater below 10 μg/l is 91%, while low manganese, below WHOs technical 

guideline at 400 μg/l, can be achieved in 89% of the cases [14].

Another colour tool mirroring the redox conditions in the groundwater is the colour of the 

platforms at hand pumps in the Bengal delta [15]. Red precipitates of ferric hydroxide indi‐

cate an iron‐reducing groundwater which has often, in the Bengal delta, elevated arsenic con‐

centrations. A black platform with precipitates of manganese oxides mirrors a higher redox 

level where the arsenic concentrations are lower.

Another mechanism of mobilisation of arsenic may occur under oxidising conditions at an 

elevated pH above the ZPC of the major adsorbents, ferric oxyhydroxides of different types. 

Figure 5. A simplified colour code to identify low arsenic groundwater in the Bengal delta [12].
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This is common in the Andes in South America [16]. The arsenic is then present as arsenate, 

and the high pH of groundwater tends to be of the Na‐HCO
3
 type [17].

3. Manganese

Manganese in groundwater has been considered as a technical problem causing blackish 

flushes in tap water after oxidation of the Mn2+ to Mn oxides in the distribution networks. 

Manganese inhaled from air has neurological effects known from metallurgical industries [18]. 

Recently, however, reports have come to indicate that chronic exposure of children to manga‐

nese in drinking water may affect their intellectual capacity [19]. So far, there are three reports 

that are comparable, from Quebec in Canada [19], from Mexico [20] and from Brazil [21], and 

that give concern regarding the neurotoxicity of manganese in drinking water. A summary of 

the findings regarding toxicity is published from a conference [22]. Manganese is an essential 

element and the major intake is via food. Elevated intake via drinking water by women may 

be positive for foetal survival [23] but foetal growth may be impaired [24]. The intake of man‐

ganese via drinking water is smaller but seems unregulated. This is mirrored in hair in which 

the concentration increases with that in drinking water but not with the intake via food. The 

Mn2+ seems to be taken up by the divalent metal transporter 1 (DMS-1) and be affected by, for 
instance, iron status [25]. A hypothesis, as humans have not developed a regulation, could be 

that moderately reduced groundwater from larger depth has, in the history of mankind, not 

been a common way to get drinking water but rather from surface water and springs.

4. Chromium

Chromium is a genotoxic carcinogen and Cr(VI) is due to its similarity with sulphate taken up 

by the same pathways. While excess arsenic in groundwater is often a natural phenomenon, 

the occurrence of chromium is natural as well as anthropogenic. In Greece, a groundwater 

plume up to 160 μg/l was studied [26]. It was found to be essentially natural but with an 

anthropogenic component in one area. Chromium is used in stainless steel but major pollu‐

tion by chromium is from leather tanning and electroplating. Cr(III) forms solid phases in a 

reducing environment in groundwater but is mobile as Cr(VI) under oxidising conditions. 

Cr(III) can be oxidised to Cr(VI) by manganese oxides commonly present in soils [27–30].

  Cr   (  OH )    
 2   + 
   + 1  .5 MnO  

2
   ↔  HCrO  

 4   − 
   +1  .5 Mn   2+   (1)

Kazakis et al. [31] have studied the oxidation of Cr(III) on surfaces of mafic minerals and con‐

cluded that it was mediated by manganese oxides. Chromium tends to be present at higher 

levels not only in ultramafic rocks present in Greece but also elsewhere in the world [32]. 

Cr(VI) is mobile in groundwater but its mobility is pH dependant, being higher at elevated 

pH levels depending on the fact that the main adsorbents aluminium and iron oxyhydroxides 

lose their positive charge at pH above 8 [28]. Soluble organic complexes decrease the  oxidation 

Redox - Principles and Advanced Applications230



rate due to complexation with Cr(III) [33]. These authors studied the use of tannery waste for 

increasing the organic matter content in soils. Cr(VI) may be oxidised to chromate even in 
an organic matrix like tannery sludge provided the oxygen is high enough [34]. Chromate 

may then be leached, and it may pollute the groundwater. A number of actions to decrease 

chromium leaching from leather tanning are proposed [35]. In Punjab, in northwestern India, 

a sand delta was detected at levels of 5 mg/l at 60 m depth, in this case from electroplating 

activities [36]. At a level below 2 mg/l in drinking water, chromium can be reduced to Cr(III) 

which is not taken up by humans.

