
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 9

Energy Management in Microgrids: A Combination of

Game Theory and Big Data‐Based Wind Power

Forecasting

Zhenyu Zhou, Fei Xiong, Chen Xu and Runhai Jiao

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68980

Abstract

Energy internet provides an open framework for integrating every piece of equipment
involved in energy generation, transmission, transformation, distribution, and consump-
tion with novel information and communication technologies. In this chapter, the authors
adopt a combination of game theory and big data to address the coordinated management
of renewable and traditional energy, which is a typical issue on energy interconnections.
The authors formulate the energy management problem as a three-stage Stackelberg game
and employ the backward induction method to derive the closed-form expressions of the
optimal strategies. Next, we study the big data-based power generation forecasting tech-
niques and introduce a scheme of the wind power forecasting, which can assist the
microgrid to make strategies. Simulation results show that more accurate prediction
results of wind power are conducive to better energy management.

Keywords: energy internet, Stackelberg game, microgrid energy management, wind
power forecasting

1. Introduction

Energy internet has been identified as a key enabler of the third industrial revolution [1], which

represents a new paradigm shift for both energy industry and consumers. In this new para-

digm, the energy provisioning and demand sides are connected more closely and promptly

than ever before by implementing distributed and flexible energy production and consump-

tion while hiding the diversity of underlaying technologies through standardized inter-

faces [2, 3]. In addition, energy consumers with colocated distributed energy sources and

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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distributed energy storage devices within limited areas, such as school, office building, indus-

trial park, and residence community, etc., can form a local energy internet, that is, the

microgrid, which provides a promising way of relieving the stress caused by the increasing

energy demands and penetrations of renewable energy sources.

Microgrid is, in essence, a flexible and efficient network for interconnecting distributed renew-

able energy sources, load, and intermediate storage units at consumer premise [4]. It can be

treated by the grid as a controllable load or generator and can operate in either islanded or

grid-connected mode [5]. However, due to the intermittent and fluctuating characteristics of

renewable energy sources and limited generation capacity, the large penetration of

uncontrolled and uncoordinated renewable generators into the microgrid especially distribu-

tion network will cause a high level of volatility and system disturbances. For instance, the

uncertainties brought by renewable energy sources will lead to significant mismatch between

generation and load, which results in numerous critical problems such as power imbalance,

voltage instability, interarea oscillations, and frequency fluctuations [6]. Hence, novel energy

management methodologies are required to harness the full potential of the microgrid to

reduce the energy supply-demand imbalance by making the full use of widespread renewable

energy resources.

We study a distributed energy management problem in order to efficiently use renewable

energy, with the aim of maximizing the individual objective function of each market player

while guaranteeing the reliable system operation and satisfying users’ electricity demands.

Due to the uncertainty and uncontrollability of renewable generation, the authors utilize the

big data-based renewable power forecasting techniques to obtain the short-term prediction

value [7]. Then, the authors focus on solving the distributed microgrid energy management

problem by employing noncooperative game theory [8], which provides an effective mathe-

matical tool for analyzing optimization problems with multiple conflicting objective functions.

The major contributions are summarized as follows:

• We adopt a combination of game-theoretical and data-centric approaches to address the

microgrid energy management problem in energy internet. To address the uncertainties

brought by wind turbine, the authors propose a deep learning-based short-term wind

power forecasting algorithm by combining stacked autoencoders (SAE), the back-propa-

gation algorithm, and the genetic algorithm. The authors employ SAE with three hidden

layers in the pre-training process to extract the characteristics from the training sequence

and the back-propagation algorithm to calculate the weights of the overall neural network

in the fine-tuning process. Then, the authors adopt a genetic algorithm to optimize the

neuron number of hidden layers and the learning rate of autoencoders.

• We provide thorough introduction and summary of the related works and the state-of-

the-art progress in the research direction of energy management in microgrids. The

authors have categorized the existing literature based on research motivations and appli-

cation scenarios. The authors provide in-depth analysis and discussion on the contribu-

tions of the surveyed works, common assumptions, application scenarios, advantages,

disadvantages, and possible future directions. The extensive review of available works

sheds new insights to the underexplored open issues of energy management design in

microgrids.
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• Wemodel the energy management problem as a three-stage Stackelberg game to capture the

dynamic interactions and interconnections among electricity users, the microgrid, the utility

company, and the energy storage company. In the first stage, both the utility company and

the energy storage company issue real-time electricity prices to the microgrid. In the second

stage, the microgrid adjusts its electricity price offered to electricity users and the amounts of

electricity procured from the utility and the energy storage companies. In the third stage,

electricity users adjust their electricity demands based on the price offered by the microgrid.

The objective function of each game player is well designed based on multiobjective optimi-

zation approaches, and practical constraints such as active power generation limits, power

balance, electricity demands, etc., have been taken into consideration.

