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Abstract

In this chapter, we present a discussion about the practical application of the fractal
properties of the medium in the mathematical model through the use of fractional
partial derivatives. We present one of the known models for the flow in saturated media
and its generalization in fractional order derivatives. In the middle section, we present
one of the main arguments that motivate the use of fractional derivatives in the porous
media models, this is the Professor Nigmatullin’s work. The final part describes the
process for obtaining the coupled system of three equations for the monophase flow
with triple porosity and triple permeability, briefly mentioning the method used for the
first solutions of the system.

Keywords: fractional calculus, fractional derivatives, anomalous diffusion, porous
media, fractal dimension

1. Introduction

The objects of nature rarely have a classical geometric form; in the particular case of oil reservoirs,

the ground where the wells are found has been considered with Euclidean geometry; this is not

sufficient in many cases to give good approximations in the mathematical models. Since its forms

are closer to the fractal geometry, the knowledge of this can be useful to develop models that

allow us to better manage the wells. This work presents an approach in fractional derivatives for

the triple porosity and triple permeability monophasic saturated model, based on the one

proposed by Camacho et al. [1, 2] and generalized partially by Fuentes et al. [3]. The main

contribution is to consider the link between fractional equations and fractal geometry through

the revision of Alexander-Orbach’s conjecture [23], taken to the particular case.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Background of the approach of models of diffusion on fractal media

Fractional calculus was originated as a way to generalize classic calculus; however, it is more

difficult to find a direct physical interpretation than in the classical version. When we consider

an oil well as a fractal, it is important to choose which of its properties can be useful for

elaborating a mathematical model [20, 21, 26, 27].

Alexander and Orbach [4] calculated the “spectral dimension (fracton)”; this parameter is

associated to volume and fractal connectivity by being considered as an elastic fractal net of

particles connected by harmonic strings. Thus, we consider the particle movement over this

fractal and we find a relation of root mean square of an r aleatory walker dependent of time

over the fractal, which is in accordance to the following relation:

〈r2ðtÞ〉 ≈ t2=ð2þθÞ, ð1Þ

where r is in euclidean space. Alexander and Orbach defined ds ¼
2df
2þθ

as the spectral dimension

or fracton, where dw ¼ 2þ θ is the dimension of the walk, θ gives us the dependence of the

diffusion constant over the distance and df is the effective dimension [24, 25].

O’Shaughnessy and Procaccia [5] used the concepts of Alexander and Orbach to formulate

their fractal diffusion equation:

∂pðr, tÞ

∂t
¼

1

rdf�1

∂

∂r
K1r

�θrdf�1 ∂pðr, tÞ

∂r

� �

, r > 0; K1constant; ð2Þ

with solution.

Pðr, tÞ ¼
2þ θ

dfΓðdf =ð2þ θÞÞ

1

ð2þ θÞ2K1t

" #df =ð2þθÞ

exp �
r2þθ

ð2þ θÞ2K1t

" #

, ð3Þ

of which one finds a power law

〈r2ðtÞ〉 ¼
Γ

df þ 2

2þ θ

h i

Γ
df

2þ θ

h i ½ð2þ θÞ2K1t�
2=ð2þθÞ ¼ 〈r2ð1Þ〉r2=ð2þθÞ: ð4Þ

Metzler et al. [6] started with the characterization of an anomalous diffusion process 1. Here,

they consider dw ¼ θþ 2 as the anomalous diffusion exponent, they are referencing the work of

Havlin and Ben-Avraham [7] to calculate diffusion with a media (1). They obtain an “approach

exponential”:

Pðr, tÞ ≈At�df =dwe�cðr=RÞu , ð5Þ

valid in the asyntotic range r=R≫ 1, and t ! ∞ with R and r defined by
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R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

〈r2ðtÞ〉
p

u ¼ dw
dw � 1

:

8

<

:

ð6Þ

Thus, it is possible to obtain the solution of the fractional derivative diffusion equation:

∂
2=dw

∂t2=dw
Pðr, tÞ ¼ 1

rds�1

∂

∂r
rds�1 ∂

∂r
Pðr, tÞ

� �

ð7Þ

where

∂2=dw

∂t2=dw
Pðr, tÞ ¼ 1

Γ 1� 2
dw

� �

∂

∂t

ðt

0

dτ
Pðr, τÞ

ðt� τÞ2=dw
, 0 ≤

2

dw
< 1: ð8Þ

3. Brief history of fractional calculus

In mathematics, one way to obtain new concept is to generalize by extending one definition or

context for values not previously considered. For example, it is possible to generalize the

power concept of xn, for natural n values such as the concept of x, n times, to negative integers

n, as the product of 1
x, n times, then to n rational values such as

ffiffiffiffiffi

xpq
p

, if n ¼ p

q
, with positive p and

q. In each step, the generalization modifies the concept a little, but it keeps the previous one as

a particular case. This process can continue all the way to a complex n. In the same way as

generalizations in differential and integral calculus have been made, in this case the generali-

zation goes toward the n order of the
dny

dxn
derivative [22].

Leibniz: In a letter dated September 30, 1695, L’Hôpital, he has been inquired about the

meaning of dny
dxn

, if n ¼ 1

2
, in response he wrote: “You can see by that, sir, that one can express

by an infinite series a quantity such as d1=2xy or d1:2xy. Although infinite series and geometry

are distant relations, infinite series admits only the use of exponents that are positive and

negative integers, and does not, as yet, know the use of fractional exponents.” Later in the

same letter, Leibniz continues: “Thus, it follows that d1=2x will be equal to x
ffiffiffiffiffiffiffiffiffiffiffiffi

dx : x
p

. This is an

apparent paradox from which, one day, useful consequences will be drawn.”

In his correspondence with Johan Bernoulli, Leibniz mentioned to him general order deriva-

tives. In 1697, he established that differential calculus can be used to achieve these generaliza-

tions and used the d1=2 notation to denote order
1

2
derivative [22].

Euler: In 1730, Euler proposed derivatives as rate between functions and variables that can be

expressed algebraically; the solution with this approach when the orders are not integers is the

use of interpolations.

The (fractional) non-integer order derivative motivated Euler to introduce the Gamma func-

tion. Euler knew that he needed to generalize (or, as he said, interpolate), the 1 � 2⋯n ¼ n!

product for non-integer n. He proposed an integral:
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Y

n

k¼1

n ¼
ð1

0

ð�logxÞndx, ð9Þ

and used it to partially solve the Leibniz paradox. He also gave the basic fractional derivative

(with modern notation Γðnþ 1Þ ¼ n!):

dαxβ

dxα
¼ Γðβþ 1Þ

Γðβ� αþ 1Þ x
β�α, ð10Þ

which is valid for non-integer α and β [22].