5. Selenium

Selenium which is an essential metalloid is a part of selenoproteins in the human body. Selenium 

is ingested via food and drinking water. The concentration varies largely when seen in a global 

context. The lowest contents are seen in Sweden in the order of 0.1–0.2 μg/l while as high as 

480 μg/l are seen [37, 38]. The current guideline is seldom exceeded in drinking water [39]. 

Nevertheless, these authors demand more studies and especially what concerns specific spe‐

cies of selenium in groundwater. Inorganic species are, as per their results, considerably more 

toxic than organic species [39]. Selenium deficiency is common in, for instance, Sweden and 
Finland. In Finland, action has been taken by adding selenium to commercial fertilisers [40]. This 

selenium is considered to reach humans mainly via the food and the serum‐Se has increased 

while so far no obvious positive health effects are seen in humans but they are seen in animals. 
However, in Punjab, in northwest India, groundwater concentrations above 300 μg/l have been 

recorded [41]. In part, the selenium is likely to come from food as groundwater irrigation is com‐

mon which has caused the accumulation of selenium in cultivated soils. Selenosis in the form of 

malformed nails is observed [41]. In the area, the main source of selenium is food, contributing 

about 90% of the total intake [42].

Selenium has a complicated redox pattern with the main species in groundwater being Se(IV) 
and Se(VI) [1]. Oxidising conditions increased the leaching from soils in the form of Se(VI).

6. Uranium

Uranium is present in rocks in amounts from less than 2 to a few 100 mg/kg. Lowest content is 

found in ultrabasic rocks while black shales of marine origin can have hundreds of mg/kg [43]. 

Uranium is well common in granites and is mobile under oxidising conditions. Uranium has a 

large number of complexes and their mobility depends on their charge, uncharged species being 

more mobile. Uranium is a risk from both the radiation point of view as well as a chemical risk 

point of view. It seems that in many cases, the chemical risk is the one that is most important [44, 

45]. Its guideline values have been changed repeatedly over the last 13 years and its current pro‐

visional guideline is now, what concerns the chemical risk, 30 μg/l [46] (Table 1). The chemical 

risk is its effect on the secondary uptake of water and salts from the primary urine formed in the 
kidney cortex [45, 47]. The radiological guideline is different for 234U and 238U being,  respectively, 
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1 and 10 Bq/l [46]. The uptake by humans of different uranium complexes varies consider‐

ably. A speciation of uranium complexes can be calculated from an ICP‐MS (Induced Coupled 

Plasma combined with Massspectrometer) analysis by Visual MINTEQ [48] or PHREEQC [49]. 

Uranium in groundwater is high especially in granitic terrains, for example, in Sweden and 

Finland. Another source of uranium is in the form of phosphate fertilisers as phosphate rocks 

have elevated uranium contents [50]. In an area in southern central Finland, the total uranium 

levels in groundwater were, in some samples, above 3000 μg/l while no health effects were seen 
[51]. This is far above the current WHO health limit of 15 μg/l. A speciation of the uranium in 

relatively alkaline groundwater (pH > 7.3) showed that the major portion of uranium was present 

as calcium‐uranyl‐carbonato complexes (CaUO
2
(CO

3
)

3
2− and Ca

2
UO

2
(CO

3
).11H

2
O). Thus, these 

complexes do seem to be less toxic or less bioavailable. There seems to be an interaction with the 

iron status such as the uranium uptake may be higher at iron deficiency [45, 52] which, by these 

authors, was considered as an action of divalent metal transporter 1 (DMT‐1).