• Based on the short-term wind power prediction, we employ the backward induction

method to analyze the proposed three-stage Stackelberg game and derive the closed-form

analytical expressions for optimal energy management solutions. In the simulation, the

authors compare the optimal payoff of the microgrid with different prediction errors of

wind power forecasting. Numerical results show that accurate prediction results of wind

power are conducive to better energy management.

The structure of this chapter is organized as follows. In Section 2, we give a brief review of

related works on energy management and prediction technologies. The system model of

energy management and problem formulation are provided in Section 3. Section 4 introduces

the proposed game-theoretical and data-centric energy management algorithm. The simula-

tion results and analyses are presented in Section 5. Finally, Section 6 gives the conclusion.

2. Related works

The aim of this chapter is to solve the distributed microgrid energy management problem by

exploring both game theory and big data analysis in energy internet. The comprehensive

summary of the classifications of distributed microgrid energy management is shown in

Table 1. Some literature studies propose mathematical tools to deal with uncertainties of

renewable energy in energy management problems. Two main methods that have been widely

applied to handle day-to-day uncertainties of renewable energy are stochastic optimization

Application scenarios Solution methods Optimization goals Literature

Renewable energy generation Stochastic optimization Handling date uncertainties of renewable energy [10–12]

Robust optimization [14–17]

Wind power forecasting Linear methods Increasing the accuracy of prediction model [19, 20]

Nonlinear methods [24–27]

Microgrid management Ordinary decision theory Optimizing energy-scheduling strategies [28–30]

Noncooperative games [33–36]

Cooperative games [37–40]

Table 1. A comprehensive summary of distributed microgrid energy management.
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and robust optimization [9]. On the one hand, stochastic optimization provides an effective

framework to optimize statistical objective functions while the uncertain numerical data are

assumed to follow a proverbial probability distribution. In Ref. [10], a multistage framework is

presented to minimize the cost of the total energy management system based on stochastic

optimization. The authors developed a stochastic dynamic programming method for optimiz-

ing the multidimensional energy management problem in Ref. [11]. A stochastic optimization-

based real-time energy management approach was adopted to minimize the operational cost

of the total energy system in Ref. [12]. However, considering the complex operation details and

various practical constraints in practical applications, the precise estimation of the probability

distributions of uncertain data can be a tremendous challenge. Hence, the impact of data

uncertainties on the optimality performance may not be sufficiently captured in the stochastic

optimization-based energy management approaches.

On the other hand, robust optimization, which considers the worst-case operation scenarios,

only requires appropriate information and enable a distribution-free model of data uncer-

tainties [13]. Hence, robust energy management can mitigate the negative effect of uncertainty

on the optimality performance and thus overcome the aforementioned limitations of stochastic

optimization. In Ref. [14], a novel pricing strategy was presented to enable robustness against

the uncertainty of power input. The authors proposed a robust energy-scheduling approach

for solving the uncertainty brought by electric vehicles in Ref. [15]. Robust energy manage-

ment methods were proposed to optimize the energy-dispatching problem while the worst-

case scenarios of renewable energy integration have been considered [16, 17]. However, due to

the fact that the worst-case scenarios of all uncertain factors are assumed to provide the highest

protection against uncertainties, the optimality performance is also severely degraded as the

price paid for robustness.

With the development of advanced information and communication technologies, the big

data-based forecasting approach can learn from these massive amounts of real-world data,

and thus adapt conventional energy management design to this new data-centric paradigm

by utilizing the historical knowledge. Taking wind power forecasting as an example, the data-

centric approaches mine the relationship between historical data and knowledge to build the

prediction model through various approaches, such as persistence methods, linear methods,

and nonlinear methods. The persistence method is one of the classic methods for wind power

forecasting and is usually utilized as a benchmark method while short-term wind speeds are

assumed highly correlated [18]. Linear methods have been shown to outperform most persis-

tence methods in short-term forecasting as they can capture the time relevance and probabil-

ity distribution of wind speed data [19, 20]. Nonlinear methods such as artificial neural

networks (ANNs) [21], support vector machines (SVM) [22, 23], etc., are demonstrated to

outperform linear methods in nonlinear models. ANN, which is a simplified model of human

brain neural processing, has the advantage of fast self-learning capability, easy implementa-

tion, and high prediction accuracy [24]. SVM is a machine-learning model of ANNs to analyze

data which is used for classification and regression analysis [25]. To efficiently handle the

complex, unlabeled and high-dimensional time series data, deep learning has been proposed

in Ref. [26]. As an essential deep learning architecture, SAE plays a fundamental role in

unsupervised learning and the objective function can be solved efficiently via fast back

propagation [27].
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There already exists some work about energy management design in microgrid. In Ref. [28], a

double-layer control model, which consists of a dispatch layer to offer the output power of

each unit and a schedule layer to provide the operation optimization, is proposed for

microgrid energy management. The authors presented a fair energy-scheduling strategy in

Ref. [29] to maximize the total system benefit while providing higher energy utilization priorities

to users with larger contributions. In Ref. [30], the authors took demand side management and

generation scheduling into consideration for ensuring the real-time operation of energy manage-

ment system. However, the previous studies mainly focus on the total benefit in the energy

management system, and ignore the interactions and interconnections among multiple market

players, including utility companies, storage companies, microgrids, customers, and so on.