Laplace and Lacroix: Laplace also defined his fractional derivative via an integral. In 1819,

Lacroix, applying the (10) formula and the Legendre symbol for Gamma function, was able to

calculate the derivative with y = x and n ¼ 1

2
. He was also the first to use the term “fractional

derivative.” He thus achieved

d1=2y

dx1=2
¼ 2

ffiffiffi

x
p
ffiffiffiffi

π
p : ð11Þ

Fourier: Joseph Fourier (1822), in his famous book “The Analytical Theory of Heat” making use

of this expression of a function and an interpretation of the sines and cosines derivatives gave

his definition of a fractional derivative:

f ðxÞ ¼ 1

2π

ð

∞

�∞
f ðαÞdα

ð

∞

�∞
cos pðx� αÞdp, ð12Þ

then

dn

dxn
cos pðx� aÞ ¼ pn cos pðx� αÞ þ 1

2
nπ

� �

, ð13Þ

for an integer n. Formally replacing n with an arbitrary u, he obtained the generalization:

du

dxu
f ðxÞ ¼ 1

2π

ð

∞

�∞
f ðαÞdα

ð

∞

�∞
pu cos pðx� aÞ þ 1

2
uπ

� �

dp: ð14Þ

Fourier thus establishes that the u number can be regarded as any quantity, positive or

negative [8, 22].

Abel: In 1823, N. H. Abel published the solution of a problem presented by Hyugens in 1673:

The tautochrone problem. Abel gave his solution in the form of an integral equation that is

considered the first application of fractional calculus. The integral he worked with is

ðx

0

ðx� tÞ�1
2f ðtÞdt ¼ k: ð15Þ

This integral is, except for the 1=Γ 1
2ð Þ factor, a fractional integral of 1/2 order, Abel wrote the left

part as π d�
1
2

dx�
1
2

h i

f ðxÞ, thus he worked with both sides of the equation as
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ffiffiffiffi

π

p
f ðxÞ ¼ d

1
2

dx
1
2

k: ð16Þ

The first integral equation in history had been solved. Two facts may be observed: the regard

for the sum of the orders, and that unlike in classical calculus, the derivative of a constant is not

zero [8, 22].

Liouville: In 1832, Liouville made the first great study of fractional calculus. In his work, he

considered
d1=2

dx1=2

� �

e2x. The first formula he obtained was the derivative of a function:

f ðxÞ ¼
X

∞

n¼0

cne
anx,RðanÞ > 0; ð17Þ

from which he got

Dνf ðxÞ ¼
X

∞

n¼0

xna
ν

ne
anx: ð18Þ

that can be obtained using the extension

Dνeax ¼ aνeax, ð19Þ

for an arbitrary number ν. A second definition was achieved by Liouville from the defined

integral:

I ¼
ð

∞

0

ua�1e�xudu, a > 0; x > 0; ð20Þ

of which, after a change of variable and a suitable rewriting is obtained

D�νx�a ¼ ð�1ÞνΓðaþ νÞ
ΓðaÞ x�a�ν, a > 0: ð21Þ

Liouville also tackled the tautochrone problem and proposed differential equations of arbi-

trary order.

In 1832, he wrote about a generalization of Leibnitz’s rule about the nth derivative of a product:

Dνf ðxÞgðxÞ ¼
X

∞

n¼0

ν

n

� �

Dnf ðxÞDν�ngðxÞ, ð22Þ

where Dn is the ordinary n order differential operator, Dν�n fractional operator, and
ν

n

� �

the

generalized binomial coefficient, expressed in terms of the Gamma function,
Γðνþ 1Þ

n!Γðν� nþ 1Þ.

Liouville expanded the coefficients in Eq. (18) as
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aνn ¼ lim
h!0

1

hν
ð1� e�hanÞν, an > 0;

ð�1Þνaνn ¼ lim
h!0

1

hν
ð1� ehanÞν, an < 0:

ð23Þ

And inserted those equations in Eq. (18) to get

dν

dxν
f ðxÞ ¼ lim

h!0

1

hν
X

∞

n¼0

ð�1Þm
ν

n

 !

f ðx�mhÞ

" #( )

,

¼ ð�1Þνlim
h!0

1

hν
X

∞

n¼0

ð�1Þm
ν

n

 !

f ðxþmhÞ

" #( )

:

ð24Þ

These formulas would be retaken by Grünwald in 1867.

Riemann: Riemann developed his Fractional Calculus theory when he was preparing his Ph.D.

thesis, but his oeuvre was published posthumously around 1892. He searched for a generali-

zation of Taylor’s series, in which he defined the n-th differential coefficient of a f(x) function as

the hn coefficient in the f(x + h) expansion with integer powers of h. Thus, he generalizes this

definition to non-integer powers and demands that

f ðxþ hÞ ¼
X

n¼∞

n¼�∞

c� nþ αð∂nþτ
x f ÞðxÞhnþα, ð25Þ

be valid for n∈N, a∈R. The cnþα factor is determined by the ∂βð∂αf Þ ¼ ∂βþαf condition, and he

found that it was
1

Γðnþ αþ 1Þ
. Riemann then derived Eq. (25) expression for negative α:

∂
αf ¼

1

Γð�αÞ

ðx

k

ðx� tÞ�α�1f ðtÞdtþ
X

∞

n¼1

Kn
x�α�n

Γð�n� αþ 1Þ
, ð26Þ

where k, Kn are finite constants. Then, he extended the result to non-negative α.

Sonin and Letnikov: The Russian mathematicians N.Ya. Sonin (1868) and A.V. Letnikov (1868–

1872) [29] made contributions taking as basis the formula for the nth derivative of the Cauchy

integral formula given by

Dnf ðzÞ ¼
n!

2πi

ð

C

f ðξÞ

ðξ� zÞnþ1
dξ: ð27Þ

They worked using the contour integral method, with the contribution of Laurent (1884), they

achieved the definition:

cD
�α
x f ðxÞ ¼

1

ΓðαÞ

ðx

c

ðx� tÞα�1f ðtÞdt, RðαÞ > 0: ð28Þ
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For an integration to an arbitrary order, when x > c has the Riemann definition, but without a

complementary definition, when c = 0 we get the shape known as Riemann-Liouville fractional

integral:

0D
�α
x f ðxÞ ¼

1

ΓðαÞ

ðx

0

ðx� tÞα�1f ðtÞdt, RðαÞ > 0: ð29Þ

Assigning c values in Eq. (19), we get different integrals of fractional order, which will be

fundamental to define fractional derivatives.