Mobility of uranium in groundwater is affected by a large number of factors. In general, U(IV) 
is less mobile than the oxidised form U(VI) [53]. This is true for several actinides and has been 

considered in the search for safe repositories for radioactive waste [54]. As mentioned above, 

uranium forms numerous complexes among then carbonate complexes. Elevated bicarbonate 

contents in groundwater form soluble carbonate complexes [55]. When removing the uranium 

ex-situ by filter, for instance, it is important to know the speciation [56].

The reduction of uranium is in part not only inorganic but also bacteriologically mediated 

by Moon et al. [57]. The microbial reduction results in isotope fractionation [58]. There is a 

considerable community of bacteria even at hundreds of meters in hard rock terrains [59, 60]. 

One of the substrates for uranium sequestration could be acetate [53]. Sulphate‐reducing con‐

ditions are most favourable for the reduction from U(VI) to U(IV) [53, 61]. Species involved in 

the reduction are Desulfobacter, Desulphoropalus and Desulfovibrio spp. [53]. Oxidation of Fe(II) 

to Fe(III) can also reduce U(VI) to U(IV) [61].

An example of the redox behaviour of uranium is sandstone‐hosted uranium deposits formed 

by groundwater flow with low concentrations of uranium reaching a redox barrier where the 
U(VI) is reduced to U(IV) and accumulates as an ore‐body. These deposits are now commonly 

Element Guideline value Note

Arsenic 10 μg/l Provisional

Chromium 50 μg/l Provisional

Manganese (400 μg/l) Technical

Nitrate 50 mg/l

Selenium 40 μg/l

Uranium 30 μg/l Provisional

Table 1. Elements exhibiting redox-sensitive behaviour with guideline values. The figures are derived from WHO [5] 

and regard guidelines due to health reasons. For manganese only a technical guideline is established.
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extracted by in situ recovery with injection of an oxidising solution forming U(VI) and prefer‐

ably forming an uncharged complex [62]:

   UO  
2
    (  uraninite )     + ½ O  

2
    + 2H   +  →  UO  

2
        2+   (  uranyl )     + H  

2
   O  (2)

Complexation with calcium:

   UO  
2
        2+   + 2Ca   2+   + 3HCO  

3
   →  Ca  

2
    (   UO  

2
   )     (   CO  

3
   )    

3
        0   + 3H   +   (3)

This technology is considerably more environment friendly compared with conventional 

mining which leaves tailings containing leftover uranium.

7. Nitrogen

Nitrogen is a major nutrient in soils and its cycle has been affected to a large extent by anthro‐

pogenic industrial nitrogen fixation, fertiliser production. The nitrogen fixation in nature 
was passed by the anthropogenic in the 1980s [63]. When organic matter like litter degrades, 
ammonia is formed. Ammonia is strongly adsorbed on clay minerals and to organic matter, 
and elevated concentrations are only found close to a point source. Nitrate, on the contrary, is 

mobile unless it is taken up by plants. While nitrate in surface water may be part of eutrophi‐

cation, the main risk with nitrate in groundwater is as the formation of methaemoglobinemia 

and the decrease of the oxygen‐carrying capacity of the red blood cells from the lungs to 

peripheral tissues [64]. This affects children below the age of about 1 year that are bottle fed 
with high nitrate water. Above the age of 1 year, humans develop an enzyme that recovers 

the normal haemoglobin. Methaemoglobinemia is not common; a few thousands of cases are 

reported. Nitrate converted to nitrite in the intestinal tract may be carcinogenic [65]. Nitrate 

is reduced to nitrite in the intestinal tract and nitrite may form nitrosamines and elevate the 

risk of gastric cancer [66]. Above all, nitrate in groundwater is a resource in a wrong place; it 

should be present in the root zone to promote crop growth.

8. Interactions between elements

In a redox reaction, there is an electron donor and an electron acceptor. Among the elements 

dealt with above, there are interactions. Oxygen is a common electron acceptor under oxidis‐

ing conditions, for example, the oxidation of As(III) to As(V). Ferric oxyhydroxides play a 

crucial role for the mobility of arsenic in groundwater in two respects, under reducing condi‐

tions, they are dissolved and arsenite is released and under high pH conditions, above pH 8.2, 

when they are uncharged making arsenate mobile.