Game theory has widely been applied in microgrid energy management to provide a distrib-

uted self-organizing and self-optimizing solution for optimization problems with conflicting

objective functions in Ref. [31]. Games can be classified into two categories based on whether

or not binding agreements among players can be enforced externally, that is, noncooperative

and cooperative games [32]. Noncooperative games, which offer an analytical framework

tailored for characterizing the interactions as well as decision-making process among multiple

game players, focus on predicting players’ individual strategies and analyzing the competitive

decision-making involving players to find the Nash equilibrium. The players will influence the

decision-making process despite their partially or even completely conflicting interests upon

the result of a decision. In contrast, cooperative games offer mathematical tools to study the

interactions of rational cooperative players, and the strategic outcome among those players as

well as their utilities can be improved under a common agreement.

For noncooperative game-based microgrid energy management, the authors proposed a mul-

tiuser Stackelberg game model for maximizing the benefit of each player in Ref. [33]. In Ref.

[34], a new model of electricity market operation was adopted to optimize the objective

function of each player. The authors provided a dynamic noncooperative repeated game

model to optimize the energy-trading amounts of users with distributed renewable genera-

tors [35]. In Ref. [36], a distributed real-time game-theoretical energy management scheme was

employed to maximize the total social benefit while minimizing the cost of each player. For

microgrid energy management schemes based on cooperative games, the authors proposed a

cooperative demand response scheme for reducing the electricity bills of users in Ref. [37]. In

Ref. [38], a cooperative energy-trading approach was proposed for the downlink coordinated

multipoint transmission powered by smart grids to reduce energy cost. The authors developed

a cooperative distributed energy-scheduling algorithm to optimize the energy dispatch prob-

lem while considering the integration of renewable generation and energy storage in Ref. [39].

In Ref. [40], the authors provided a multistage market model for minimizing the operational

cost of the utility company while maximizing the total benefit of the market. Compared to

cooperative games, the noncooperative games have the advantage of a lower communication

overhead and do not require a common commitment among various market players. As one

kind of noncooperative game models, the Stackelberg game can efficiently model the hierarchy

among players, where the leaders have dominant market positions over followers, and can

impose their own strategies upon the followers. Considering above two points, the authors

propose the noncooperative game-theoretical approach and model the microgrid energy man-

agement problem as a three-stage Stackelberg game.
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In summary, most of the previous studies have not provided a comprehensive framework for

how to utilize the real-world data to improve the energy management performance. The prior

statistic knowledge of uncertain renewable power outputs was assumed to be perfectly known

and its impact on the energy-trading process among market players has not been fully ana-

lyzed. This motivates us to explore the integration of deep learning-based wind power fore-

casting technique with Stackelberg game-based energy management strategy, so as to make a

further step to enable data-centric energy management in future energy internet.

3. System model and problem formulation

3.1. System model

Figure 1 presents a structure of a typical microgrid energy management system with the utility

company, the energy storage company, users, and various kinds of renewable energy sources.

In this system, without loss of generality, the authors assume that there is a single conventional

energy generation company, which is denoted as the utility company, and a renewable sources-

based energy storage company, which is denoted as the storage company. The energy storage

company which operates independently from the utility company can store and absorb excess

Figure 1. System model of microgrid energy management.
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energy during nonpeak periods and deliver it back to the grid during the peak times. Further-

more, the authors assume that there is a single microgrid and there are K users, denoted as

K ¼ {1,…, k,…, K}, in this model. The utility company and the storage company are regarded as

energy suppliers to meet the electric power demand of the microgrid and ensure the stability of

the power system. To implement efficient energy management, the microgrid should be in

charge of energy dispatching and be responsible for meeting users’ electricity demands based

on the forecasting of renewable energy generation. However, due to renewables’ uncontrollable

fluctuations, variability, intermittent nature, and the capacity limitation of the microgrid, the

microgrid may not be able to meet the electricity demand of users by itself and has to purchase

electricity from the utility company and the storage company.