If c = �∞, we get

�∞D
�α
x f ðxÞ ¼

1

ΓðαÞ

ðx

�∞

ðx� tÞα�1f ðtÞdt, RðαÞ > 0: ð30Þ

Using integration properties, more definitions will be given.

Grünwald: Another contribution is that of Grünwald (1867) and Letnikov (1868). This exten-

sion of the classical derivative to fractional order is important because it lets us apply it in

numerical approximations. They started with the definition of derivative as a limit given by

Cauchy (1823):

df

dx
¼ lim

h!∞

½f ðxÞ � f ðx� hÞ�

h
: ð31Þ

First generalizing for a nth integer derivative we get

Dnf ðxÞ ¼ lim
h!0

Xn

j¼0
½ð�1Þj

n
j

� �

f ðx� jhÞ�

hn
,

n∈N, and f ∈Cn½a, b�, a < x < b:

ð32Þ

Grünwald generalizes Eq. (32) for an arbitrary q value, expressing it as

D
q
af ðxÞ ¼ lim

N!∞
h
�q
N

X

N

j¼0

ð�1Þj
�n
j

� �

f ðx� jhNÞ

2

4

3

5, q∈R, ð33Þ

where the binomial coefficient is

q
j

� �

¼
qðq� 1Þðq� 2Þ⋯ðq� jþ 1Þ

j!
, ð34Þ

also showing that

ð�1Þj
q
j

� �

¼
j� q� 1

j

� �

¼
Γðj� qÞ

Γð�qÞΓðjþ 1Þ
: ð35Þ
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and with those previous results, it is possible to establish this important property for α∈R and

n∈N

dn

dxn
Dα

a f ðxÞ ¼ Dnþα
a f ðxÞ: ð36Þ

In the twentieth and twenty-first centuries, more definitions will rise, but they will be given in

terms within the Riemann-Liouville fractional integral and will be part of the Modern Frac-

tional Calculus Theory, in all their fundamental definitions [22].

4. Fractional calculus

Wewill now present the assorted definitions and notations of fractional derivatives that will be

used throughout this work. It is worth pointing out that this is necessary because such notation

is currently standardized [18, 19].

4.1. Riemann-Liouville fractional derivative

The Riemann-Liouville derivative is the basis to define most fractional derivatives; it general-

izes the Cauchy’s formula for derivatives of high order. For an f function defined in a [a, b]

interval, a α∈C value with RðαÞ > 0 defines the left and right Riemann-Liouville integrals by

RL
a I
α

x f
	 


ðxÞ ¼
1

ΓðαÞ

ðx

a

f ðtÞ

ðx� tÞ1�α
dt, ðx > aÞ, ð37Þ

RL
xI
α

b f
	 


ðxÞ ¼
1

ΓðαÞ

ðb

x

f ðtÞ

ðt� xÞ1�α
dt, ðx < bÞ: ð38Þ

Following Riemann’s notion of defining fractional derivatives as the integer order derivative of

an fractional integral, we have the left and right derivative proposal as follows:

ðRLaD
α

x f ÞðxÞ ¼
d

dx

� �n
�

ðRLa I
n�α
x f ÞðxÞ

�

, x > a, ð39Þ

ðRLxD
α

b f ÞðxÞ ¼ �
d

dx

� �n
�

ðRLbI
n�α
x f ÞðxÞ

�

, x < b, ð40Þ

with n ¼ �⌊RðαÞ⌋, i.e., n ¼ ⌊RðαÞ⌋þ 1.

As shown in Refs. [8–10], these operators generalize the usual derivation. In other words,

when α∈N0, then

ðRLaD
0
xf ÞðxÞ ¼ ðRLxD

0
b f ÞðxÞ ¼ f ðxÞ, if α ¼ 0; ð41Þ

ðRLaD
n
x f ÞðxÞ ¼ f ðnÞðxÞ, ðRLxD

n
b f ÞðxÞ ¼ ð�1Þnf ðnÞðxÞ: ð42Þ
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It is also possible to prove that the semigroup propriety about the order of integral operators

(i.e., for α∈CðRðα > 0ÞÞ, β∈CðRðβÞ > 0Þ) is achieved:

�

RL
a I

α
x

�

RL
a I

β
xf

��

ðxÞ ¼

�

RL
a I

αþβ
x f

�

ðxÞ, ð43Þ

�

RL
xI

α
b

�

RL
xI

β

b f

��

ðxÞ ¼

�

RL
xI

αþβ

b f

�

ðxÞ: ð44Þ

For the derivatives, we have

�

RL
aD

α
x

�

RL
aD

β
xf

��

ðxÞ ¼

�

RL
aD

αþβ
x f

�

ðxÞ �
X

m

j¼1

�

RL
aD

β�j
x f

�

ðaÞ
ðx� aÞ�j�α

Γð1� j� αÞ
: ð45Þ

For f ðxÞ∈Lpð1 ≤ p ≤∞Þ, the following relationships are valid:

�

RL
aD

β
x

�

RL
a I

α
x f

��

ðxÞ ¼RL
a I

α�β
x f ðxÞ, ð46Þ

�

RL
xD

β

b

�

RL
xI

α
b f

��

ðxÞ ¼RL
x I

α�β

b f ðxÞ: ð47Þ

If α = β, we have the identity operator and the operators turn out to be inverted. On the other

hand, if the order of the operators is inverted, it will have

�

RL
a I

β
x

�

RL
aD

α
x f

��

ðxÞ ¼ f ðxÞ �
X

n

j¼1

f ðn�jÞ
n�α ðaÞ

Γðα� jþ 1Þ
ðx� αÞα�j, ð48Þ

where RðαÞ > 0;n ¼ ⌊RðαÞ⌋þ 1 and f n�αðxÞ ¼ ðRLa I
n�α
x f ÞðxÞ in analogy for the right derivative.

All these properties can be used in the phenomena modeling and its solution; such models have

shown to improve usual approaches. However, when using equations with Riemann-Liouville

type fractional derivatives, the initial conditions cannot be interpreted physically; a clear exam-

ple is that the derivative Riemann-Liouville of a constant is not zero, contrary to the impression

that the derivatives gives a notion about the change that the function experiences when advanc-

ing in the time or to modify its position. This was the motivation for another definition that is

better coupled with physical interpretations; this is the derivative of Caputo type.

