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Abstract

Acrylamide (ACR) is a possible human carcinogen, with neurotoxic properties. It is a heat-
generated food toxicant particularly found in carbohydrate-rich foods. Its occurrence is 
of global concern and constitutes a major challenge to food safety, due to its presence in 
several thermally processed foods worldwide. Since its discovery, ACR has been recog-
nized as one of the most widely investigated heat-induced food contaminant, and several 
reports on its formation and occurrence since its discovery have been reported. However, 
information on the extent of ACR occurrence in foods consumed in different parts of 
Africa is rather too limited. This is particularly a concern considering that most carbohy-
drate-based foods, subjected to varying degrees of thermal processing, are consumed as 
staple diets almost on daily basis in the continent. As such, African populations may be 
exposed to high levels of ACR daily. Thus, this chapter covers the formation, occurrence 
and health impact of ACR in foods. It further summarizes previous studies looking at 
ACR reduction and mitigation strategies, especially those that may be applicable in the 
continent. Adequate sensitization of the populace about the prevention of ACR as a food 
contaminant is essential to ensure the safety of heat-processed carbohydrate-rich foods in 
the continent.

Keywords: acrylamide, prevention, toxicity, heat-processed foods, Africa

1. Introduction

The prevalence of acrylamide (ACR) in ready-to-eat diets and its toxicological effects currently 
on humans is a public concern. The formation of this heat-generated toxic substance in foods, 
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principally in carbohydrate-rich foods, was first reported by Tareke et al. [1] and has since been 

identified as a global challenge in the food industry. It has been classified as a potential occu-

pational (Group 2A) carcinogen by the International Agency for Research on Cancer (IARC) 

and some US government agencies [2]. This is due to the fact that ACR is known to potentially 

exhibit carcinogenic effects in experimental animals, albeit its dietary link to human cancer. 
Its neurotoxicity in humans is well known from accidental and occupational exposures and 

experimental studies in animals which have shown genotoxic, reproductive and carcinogenic 

effects [3].

For over a decade since its discovery, several studies have been published in the literature on 

its formation, presence in various food products and toxicity in different parts of the world 
[1, 4–6]. In contrast, there is a dearth of information on its incidence and prevalence in Africa. 

This is probably why no information regarding limits regulating ACR in foods has not been 

established or enforced. Although other regions of the world can be affected by ACR contami-
nation, it could be easily identified that Africa can be the most affected. It can, however, be 
difficult to affirm this assertion considering the lack of well-established or insufficient data on 
ACR levels in processed foods, degree of human exposure and risk assessment in the conti-

nent. This chapter appraises studies presenting information on the formation of ACR in foods 

and toxicity associated with it in other parts of the world. The main strategies for controlling 

or preventing its occurrence in the literature are also reviewed herein with a view of their 

possible adoption in Africa.

2. Discovery and properties of acrylamide

Acrylamide (IUPAC name—prop-2-enamide) (Figure 1) was accidentally discovered in foods 

in April 2002 by a group of researchers in Sweden working on heat processing technology 

of carbohydrate-rich foods [1, 7]. It is a white, odourless and crystalline compound with the 

chemical formula C
3
H

5
NO, molar mass of 71.08 g/mol, melting point of 84.5°C, vapour pres-

sure of 0.007 mmHg at 25°C and boiling point at 136°C [8]. ACR is soluble in chloroform, 

ether, ethanol and water and decomposes in the presence of acids, oxidizing agents, bases, 

iron and iron salts [9] to form ammonia, carbon dioxide, carbon monoxide and oxides of nitro-

gen [10]. ACR is a heat-induced contaminant naturally formed during industrial processing 

and home cooking of many foods daily consumed around the world [8, 11].

ACR is used as a chemical intermediate in the production of polyacrylamides, which are used 

as a flocculating agent for sewage/wastewater treatment and other industrial applications 

Figure 1. Chemical structure of acrylamide.
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such as those in the formulation of several cosmetics [12]. Its application as a grouting agent 

is also extended to the construction of dam foundations, sewers and tunnels and cosmetics 

and in electrophoresis gels [13]. It has also been used in pesticide production, cement formu-

lations, ore processing, sugar manufacturing, food packaging,  plastic and paper production 

and for the prevention of soil erosion [2]. Sequel to its detection in foods and potential toxic 

effects, several studies have been initiated and reported worldwide, some of which will be 
highlighted in the succeeding sections of this chapter.