3.2. Objective function

3.2.1. Objective function of the utility company

The definition of the utility company's objective function is rather flexible. Generally, the

authors consider the cost function consisting of the electricity generation cost denoted as CðLÞ

and the pollutant emission cost denoted as IðLÞ [41]. Each of them can be modeled as a

quadratic function of the electricity demand L. Besides, line loss, which is mainly caused by

resistance of the transmission lines, has been taken into consideration to ensure energy supply.

Hence, the objective function of the utility company is formulated as

UgðLm,g, pgÞ ¼ RgðLm,g, pgÞ � CgðεgLm,gÞ � IgðεgLm,gÞ, ð1Þ

where

RgðLm,g, pgÞ ¼ Lm,gpg,

CgðεgLm,gÞ ¼ agðεgLm,gÞ
2 þ bgðεgLm,gÞ þ cg,

IgðεgLm,gÞ ¼ αgðεgLm,gÞ
2 þ βgðεgLm,gÞ:

ð2Þ

RgðLm,g, pgÞ denotes the electricity revenue; CgðεgLm,gÞ and IgðεgLm,gÞ are the cost functions of

the power generation and the pollutant emission, respectively; Lm,g denotes the quantity of

electricity bought from the utility company by the microgrid; pg is the unit electricity price of

the utility company; and ag, bg, cg,αg, βg are the cost parameters of CgðεgLm,gÞ and IgðεgLm,gÞ.

Assuming that ρg denotes the power loss percentage during power transmission, which is

related to voltage, efficiencies of transformers, and resistance of the transmission line. Hence,

εgLm,g is the actually generated electricity to satisfy the microgrid demand Lm,g, where

εg ¼ 1=ð1� ρgÞ.

3.2.2. Objective function of the storage company

The authors considered the power loss inefficiency during the battery charging and

discharging processes, as well as line loss, and the objective function of the storage company

is formulated as

Energy Management in Microgrids: A Combination of Game Theory and Big Data‐Based Wind Power Forecasting
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UsðLm, s, psÞ ¼ RsðLm, s, psÞ � CsðεsLm, sÞ, ð3Þ

where

RsðLm, s, psÞ ¼ Lm, sps,

CsðεsLm, sÞ ¼
csεsLm, s
ηcηd

:

ð4Þ

RgðLm, s, psÞ denotes the electricity revenue; CsðεsLm, sÞ is the cost function of energy storage; Lm, s

denotes the quantity of electricity bought from the storage company by the microgrid; ps is the

unit electricity price of the storage company; ηc and ηd are the charging and discharging

efficiencies of storage equipment, respectively; and cs denotes the unit cost of operation and

maintenance. The meaning of εs is the same as εg introduced above.

3.2.3. Objective function of the microgrid

The authors focus on renewable energy which is the main source of the microgrid and consider

the satisfaction function based on quality of service of the electricity provided by the utility

and storage companies [42]. Hence, the objective function of the microgrid is formulated as

UmðLm,g, Lm, s, pmÞ ¼ Rm,gðLm,gÞ þ Rm, sðLm, sÞ

� Cm,gðLm,g, pgÞ � Cm, sðLm, s, psÞ þ RmðLk,m, pmÞ

� CmðL̂r þ ΔÞ � ImðL̂r þ ΔÞ þ FjΔj,

ð5Þ

where

Rm,gðLm,gÞ ¼ Xm,gLm,g �
dm,g

2
ðLm,gÞ

2,

Rm, sðLm, sÞ ¼ Xm, sLm, s �
dm, s
2

ðLm, sÞ
2,

RmðLk,m, pmÞ ¼
XK

k¼1

Lk,mpm,

Cm,gðLm,g, pgÞ ¼ Lm,gpg,

Cm, sðLm, s, psÞ ¼ Lm, sps,

CmðL̂r þ ΔÞ ¼ amðL̂r þ ΔÞ2 þ bmðL̂r þ ΔÞ þ cm,

ImðL̂r þ ΔÞ ¼ αmðL̂r þ ΔÞ2 þ βmðL̂r þ ΔÞ:

ð6Þ

Rm,gðLm,gÞ denotes the satisfaction value; Cm,gðLm,g, pgÞ denotes the payment of the microgrid

for electricity bought from the utility company; and Xm,g denotes the satisfaction parameter for

the utility company. As the satisfaction parameters depend on various factors, such as electric-

ity demands, electricity prices, preferences in different energy sources, weather conditions,

etc., it is hard to model the satisfaction parameters accurately. Thus, the authors assume that

these parameters are predefined. Analogously, dc,m denotes predefined satisfaction parameters
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of the microgrid for the utility company. The definitions of Rm, sðLm, sÞ and Cm, sðLm, s, psÞ are

similar to those of Rm,gðLm,gÞ and Cm,gðLm,g, pgÞ as introduced above; RmðLk,m, pmÞ denotes the

electricity revenue acquired from users while Lk,m is the quantity of electricity bought by the

kth user and pm is the unit electricity price of the microgrid; CmðL̂r þ ΔÞ and ImðL̂r þ ΔÞ are the

cost functions of wind power generation and wind power pollutant emission, respectively;

am, bm, cm,αm, βm are the cost parameters of CmðL̂r þ ΔÞ and ImðL̂r þ ΔÞ. L̂r þ Δ denotes the

prediction result of wind power while L̂r is the real wind power and Δ is the prediction error.