4.2. Caputo fractional derivative

Michele Caputo [11] published a book in which he introduced a new derivative, which had

been independently discovered by Gerasimov (1948). This derivative is quite important,

because it allows for understanding initial conditions, and is used to model fractional time. In

some texts, it is known as the Gerasimov-Caputo derivative.

Let [a, b] be a finite interval of the real line R, for α∈CðRðαÞ ≥ 0Þ. The left and right Caputo

derivatives are defined as
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C
aD

α

xy
	 


ðxÞ ¼
1

Γðn� αÞ

ðx

a

yðnÞdt

ðx� tÞα�nþ1
¼ RL

a I
n�α

x Dny
	 


ðxÞ, ð49Þ

C
xD

α

b y
	 


ðxÞ ¼
ð�1Þn

Γðn� αÞ

ðb

x

yðnÞdt

ðt� xÞα�nþ1
¼ ð�1Þn RL

xI
n�α

b Dny
	 


ðxÞ, ð50Þ

where D ¼ d
dx and n ¼ ��RðαÞ, i.e., n ¼ RðαÞ þ 1 for α∉N0 and n ¼ α for α∈N0. And if

0 < RðαÞ < 1

C
aD

α

xy
	 


ðxÞ ¼
1

Γð1� αÞ

ðx

a

y0dt

ðx� tÞα
¼ RL

a I
1�α

x Dy
	 


ðxÞ, ð51Þ

C
xD

α

by
	 


ðxÞ ¼ �
1

Γðn� αÞ

ðb

x

y0dt

ðt� xÞα
¼ � RL

xI
1�α

b Dy
	 


ðxÞ: ð52Þ

The connection between Caputo and Riemann derivatives is given by the relations

C
aD

α

xy
	 


ðxÞ ¼ RL
aD

α

x yðtÞ �
X

n�1

k¼0

yðkÞðaÞ

k!
ðt� aÞk

" # !

ðxÞ, ð53Þ

C
xD

α

by
	 


ðxÞ ¼ RL
xD

α

b yðtÞ �
X

n�1

k¼0

yðkÞðbÞ

k!
ðb� tÞk

" # !

ðxÞ: ð54Þ

In particular, if 0 < RðαÞ < 1, Eqs. (53) and (54) relation take the following shapes:

C
aD

α

xy
	 


ðxÞ ¼ RL
aD

α

x ½yðtÞ � yðaÞ�
� �

ðxÞ, ð55Þ

C
xD

α

b y
	 


ðxÞ ¼ RL
xD

α

b ½yðtÞ � yðbÞ�
� �

ðxÞ: ð56Þ

For α = n, then the Caputo derivatives match classical derivatives except for the sign of the

right derivative.

However, for k ¼ 0; 1;…, n� 1, we have

C
aD

α

x ðt� aÞk
� �

ðxÞ ¼ 0; C
xD

α

b ðb� tÞk
�

ðxÞ ¼ 0;
�

ð57Þ

in particular,

C
aD

α

x1
	 


ðxÞ ¼ 0; C
xD

α

b 1
	 


ðxÞ ¼ 0: ð58Þ

On the other hand, if RðαÞ > 0 and λ > 0, then

C
aD

α

x e
λt

	 


ðxÞ 6¼ λ
αeλt, for α∈R: ð59Þ

The Caputo derivatives behave like inverted operators for the left Riemann-Liouville fractional

integrals RL
a I

α

x and RL
xI

α

b , if RðαÞ > 0 and yðxÞ∈C½a, b�
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�

C
aD

α

x

�

RL
a I
α

xy

��

ðxÞ ¼ yðxÞ,

�

C
xD

α

b

�

RL
xI
α

b y

��

ðxÞ ¼ yðxÞ: ð60Þ

On the other hand, if RðαÞ > 0 and n ¼ �⌊�RðαÞ⌋, then for good conditions for y(x)

�

RL
a I
α

x

�

C
aD

α

xy

��

ðxÞ ¼ yðxÞ �
X

n�1

k¼0

yðkÞðaÞ

k!
ðx� aÞk, ð61Þ

�

RL
xI
α

b

�

C
xD

α

b y

��

ðxÞ ¼ yðxÞ �
X

n�1

k¼0

ð�1ÞkyðkÞðbÞ

k!
ðb� xÞk: ð62Þ

In particular if, 0 < RðαÞ ≤ 1, then

�

RL
a I
α

x

�

C
aD

α

xy

��

ðxÞ ¼ yðxÞ � yðaÞ, ð63Þ

�

RL
xI
α

b

�

C
xD

α

b y

��

ðxÞ ¼ yðxÞ � yðbÞ: ð64Þ

In his early articles and several after that, Caputo used a Laplace transformed of the Caputo

fractional derivative, which is given by

ðL{C0D
α

xy}ÞðsÞ ¼ sαðLyÞðsÞ �
X

n�1

k¼0

sα�k�1ðDkyÞð0Þ: ð65Þ

When 0 < α ≤ 1, then

ðLfC0D
α

xygÞðsÞ ¼ sαðLyÞðsÞ � sα�1yð0Þ: ð66Þ

These derivatives can be defined over the whole real axis resulting in the expressions:

CDα

xy
	 


ðxÞ ¼
1

Γðn� αÞ

ðx

�∞

yðnÞðtÞdt

ðx� tÞα�nþ1
, ð67Þ

C
xD

αy
	 


ðxÞ ¼
ð�1Þn

Γðn� αÞ

ð

∞

x

yðnÞðtÞdt

ðt� xÞα�nþ1
, ð68Þ

with x∈R.

5. Fractal geometry and fractional calculus

The phenomenon of anomalous diffusion is mathematically modeled by a fractional partial

differential equation. The parameters of this equation are uniquely determined by the fractal

dimension of the underlying object.
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There are some results that show the relationship between fractals and fractional operators

[24]; two of the most important that motivated the particular study of the equations to deter-

mine the pressure deficit in oil wells are highlighted below.

5.1. Cantor’s Bars and fractional integral

In 1992, Nigmatullin [12] presents one of the most distinguished contributions to the search of

the concrete relationship between the fractal dimension of a porous medium and the order

of the fractional derivative to model a phenomena through such a medium; in this, he achieves

the evolution of a physical system of a Cantor set type.