Manganese oxides on the surface of mafic minerals [31] and in general in soils [33] can serve 

as an oxidant of Cr(III), forming mobile chromate.

Selenium is mobile in groundwater under oxidising conditions, and nitrate from agricul‐

ture mobilises selenium from marine shales [67]. Another interaction between agriculture 

and groundwater might be found in rice cultivation. A new rice irrigation practice by using 
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 intermittent irrigation, allowing the rice field to dry up between irrigations, has several posi‐
tive effects, higher yield, lower arsenic content in the rice grains and lesser methane emission 
[68]. It might also in the long run affect the groundwater redox conditions.

9. Conclusions

The presence of different species of elements at different redox levels makes assessments of the 
associated health risks complicated. In addition, the species have different levels of toxicity. 
A number of trace elements may pose risks to human health, arsenic, manganese, chromium 

as chromate, nitrate, selenium and uranium. Except for manganese, these species are either 

uncharged or in the form of anions and their adsorption to soils and aquifer materials is weaker 

than for cations such as most heavy metals like Cu, Pb and Zn. The main adsorbents for the lat‐

ter are clay minerals and organic matter, and the adsorption of those increases with pH while 
the adsorption for anions, by aluminium and ferric oxyhydroxides, decreases with pH and 

approaches zero, close to ZPC at just above pH 8. Uncharged species are particularly mobile 

like arsenite.

Arsenic is mobilised into groundwater both under reducing and oxidising conditions. With 

reduction of ferric oxyhydroxides, ferrous iron and arsenite are released into groundwater. 

This is common especially in south and southeast Asian delta regions. While removal by filter 
is possible, but not always functioning due to social reasons and in addition gives a waste 

problem, an alternate way of supplying safe water is to identify aquifers with more oxidising 

environments. This can be done by examining the colour of the sediments. White, off-white 
and red sediments are likely to yield a low arsenic groundwater. It is also possible by the colour 

code to identify low manganese groundwater. In oxidising environments at neutral pH, arse‐

nate (As(VI) is immobilised into ferric hydroxides. However, at pH above 8, these adsorbents 

lose their positive charge and arsenic becomes mobile.

Chromium is carcinogenic and mobile in oxidising environments. Chromium comes from both 

natural and anthropogenic sources. Ultramafic rocks are high in chromium. Main anthropogenic 
sources are electroplating and leather tanning. Manganese oxides in soils and on mafic minerals 
can act as oxidants of Cr(III) to form mobile chromate (Cr(VI)).

Selenium, an essential element, seldom reaches toxic levels in groundwater, but in areas where 

irrigation is practised with groundwater, with elevated selenium concentrations, the intake via 

the crops cultivated can be too high. Nitrate may act as the oxidant of Se(IV) and form mobile 

Se(VI).

The nitrogen cycle has been radically changed by human action mainly through the industrial 

production and use of nitrogenous fertilisers. The natural symbiotic nitrogen fixation was 
exceeded by the anthropogenic in the 1980s. Nitrate or rather nitrite formed in the human 

intestinal tracts could be carcinogenic by forming nitrosamines. However, the main reason for 

the guideline value at 50 mg/l is the risk of methaemoglobinemia in bottle-fed children below 
the age of 1 year. Breastfeeding efficiently counteracts this.
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Uranium can be toxic from radiological point of view but more often due to its chemical action 

on the re‐adsorption of water and salts from the primary urine formed in the kidney cortex. 

Uranium speciation is important both for its mobility and for its toxicity. Uncharged species are 

mobile. Calcium‐carbonate complexes do not seem to be taken up by humans. U(IV) is largely 

immobilised while U(VI) is mobile. In the search for safe repositories for radioactive waste, 

reducing environments are preferred. These immobilise many other radioactive elements.
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