F denotes the penalty factor of the prediction error Δ that satisfies F < 0. That is, the payoff of

the microgrid will decrease when the result of wind power forecasting is not accurate, which

reflects the restriction of the power purchase agreement in the market.

3.2.4. Objective function of users

In a similar way, the authors also take the satisfaction function into consideration. Hence, the

objective function of the kth user is given by

UkðLk,m, pmÞ ¼ Rk,mðLk,mÞ � Ck,mðLk,m, pmÞ, ð7Þ

where

Rk,mðLk,mÞ ¼ Xk,mLk,m �
dk,m
2

ðLk,mÞ
2,

Ck,mðLk,m, pmÞ ¼ Lk,mpm:
ð8Þ

Rk,mðLk,mÞ denotes the satisfaction value and Ck,mðLk,m, pmÞ denotes the payment that the kth

user pays for electricity bought from the microgrid. The meanings of Xk,m and dk,m are similar

to Xm,g and dm,g.

3.3. Problem formulation

The authors propose a three-stage Stackelberg game, which consists of leaders and followers to

describe the interconnection of each stage and model the energy management process. The

three-stage Stackelberg game is described in a distributed manner in Figure 2:

• Stage I: The utility and the storage companies, as leaders of the game, announce the unit

electricity price pg and ps to the microgrid. By setting reasonable prices, the companies

hope to maximize their own payoffs. Thus, the authors can describe the optimization

problem for the utility and storage companies as

max
pg

UgðpgÞ, ð9Þ

max
ps

UsðpsÞ: ð10Þ

• Stage II: The microgrid can be assumed as the follower of the utility and the storage

companies as well as the leader of users. On the one hand, the microgrid determines
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electricity demand Lm,g and Lm, s based on the prediction result of the wind power and the

unit prices pg, ps. On the other hand, it announces electricity price pm to users. The

objective of the microgrid is also to maximize its payoff by adjusting Lm,g, Lm, s, and pm.

We describe the optimization problem for the microgrid as

max
Lm,g, Lm, s, pm

UmðLm,g, Lm, s, pmÞ,

s:t: C1 : 0 ≤ εgLm,g ≤Lg,max,

C2 : 0 ≤ εsLm, s ≤ Ls,max,

C3 : 0 ≤ pm ≤ pm,max,

C4 : Lm, s þ Lm,g ¼
XK

k¼1

Lk,m � L̂r � Δ > 0;

ð11Þ

where Lg,max, Ls,max, and pm,max denote the capacity and pricing constraints.

Figure 2. The diagram of the three-stage Stackelberg game.
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• Stage III: The kth user ð∀k∈ {1; 2;…;K}Þ, as the follower of the microgrid, determines

electricity amount Lk,m purchased from the microgrid based on pm to maximize its payoff.

We can describe the optimization problem for the kth user as

max
Lk,m

UkðLk,mÞ, ð12Þ

s:t: C5 : Lk,m ≥ Lk,b, ð13Þ

where Lk,b is the basic electricity demand of the kth user.

4. Algorithms and analysis

In this section, we first propose a distributed energy management algorithm based on the

three-stage Stackelberg game. Then, the big data analysis-based wind power forecasting

algorithm is derived by combining SAE, the back-propagation algorithm, and the genetic

algorithm.

4.1. Distributed energy management algorithm

We propose a three-stage Stackelberg game to describe the interconnections of each stage and

use the backward induction to capture the interrelation of the decision-making process in each

stage.

4.1.1. Analysis of the third-stage user game

The optimization objective of the kth user is defined in Eq. (12), which is a standard concave

function. Hence, the authors can use the Karush-Kuhn-Tucker (KKT) conditions to solve the

optimization problem. The optimal solution of the kth user is given by

L̂k,m1 ¼
Xk,m � pm

dk,m
,

L̂k,m2 ¼ Lk,b,

8

>

<

>

:

ð14Þ

where L̂k,m1 denotes the optimal electricity procurement quantities; L̂k,m2 denotes the scenario

where the optimal electricity procurement quantity lines on the boundary of the inequality

constraint.