In his research, Nigmatullin proposes a relationship between the fractal dimension of a Cantor

type set and the order of a fractional integral of the Riemann-Liouville type. The systems he

considers are named phenomena with “memory.” The use of fractional derivatives given by

assuming a transference function J(t) in relationship to a rectifiable function f(t) through the

convolution operator with a distribution K*(t) establishes that

JðtÞ ¼ K⋆ðtÞ � f ðtÞ ¼

ðt

0

K⋆ðt� τÞf ðτÞdτ: ð69Þ

Where the distribution to apply (see Refs. [13, 14]) is a so-called “Cantor’s Bars” KT,νðtÞ,

supported in the [0, T] interval, with a fractal dimension ν ¼ lnð2Þ=lnð1=ξÞ, with ξ∈ ½0; 1=2�

being the compression factor, normalized in L1.

Through the result of distribution values, he establishes the relation:

JðtÞ ¼ 〈KT,νðtÞ〉 � f ðtÞ ¼ BðνÞT�νRL
0D

�ν
x ½f ðtÞ� ¼

BðνÞT�ν

ΓðνÞ

�

tν�1 � f ðtÞ
�

, ð70Þ

〈KT,νðtÞ〉 ¼

ð1=2

�1=2

KT,νðtξ
�xÞð2ξÞ�x dx ¼

BðνÞ

ΓðνÞ

t

T

� �ν�1

, ð71Þ

BðνÞ ¼

ð1=2

�1=2

q
ν
ðzþ xlnξÞ dx: ð72Þ

Thus, assuming a porous medium with a ν fractal dimension, we establish a fractional deriv-

ative of �ν order.

The initial results were strongly questioned by different authors, including Roman Rutman

(see Refs. [15, 16]), who asserts that the relation is so artificial. However, recent works suggest

that Nigmatullin’s statements are not far from reality, but it is necessary to reduce the set of

functions and that of fractals for which the necessary convergence is fulfilled.

6. Fractional calculus for modeling oil pressure

In this section, the Equation Continuity which follows from the law of conservation of mass is

established. Darcy’s law is used to relate fluid motion to pressure and gravitational gradients.
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The combination of the Continuity Equation and Darcy’s Law leads to a heat-conducting

differential equation in mathematical physics describing the transfer of the fluid. We obtain a

system formed by three partial differential equations, one for each fluid. This multiphase

system must be solved considering the relevant boundary and initial conditions [30].

In the particular case of naturally fractured reservoirs (see Refs. [1, 2]), usually it is possible to

discern three porosity types: matrix, fracture, and vugs; with this conception, it is accepted that

the three porosities have associated a solid phase, and with this both Continuity Equation and

Darcy’s law can be expressed for each fluid in each geometrical media. If we only consider oil

(monophasic) in a isotropic and saturated media, we can obtain a three equations system; for this,

we begin with standard continuity equation and standard Darcy’s law, respectively (see Ref. [17]):

∂ðρθÞ

∂t
þ ∇ � pðρqÞ ¼ ρϒ , q ¼ �

1

μ
kðpÞð∇p� ρg∇DÞ, ð73Þ

where θ is the volumetric content of fluid; q ¼ ðq1, q2, q3Þ is the Darcy flux, with its spatial

components (x ,y, z), t is the time; ρ is the density of the fluid; μ is the dynamic viscosity of the

fluid; g gravitational acceleration; ϒ is a source term and represents a volume provided per

volume unit of porous media in the time unity; p is the pressure; D is the depth as a function of

spatial coordinates, usually identified to the vertical coordinate z; k is the permeability tensor

of the partially saturated porous media and it depends on the pressure. The relations θ(p) and

k(p) are the fluid-dynamics characteristics of the media.

General fluid transfer equation results combining the formulas in Eq. (73):

∂ðρθÞ

∂t
¼ ∇ � p½

ρ

μ
kðpÞð∇p� ρg∇DÞ� þ ρϒ : ð74Þ

This differential equation contains two dependent variables, namely the humidity content and

fluid pressure, but they are related. For this reason, the saturation S(p) is defined so that

θðpÞ ¼ φðpÞSðpÞ ð75Þ

where φ is the total porosity of the medium, and the specific capacity defined by

CðpÞ ¼
dðρφSÞ

dp
¼ φS

dρ

dp
þ ρS

dφ

dp
þ ρφ

dS

dp
, ð76Þ

in consequence

∂ðρθÞ

∂t
¼ CðpÞ

∂p

∂t
, ð77Þ

6.1. Triadic media

The porous media is considered to be formed by three porous media: the matrix, fractured

media, and vuggy media. The total volume of the porous media (VT) is equal to the sum of the
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total volume of the matrix (Vm), of the total volume of the fractured medium (VF) and of the

total volume of the vuggy media (VG). In other words

VT ¼ VM þ VF þ VG, ð78Þ

each of the porous media contains solids and voids so that

VM ¼ VMS þ VMV ð79Þ

VF ¼ VFS þ VFV ð80Þ

VG ¼ VGS þ VGV : ð81Þ

The porous medium as everything contains solids and voids, with the following relations:

VT ¼ VTS þ VTV , VTS ¼ VMS þ VFS þ VGS, VTV ¼ VMV þ VFV þ VGV : ð82Þ

The volume fraction occupied by the matrix is defined as (νM), the volume fraction occupied by

the fractured media as νF, and the fraction that occupies the vuggy media as (νG) relative to the

total volume of the porous medium given by

νM ¼
VM

VT
, νf ¼

VF

VT
, νG ¼

VG

VT
, νM þ νF þ νG ¼ 1: ð83Þ

The porosity of the porous media (φ), in matrix (φM), fracture media (φF) and vuggy media

(φG) are defined by

φ ¼
VTV

VT
, φM ¼

VMV

VM
, φF ¼

VFV

VF
, φG ¼

VGV

VG
: ð84Þ

From the above equations, we deduce the relation between the porosities:

φ ¼ νMφM þ νFφF þ νGφG ð85Þ

When the empty space contains fluid partially, the total volumetric content of the fluid (θ) as

the total fluid volume (VTW) with respect to the total volume of the porous medium is

ðVTÞ : θ ¼ VTW=VT . In an analogous way, the volumetric content of fluid in the matrix is defined

θM ¼ VMW=VM, in the fractured media θF ¼ VFW=VF and vuggy media θG ¼ VGW=VG. It

follows that

θ ¼ νMθM þ νFθF þ νGθG ð86Þ

which is reduced to Eq. (85) when the porous medium is fully saturated with fluid. It is

satisfied: 0 < θ < φ; 0 < θM < φM; 0 < θF < φF; 0 < θG < φG. The relation between the total

volumetric flow of the fluid per unit area in the porous medium (q), the volumetric flow per

unit area in the matrix (qM), the volumetric flow per unit area in the fractured medium qF, and

the volumetric flow per unit area in the vuggy media (qG) is analogous to Eq. (86), namely
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q ¼ νMqM þ νFqF þ νGqG ð87Þ