4.1.2. Analysis of the second-stage microgrid game

In stage II, the authors assume user k0 ∈K0 ¼ {1;…, i,…, K0} purchases electricity Lk,m1 and user

k00 ∈K00 ¼ {1;…, i,…, K00} purchases electricity Lk,m2. While K ¼ K0⋃K00, the authors can obtain
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X

K

k¼1

Lk,m ¼
X

K0

k0¼1

Xk,m � pm
dk,m

þ
X

K00

k00¼1

Lk,b: ð15Þ

Based on KKT conditions, the optimal amount of electricity procured from the utility company

is given by

L̂m,g1 ¼ 0;

L̂m,g2 ¼
Xm,g � pg � μm;1

dm,g
,

L̂m,g3 ¼
Lg,max

εg
,

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð16Þ

In a similar way, based on KKT conditions, the optimal amount of electricity procured from the

storage company is given by

L̂m, s1 ¼ 0;

L̂m, s2 ¼
Xm, s � ps � μm;1

dm, s
,

L̂m, s3 ¼
Ls,max

εs
,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð17Þ

The optimal price is given by

p̂m1 ¼ 0;

p̂m2 ¼

XK0

k0¼1

Xk,m

dk,m
þ
XK00

k00¼1
Lk,b � μm;1

XK0

k0¼1

1

dk,m
XK0

k0¼1

2

dk,m

,

p̂m3 ¼ pm,max,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð18Þ

L̂m,g1, L̂m,g3, L̂m, s1, L̂m, s3, p̂m1, and p̂m3 denote the scenarios that where the optimal solutions line

on the boundaries of the inequality constraints. L̂m,g2, L̂m, s2, and p̂m2 denote the interior solutions.

When Lm,g ¼ 0 or Lm,g ¼
Lg,max

εg
and Lm, s ¼ 0 or Lm, s ¼

Ls,max

εs
, there is no price competition between

the utility and storage companies. Thus, the analysis of the corresponding pg and ps is omitted

here. Considering the price competition game between the utility company and the storage

company, pm can be viewed as a function of pg and ps based on Eq. (18), which is given by

pm ¼ Am;1pg þ Am;2ps þ Am;3, ð19Þ

where
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Am;1 ¼

1
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1þ

XK0

k0¼1

1
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þ
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2

dm,g
þ

2

dm, s

� �

,
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1

dm, s
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þ
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dm, s
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B

@
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C

A

2

dm,g
þ

2

dm, s

� �

,
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XK0
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þ
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k00¼1
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B

@
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�
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� �

þ L̂r þ Δ
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1
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2
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þ

2

dm, s

0

B

B

@

1
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C

A

2
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þ

2
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� �

:

ð20Þ

4.2.3. Analysis of the first-stage utility and storage company game

In this case, defining Lm,g as a function of pg, we have

L̂m,gðpgÞ ¼ Ag;1pg þ Ag;2, ð21Þ

where

Ag;1 ¼ �
1

dm,g
þ

1

dm,g
�
XK0

k0¼1

Am;1

dk,m

1þ
dm,g

dm, s

,

Ag;2 ¼
Xm,g

dm,g
�

Xm,g

dm,g
þ
Xm, s � ps

dm, s

XK0

k0¼1

Xk,m � Am;2ps � Am;3

dk,m
þ
XK00

k00¼1
Lk,b � L̂r � Δ

1þ
dm,g

dm, s

:

ð22Þ

Hence, Ug can be written as a quadratic function of pg, which is given by

UgðpgÞ ¼ Ag;3ðpgÞ
2 þ Ag;4pg þ Ag;5, ð23Þ

where
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Ag;3 ¼ Ag;1 � ε2gðag þ αgÞA
2
g;1,

Ag;4 ¼ Ag;2½1� 2ε2gðag þ αgÞAg;1� � εgðbg þ βgÞAg;1,

Ag;5 ¼ �ε2gðag þ αgÞA
2
g;2 � εgðbg þ βgÞAg;2 � cg:

ð24Þ

Since Ug is a convex function of pg based on Eq. (22), the authors can obtain p̂g by solving the

convex function that

p̂g ¼ �
Ag;4

2Ag;3
: ð25Þ

In the same way, p̂s can be obtained similarly as above since p̂s has the same solution structure

with p̂g. The detailed process is omitted here due to space limitations.

4.2. Algorithm of wind power forecasting

We propose a deep learning-based short-term wind power forecasting algorithm by combining

SAE, the back-propagation algorithm, and the genetic algorithm. It is noted that the proposed

forecasting model can also be applied for other distributed renewable energy sources such as

solar energy, hydroenergy, etc. The reason why the authors study the wind power forecasting in

this chapter is mainly due to the illustration purpose and the availability of the wind big data. The

core of the algorithm is to establish a forecasting model through training on the historical data.