The continuity equations for the matrix, the fractured medium, and the vuggy media consid-

ering Eq. (86) acquire the form

∂ðρθiÞ

∂t
þ ∇ � pðρqiÞ ¼ ρϒi, i ¼ M, F, G: ð88Þ

Darcy’s law for the matrix, the fractured medium, and the vuggy media, takes the form

qi ¼ �
1

μ
kiðpiÞð∇pi � ρg∇DÞ, i ¼ M, F, G ð89Þ

The equation of continuity of the porous medium, Eq. (73), is deduced from the sum of Eq. (88)

previously multiplied by νm, νF, νG, respectively, if the source terms are related by

ϒ ¼ νMϒM þ νFϒF þ νGϒG ð90Þ

from Eqs. (87) and (89), the following relationships are deduced:

kðpÞ ¼ νMkMðpMÞ þ νFkFðpFÞ þ νGkGðpGÞ ð91Þ

ΦðpÞ ¼ νMΦMðpMÞ þ νFΦFðpMÞ þ νGΦGðpGÞ ð92Þ

where Φ represents the potential of Kirchoff which is generically defined as

ΦðpÞ ¼

ðp
�∞

kðuÞdu ð93Þ

If there is no fluid gain or loss in the porous medium, then ϒ = 0 and in consequence:

νMϒM ¼ ϒMF þ ϒMG ð94Þ

νFϒF ¼ �ϒMF þ ϒFG ð95Þ

υGϒG ¼ �ϒMG � ϒFG ð96Þ

where ϒMF is the input of fluid that receives the matrix from the fractured medium, ϒMG is the

fluid input that receives the matrix of the vuggy media, and ϒFG is the contribution of fluid

that receives the fractured medium from the vuggy media.

The system of differential equations is defined as follows:

∂ðρθMÞ

∂t
¼ ∇ � p½

ρ

μ
kMðpMÞð∇pM � ρg∇DÞ� þ

ρ

νM
ðϒMF þ ϒMGÞ ð97Þ

∂ðρθFÞ

∂t
¼ ∇ � p½

ρ

μ
kFðpFÞð∇pF � ρg∇DÞ� �

ρ

νF
ðϒMF þ ϒFGÞ ð98Þ
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∂ðρθGÞ

∂t
¼ ∇ � p½

ρ

μ
kGðpGÞð∇pG � ρg∇DÞ� �

ρ

νG
ðϒMG þ ϒFGÞ: ð99Þ

The contributions of fluid in each porous medium are modeled with the following relations:

ϒMF ¼ aMFðpF � pMÞ, ð100Þ

ϒMG ¼ aMGðpG � pMÞ, ð101Þ

ϒFG ¼ aFGðpG � pFÞ, ð102Þ

where aMF, aMG, and aFG are transfer coefficients at each interface, which may depend on the

pressures on the adjacent media.

6.2. Monophasic flow saturated in triadic media

In the case of the monophasic flow saturated in triadic means, the continuity equations in each

porous medium can be written as follows:

∂ðρφiÞ

∂t
þ ∇ � pðρqiÞ ¼ ρϒi, i ¼ M,F,G: ð103Þ

Darcy’s law for each porous media takes the form

qi ¼ �
1

μ
kið∇pi � ρg∇DÞ, i ¼ M,F, G: ð104Þ

The substitution of Darcy’s law in the continuity equation leads to the following equations:

∂ðρφMÞ

∂t
¼ ∇ � p½

ρ

μ
kMð∇pM � ρg∇DÞ� þ

ρ

νM
ðϒMF þ ϒMGÞ, ð105Þ

∂ðρφFÞ

∂t
¼ ∇ � p½

ρ

μ
kFð∇pF � ρg∇DÞ� �

ρ

νF
ðϒMF � ϒFGÞ, ð106Þ

∂ðρφGÞ

∂t
¼ ∇ � p½

ρ

μ
kGð∇pG � ρg∇DÞ� �

ρ

νG
ðϒMF þ ϒFGÞ: ð107Þ

When the fluid is considered at constant density and viscosity and the means of constant

permeability, with D = z, we have

φMcM
∂pM
∂t

¼
kM
μ

ΔpM þ
1

νM
ðϒMF þ ϒMGÞ, cM ¼

1

φM

∂φM

∂pM
, ð108Þ

φFcF
∂pF
∂t

¼
kF
μ
ΔpF �

1

νF
ðϒMF � ϒFGÞ, cF ¼

1

φF

∂φF

∂pF
, ð109Þ
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φGcG
∂pG
∂t

¼
kG
μ
ΔpG �

1

νG
ðϒMF � ϒFGÞ, cG ¼

1

φG

∂φG

∂pG
ð110Þ

6.3. Triple porosity and triple permeability model

The porosity of each medium has been defined as the volume of the space occupied by the

medium. However, the porosity can be defined as the volume of empty space in each medium

with respect to the volume of the total space occupied by the porous medium as a whole. These

new porosities will be denoted with subscripts in lowercase letters and clearly have

φm ¼ νMφM, φf ¼ νFφF,φg ¼ νGφG ð111Þ

φ ¼ φm þ φf þ φg ð112Þ

In an analogous way, the corresponding Darcy´s flow can be defined in each medium:

qm ¼ νMqM, qf ¼ νFqF, qg ¼ νGqG ð113Þ

q ¼ qm þ qf þ qg ð114Þ

Eq. (113) implies that the permeability of the Darcy’s law in each medium is defined as

km ¼ νMkM, kf ¼ νFkF, kg ¼ νGkG ð115Þ

The nest system by Eqs. (108)–(110), by congruently changing the subscripts in uppercase by

lowercase in the pressures, in terms of compressibility, is written as follows:

φmcm
∂pm
∂t

¼
km
μ
Δpm þ ðϒmf þ ϒmgÞ, cm ¼

1

φm

∂φm

∂pm
, ð116Þ

φf cf
∂pf

∂t
¼

kf

μ
Δpf � ðϒmf � ϒf gÞ, cf ¼

1

φf

∂φf

∂pf
, ð117Þ

φgcg
∂pg

∂t
¼

kg

μ
Δpg � ðϒmg þ ϒmgÞ, cg ¼

1

φg

∂φg

∂pg
ð118Þ

with pm � pM, pf � pM, pg � pG,ϒmf � ϒMF,ϒmg � ϒMG,ϒf g � ϒFG, cm � cM, cf � cF, cg � cG.