Exploiting the statistical relationship among the historical time series data can be divided into

two processes: the pre-training process and the fine-tuning process. In the pre-training process,

three stacked AEs, which consist of one visible layer, one hidden layer, and one output layer form

a neural network. In the fine-tuning process, one more layer is added to the end of the neural

network and back-propagation algorithm is applied to obtain more appropriate initial weights of

the whole network. Furthermore, for improving the forecasting accuracy, we adopt genetic

algorithm to optimize the learning rate of each AE and the number of neurons of each layer.

4.2.1. Training process of the proposed genetic SAE forecasting model

As shown in Figure 3(a), SAE consists of one input layer x, the first hidden layer h1, and one

output layer x̂. We adopt encoder function f θ1 to transform x to a low or a high-dimensional

code h1 and adopt decoder function gθ1 to reconstruct the original data as x̂. We can obtain the

values of parameters θj ¼ {wj, bj, w
T
j , dj}, j∈ {1; 2;…, J} (J denotes the number of layers in SAE)

through back propagation, where wj and wT
j are weight matrices of the encoder and the

decoder, bj and dj are biases of the encoder and the decoder, respectively.

We add a new hidden layer h2 to the whole network, new layer and the original layers are stacked

into the existing AE in Figure 3(b). There is a new AE illustrated since h1 and h2 are combined as

the input layers. Hence, the authors can stack more auto encoders by removing the last layer h1
and add one more layer. Considering computation complexity, three auto coders are stacked

together in this section. The pre-training process is shown as Figure 3(a) and (b), which consists

of two hidden layers h1, h2 and trains the initial weights of the whole network.
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In Figure 3(c), to form the whole genetic SAE neural network, we add an output layer and

initialize the set of parameter w4, b4 between the last hidden layer and the output layer. The

process which we adopt back-propagation algorithm to train all the weights and biases of the

whole network is called the fine-tuning process. Hence, a deep network with three hidden

layers can be trained to converge to a global minimum by the process we proposed.

4.2.2. Optimization of the proposed model

The learning rate of the network and the number of neurons in hidden layer are the key

parameters which have a significant impact on the final prediction performance. Hence, we

adopt the genetic algorithm to optimize the parameters of the SAE and the whole network for

improving the performance of the models. We regard the historical time series data x as the

Figure 3. The pre-training and fine-tuning process of genetic SAE.
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individuals of population in genetic algorithm and obtain a multidimensional vector Pðd, tÞ,

where there are d individuals in the population denoted as d∈D ¼ {1;…, d,…, D} and

t∈ T ¼ {1;…, t,…, T} is the number of evolution. We assume that the size of the population is

D and the maximum of evolution is T. First, we set the initial population as Pð0, 0Þ. Then, we

calculate the objective value and the fitness value to select optimal individual for the next

generation. After crossover and mutation, we can obtain optimal individual Pðd, TÞ. Algo-

rithm 1 shows the optimization process of the proposed model. To make a fair comparison,

we optimize the parameters of the BP algorithm and the SVM algorithm in the similar way. The

mean absolute percentage error (MAPE) provides a statistical measure of prediction accuracy

of a forecasting method, which is expressed in percentage. It measures howmuch forecasts can

differ from the actual data, which is summed for every evaluation points and divided by the

total number of points. Since MAPE has been widely adopted in wind power forecasting, the

authors also adopt it to evaluate the accuracy of the prediction model.

5. Simulation results

In order to evaluate the prediction accuracy of the proposed wind-forecasting model, real data

of wind turbines, which were collected form a local micorgrid in Hebei Province, China, are

employed to perform the training and forecasting processes. By excluding unnecessary infor-

mation, the 1-year data samples of active power, which spans from September 2015 to October

2016, are utilized for simulations. The proposed game-theoretical energy management algo-

rithm with big data-based wind power forecasting is implemented based on Matlab. Simula-

tion results are performed for a scenario which consists of the utility company, the energy

Algorithm 1 The proposed genetic SAE Algorithm

1: Procedure: Genetic Algorithm

2: Begin

3: Initialize: Pð0, 0Þ

4: Set t ¼ 0

5: while t < T do

6: for d∈D do

7: The Pre-training Process:

8: Evaluate fitness of Pðd, tÞ: Calculate and store the best, worst, and average objective value for current individuals.

9: Select operation to Pðd, tÞ: Select optimal individual for the next generation.

10: The Fine-turning Process:

11: Crossover operation to Pðd, tÞ: Do crossover operation on the selected individuals and obtain better individuals.

12: Mutation operation to Pðd, tÞ: Do mutation operation to Pðd, tÞ based on a certain mutation probability.