The substitution of Eqs. (116)–(118) in Eqs. (100)–(102) leads to the system of differential

equations that finalize the pressure in the matrix, fractured media, and vuggy media:

φmcm
∂pm
∂t

¼
km
μ
Δpm þ amf ðpf � pmÞ þ amgðpg � pmÞ, ð119Þ

φf cf
∂pf

∂t
¼

kf

μ
Δpf � amf ðpf � pmÞ þ af gðpg � pf Þ, ð120Þ
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φgcg
∂pg

∂t
¼

kg

μ
Δpg � amgðpg � pmÞ � af gðpg � pf Þ, ð121Þ

in which this system constitutes a triple porosity and triple permeability model. In polar coordi-

nates, the system reduces to

φmcm
∂pm
∂t

¼
km
μ

1

r

∂

∂r
ðr
∂pm
∂r

Þ þ amf ðpf � pmÞ þ amgðpg � pmÞ, ð122Þ

φf cf
∂pf

∂t
¼

kf

μ

1

r

∂

∂r
ðr
∂pf

∂r
Þ � amf ðpf � pmÞ þ af gðpg � pf Þ, ð123Þ

φgcg
∂pg

∂t
¼

kg

μ

1

r

∂

∂r
ðr
∂pg

∂r
Þ � amgðpg � pmÞ � af gðpg � pf Þ ð124Þ

6.4. Dimensionless variables

Now we will give a process of dimensionlessness to better manage the variables. This is a

technique commonly used to make the parameters or variables in an equation having no units,

bring to a range the possible values of a variable or constant in order that its value is known,

and in this way, more manipulable.

The system of Eqs. (122)–(124) takes the following form after making the changes mentioned in

the previous paragraph:

ð1� ωf � ωvÞ
∂pDm

∂tD
¼ ð1� κf � κvÞ

1

rD

∂

∂rD
ðrD

∂pDm

∂rD
Þ þ λmf ðpDf � pDmÞ þ λmvðpDv � pDmÞ ð125Þ

ωf

∂pDf

∂tD
¼ κf

1

rD

∂

∂rD
ðrD

∂pDf

∂rD
Þ � λmf ðpDf � pDmÞ þ λf vðpDv � pDf Þ ð126Þ

ωv
∂pDv

∂tD
¼ κv

1

rD

∂

∂rD
ðrD

∂pDv

∂rD
Þ � λmvðpDv � pDmÞ � λf vðpDv � pDf Þ ð127Þ

where

ωf ¼
φf cf

φmcm þ φf cf þ φvcv
,ωg ¼

φvcv

φmcm þ φf cf þ φvcv
, rD ¼

r

rw
ð128Þ

κf ¼
kf

km þ kf þ kv
,κg ¼

kv
km þ kf þ kv

ð129Þ

λmf ¼
amfμr

2
w

km þ kf þ kv
,λmv ¼

amvμr
2
w

km þ kf þ kv
,λf v ¼

af vμr
2
w

km þ kf þ kv
ð130Þ

pDj ¼
2πhðkm þ kf þ kvÞðpi � pjÞ

Q0B0μ
, tD ¼

tðkm þ kf þ kvÞ

μr2wðφmcm þ φf cf þ φvcvÞ
ð131Þ
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Eqs. (128)–(131) represent dimensionless variables so they have no units. The boundary condi-

tions to which the previous model is subjected are

lim
rD!1

rDð1� κf � κvÞ
∂pDm

∂rD
þ rDκv

∂pDv

∂rD
¼ �1 ð132Þ

pwðtÞ ¼ pDmðrD, tÞjrD¼1 ¼ pDf ðrD, tÞjrD¼1 ¼ pDvðrD, tÞjrD¼1 ¼ �1 ð133Þ

Substituting derivatives ∂pDi

∂tD
by Caputo fractional derivatives

∂
αi pDj

t
αi
D

with 0 < αi≦1, and ∂

∂rD
ðrD

∂pDj

∂rD
Þ by

Riemann-Liouville complementary derivative, i. e., with infinite limit of integration, (also

called Weyl derivative) ∂
γi

∂r
γi
D

ðrD
∂
βi pDj

∂r
βi
D

Þ, with 1 < γi þ βi ≤ 2, i ¼ 1; 2; 3; j ¼ v, f , m; αi, βi,γi rational

numbers.

The choice of the derivatives, Caputo and Riemann-Liouville (Weyl), obeys the nature of the

problem and the ease with which they can be manipulated.

The monophase flow model with triple porosity and triple permeability is expressed as fol-

lows: For the matrix

ð1� ωf � ωvÞ
∂
α1pm
∂tα1

¼ ð1� κf � κvÞ
1

r

∂γ1

∂rγ1
r
∂
β1pm
∂rβ1

� �

þ λmf ðpf � pmÞ þ λmvðpv � pmÞ, ð134Þ

for fracture media

ωf

∂
α2pf

∂tα2
¼ κf

1

r

∂γ2

∂rγ2
r
∂
β2pf

∂rβ2

 !

� λmf ðpf � pmÞ þ λf vðpv � pf Þ, ð135Þ

for vuggs

ωv
∂
α3pv
∂tα3

¼ κv
1

r

∂γ3

∂rγ3
r
∂
β3pv
∂rβ3

� �

� λmvðpv � pmÞ � λf vðpv � pf Þ: ð136Þ

We reduce this system by applying semigroup properties with respect to the order of the Weyl

derivative, assuming: 0 < αi ≤ 1 and 1 < αi þ βi ≤ 2. Let ω ¼ 1� ωf � ωv;κ ¼ 1� κf � κv, put-

ting pm = p; pf = f; pv = u; r = x; ηi ¼ γi þ βi. Then, the previous system can be expressed as

∂α1p

∂tα1
¼

κ

ω
�γ1

1

x

∂η1�1p

∂xη1 � 1
þ
∂η1p

∂xη1

� �

þ
λmf

ω
ðf � pÞ þ

λmv

ω
ðu� pÞ, ð137Þ

∂
α2 f

∂tα2
¼

κ

ωf
�γ2

1

x

∂
η2�1f

∂xη2 � 1
þ

∂
η2 f

∂xη2

� �

�
λmf

ωf
ðf � pÞ þ

λf v

ωf
ðu� f Þ, ð138Þ

∂α3u

∂tα3
¼

κ

ωv
�γ3

1

x

∂η3�1u

∂xη3 � 1
þ
∂η3u

∂xη3

� �

�
λmv

ωv
ðu� pÞ þ

λf v

ωv
ðu� f Þ: ð139Þ
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The above approach can be solved by numerical methods as finite differences along with a

predictor-corrector, such as Daftardar-Gejji works, for example in [19] and compared with

previous ones, such as that presented by Camacho et al. [18, 28], the approximations are

significantly improved. However, there is still work to be completed; the optimal solution

method has not been found and the best way to determine the appropriate order, so far

numerical methods, has been used to estimate the order that best approximates measurements.