13: end for

14: Update: t ¼ tþ 1

15: end while
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storage company, the microgrid, and the users. The simulation parameters are summarized in

Table 2. Figure 4 shows the optimal electricity prices of the utility company, the energy storage

company, and the microgrid, that is, p̂g, p̂s, and p̂m, versus the basic electricity demands of

users Lk,b. Lk,b is increased from 10 to 100 kW with a step of10, and the corresponding p̂g, p̂s,

and p̂m are obtained by the proposed algorithm. The simulation results demonstrate that p̂g, p̂s,

and p̂m increase monotonically as Lk,b increases, which is reasonable since the electricity

generation cost also increase dramatically as Lk,b increases. p̂s > p̂g is due to the preference of

the microgrid to use clean renewable energy stored by the energy storage company. In addi-

tion, we have p̂m > p̂g and p̂m > p̂s. Since only one microgrid has been considered in the

second stage, the microgrid is always able to make more profits by announcing higher prices

toward users than those of the utility and the energy storage companies.

Figures 5 and 6 show the optimal payoff of the microgrid Umðp̂m, L̂m,g, L̂m, sÞ versus the predic-

tion error of wind power forecasting Δ for the two scenarios Δ > 0 and Δ < 0, respectively.

Here, Δ > 0 represents that the actual wind power output is less than the predicted amount,

and the microgrid has to procure more electricity from both the utility and the energy storage

companies. In comparison, Δ < 0 represents that the actual wind power output is more than the

predicted amount, and the microgrid will not procure the specified amount of electricity from

both the utility and the energy storage companies. Three cases where Lk,b ¼ 40; 60; and 80 kW

Parameter Value

Power generation cost parameter of utility company ag 0:03

Pollutant emission cost parameter of utility company αg 0.08

The unit cost of operation and maintenance cs 1.5

Charging efficiencies of storage equipment ηc 0.5

Discharging efficiencies of storage equipment ηd 0.5

Power generation cost parameter of microgrid am 0.05

Pollutant emission cost parameter of microgrid αm 0.05

Satisfaction parameter for utility company Xm;g 5

Satisfaction parameter for utility company dm;g 0.21

Satisfaction parameter for storage company Xm;s 10

Satisfaction parameter for storage company dm;s 0.21

Satisfaction parameter for microgrid Xc;m 50

Satisfaction parameter for microgrid dm;s 0.15

Capacity of utility company Lg;max 200 kW

Capacity of storage company Lm;max 100 kW

The highest price users can afford pm;max 50 cents/kWh

The real wind power L̂r 20 kW

The penalty factor F �50

Table 2. Simulation parameters.
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have been considered. Both Figures 5 and 6 show that the optimal payoff of the microgrid

decreases monotonically as jΔj increases. For example, if Δ is increased from 0 to 10 kW or

decreased from 0 to �10 kW, the optimal payoff will be decreased by 9.2 and 22.1% when

Figure 4. The optimal electricity prices of the utility company p̂g, the energy storage company p̂s, and the microgrid p̂m

versus the basic electricity demands of user Lk;b.

Figure 5. The optimal payoff of the microgrid Um versus the prediction error of wind power forecasting Δ > 0.

Development and Integration of Microgrids226



Lk,b ¼ 40 kW, respectively. The reason is that the microgrid will be charged for the difference

between the predicted and actual electricity procurement quantities, due to the restriction of

power purchase agreement. It is also clear that the optimal payoff is degraded more severely

Figure 6. The optimal payoff of the microgrid Um versus the prediction error of wind power forecasting Δ < 0.

Figure 7. MAPE of three different models with wind power forecasting step varies.
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when Δ < 0 compared to Δ > 0. The reason is that the electricity prices of the utility and the

energy storage companies are higher when Δ < 0 compared to the case of Δ > 0.

Figure 7 shows the MAPE value of three different algorithms including BP, SVM, and genetic

SAE versus wind power forecasting step. The process of wind power forecasting based on

historical data in current time is called step 1. By adding the prediction result to the historical

data, the authors can obtain a new prediction result in next hour and the process is called step

2, and so on. A higher step means longer period of prediction, which presents lead to less

precise predictions and high MAPE. From the simulation results, the authors found that

MAPE increases as prediction step increases. Thus, we can come to the conclusion that the

result becomes inaccurate as the step increases. Furthermore, the simulation results demon-

strate the authors obtain a minimum prediction error by genetic SAE algorithm compared to

the other two algorithms. More concretely, the predicted absolute error decreases by 7.3%

compared with the SVM algorithm and 32.4% compared with the BP algorithm when step 5.

6. Conclusions

In this chapter, the authors proposed to utilize the big data-based power generation forecast-

ing techniques to obtain the short-term wind power forecasting results that assist the

microgrid to implement energy management strategies. Simulation results validated the pro-

posed algorithm and demonstrated that the optimal payoff of the microgrid is decreased due

to the prediction error. The proposed genetic SAE algorithm is demonstrated to provide the

most accurate predictions, which is helpful for energy management. In future work, we will

emphasize on cooperative energy management among multiple microgrids based on the pre-

dictions of renewable power and electricity consumption.
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