The application of the fractional calculation can be very useful for the modeling of anomalous

diffusion phenomena in which the fractal structure better reflects the real conditions of the

medium, as it is the case of the reservoirs in which because of its very nature it is difficult to

find a structure Euclidian.

Author details

Benito F. Martínez-Salgado1*, Rolando Rosas-Sampayo1, Anthony Torres-Hernández1 and

Carlos Fuentes2

*Address all correspondence to: masabemx@yahoo.com.mx

1 Faculty of Sciences, National Autonomous University of Mexico, Mexico City, Mexico

2 Mexican Institute of Water Technology, Jiutepec, Morelos, Mexico

References

[1] Camacho-Velázquez R, Vásquez-Cruz MA, Castrejón-Aivar R, Arana-Ortiz V. Pressure

transient and decline curve behaviors in naturally fractured vuggy carbonate reservoirs.

SPE Reservoir Evaluation & Engineering. 2005;8(02):95-112

[2] Camacho-Velázquez R, Fuentes-Cruz G, Vásquez-Cruz MA. Decline-curve analysis of

fractured reservoirs with fractal geometry. SPE Reservoir Evaluation & Engineering.

2008;11(03):606-619

[3] Carlos Fuentes-Ruíz et al. Reservoirs as a fractal reactor: A model with triple porosity and

triple permeability of the fractured media (matrix-vug-fracture). Fondo sectorial conacyt-

sener-hidrocarburos s0018-2011-11, Universidad Autónoma de Querétaro

[4] Alexander S, Orbach R. Density of states on fractals: ``fractons”. Le Journal de Physique

Lettres. 1982;43(17):625-631

[5] O’Shaughnessy B, Procaccia I. Analytical solutions for diffusion on fractal objects. Phys-

ical Review Letters. 1985;54(5):455

Fractal Analysis - Applications in Physics, Engineering and Technology40



[6] Metzler R, Glöckle WG, Nonnenmacher TF. Fractional model equation for anomalous

diffusion. Physica A: Statistical Mechanics and its Applications. 1994;211(1):13-24

[7] Havlin S, Ben-Avraham D. Diffusion in disordered media. Advances in Physics. 1987;36

(6):695-798

[8] Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives: Theory and

Applications. Singapore: Gordon and Breach Science Publishers; 1993

[9] Oldham KB, Spanier J. The Fractional Calculus. Theory and Applications of Differentia-

tion and Integration to Arbitrary Order. Vol. 111. Elsevier Science; 1974

[10] Podlubny I. Fractional Differential Equations. An Introduction to Fractional Derivatives,

Fractional Differential Equations, Some Methods of Their Solution and Some of Their

Applications, volume 198 of Mathematics in Science and Engineering. Academic Press;

1999

[11] Caputo M. Elasticità e dissipazione. Zanichelli Publisher; 1969

[12] Nigmatullin RR. Fractional integral and its physical interpretation. Theoretical and Math-

ematical Physics. 1992;90(3):242-251

[13] Nigmatullin RR, Méhauté AL. Is there geometrical/physical meaning of the fractional

integral with complex exponent? Journal of Non-Crystalline Solids. 2005;351(33-36):2888-

2899

[14] Méhauté AL, Nigmatullin RR, Nivanen L. Flèches du temps et géométrie fractale. Her-

mes. 1998. 151-176, 287-302

[15] Rutman RS. On physical interpretations of fractional integration and differentiation.

Theoretical and Mathematical Physics. 1995;105(3):1509-1519

[16] Blackledge JM, Evans AK, Turner MJ. Fractal Geometry: Mathematical Methods, Algo-

rithms, Applications. Great Britain: Elsevier; 2002

[17] Bear J. Dynamics of Fluids in Porous Media. New York: Dover; 1988. 119-129

[18] Baleanu D, Diethewlm K, Scalas E, Trujillo JJ. Fractional calculus: Models and numerical

methods, volume 3 of series on complexity, nonlinearity and chaos. Singapore: World

Scientific. 2012. 123-140

[19] Daftardar-Gejji V. Fractional Calculus: Theory and Applications. New Delhi: Narosa

Publishing House; 2014

[20] Hilfer R. Applications of fractional calculus in physics. Singapore: World Scientific. 2000.

1-86

[21] Meerschaert M. Mathematical Modeling. 4th ed. Boston: Academic Press; 2013

[22] Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential

Equations, volume 111 of Mathematics in Science and Engineering. New York: Wiley-

Interscience; 1993

Application of Fractional Calculus to Oil Industry
http://dx.doi.org/10.5772/intechopen.68571

41



[23] Klages R, Radons G, Sokolov IM. Anomalous Transport: Foundations and applications.

Germany: John Wiley & Sons; 2008

[24] Meerschaert MM, Sikorskii A. Stochastic models for fractional calculus, volume 43 of De

Gruyter studies in mathematics. Germany: Walter de Gruyter. 2012

[25] Ibe OC. Elements of Random Walk and Diffusion Processes. New Jersey: John Wiley &

Sons, 2013

[26] Hardy HH, Beier RA. Fractals in reservoir engineering. Singapore: World Scientific; 1994

[27] Herrmann R. Fractional calculus: An introduction for physicists. Singapore: World Scien-

tific; 2011

[28] Diethelm K, Ford NJ, Freed AD, Luchko Y. Algorithms for the fractional calculus: A

selection of numerical methods. Computer Methods in Applied Mechanics and Engineer-

ing. 2005;194(6-8):743-773

[29] Letnikov AV. Theory of differentiation of fractional order (in Russian). Matematicheskii

Sbornik 1868;3:1-68

[30] Peaceman DW. Fundamentals of Numerical Reservoir Simulation. New York, NY:

Elsevier Scientific Publishing Co.; 1977

Fractal Analysis - Applications in Physics, Engineering and Technology42