2.1. Formation of acrylamide

ACR is principally formed via Maillard reaction involving asparagine and carbonyl sources 

such as reducing sugars [14]. Although asparagine may be converted to ACR by thermally 

induced deamination and decarboxylation, carbohydrates are necessary to effect its conver-

sion to ACR (Figure 2) [15]. While several other carbonyl compounds can enhance this reac-

tion, α-hydroxyl carbonyl compounds such as glucose or fructose are more efficient [16]. Claus 

et al. [14] indicated that the first step in this reaction is the formation of a Schiff base inter-

mediate as a low-energy alternative in decarboxylating this product intact. The formed Schiff 
base intermediate can either hydrolyze to form 3-aminopropionamide, a precursor of ACR, 

or further undergo elimination reaction leading to direct formation of ACR [17]. Nevertheless, 

the formation of ACR from reducing sugars and asparagine in the Maillard reaction represents 

the main formation route [14].

The formation of acrolein and acrylic acid through the dehydration of fats when heated at 

high temperature has been proposed as another mechanism of ACR formation [6, 14]. The 

studies of Becalski et al. [19] also indicated that ACR can be formed along with ammonia from 

Figure 2. Proposed mechanism for the formation of the acrylamide in heat-treated foods. Adapted from Vleeschouwer 

et al. [18].
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the degradation of amino acids. Although based on experiments with ammonium salts, acro-

lein and oils, this mechanism suggested might be inappropriate for ACR formation in foods [20]. 

Nevertheless, there are a number of factors that impact on the development of ACR in foods. 

Such factors are subsequently reviewed.

2.2. Factors affecting formation of acrylamide

2.2.1. Processing conditions

Food processing conditions such as time and temperature are vital factors affecting the for-

mation and levels of ACR in food [21, 22]. However, the manner of heat transfer to foods (for 

instance, baking, frying, microwave heating and roasting) does not, however, necessarily impact 

the rate of ACR formation [23]. An exponential increase in ACR levels from 265 to 2130 μg/kg 

in French fries was observed when temperature increased from 150 to 190°C [21]. In potato 

slices with low and high surface-to-volume ratios (SVRs), ACR levels increased with increas-

ing frying temperature and time, reaching maximum levels of 2500 and 18,000 μg/kg, respec-

tively [24]. Studies on the effect of time and temperature on ACR formation in bread revealed 
that more ACR was formed in the crust layer and the levels increased with baking tempera-

ture and time [20, 25]. Roasting temperature and time had an impact on ACR formation in 

coffee beans [23, 26].

In Africa, traditional food processing operations and techniques are commonly applied but 

vary among different ethnic groups, communities and settlements. Heat processing operations 
such as frying, roasting and baking are common processes used in preserving and processing 

foods for further use. Thus, this presents a significant risk of ACR exposure. Elsewhere, it has 
been observed that concentrations of ACR are highly correlated with the degree of crust sur-

face browning of processed foods [20]. These authors asserted that because ACR and brown 

colour of foods are formed due to Maillard reaction, it is most likely that ACR is formed in 

parallel with browning. Thus, the degree of surface browning (though may not necessarily 

indicate amount of ACR) could be used as a visual indicator of ACR formation in foods during 

cooking [25].

2.2.2. Substrate composition

The formation of ACR intermediates is usually determined by the amount and form of amino 

acids and sugars present [27]. It has thus been postulated that ACR formation and consequent 

concentration are relative to amino acid and sugar composition in the substrate [21, 27]. While 

these precursors affect ACR formation, the presence of other compounds that compete with 
amino acids and reducing sugars in the Maillard reaction are also vital compositional factors 

[21]. In potato and cereal products, ACR levels are highly correlated with glucose/fructose and 

asparagine concentrations [28]. Varieties in crop cultivar could also affect the reducing sugar 
content in the produce [29]. Short-term storage of potatoes at 4°C significantly increased the 
potential for ACR formation [30, 31]. Cooling potatoes to temperatures less than 10°C causes 

reducing sugars to increase, thereby increasing the potential for ACR formation [21, 30, 31]. 

Temperature and moisture levels in the food substrate are also other factors that affect ACR 
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formation. While temperature has been discussed in the preceding section, Matthaus et al. 
[32] reported that a quick reduction of the water content in the outer layers of the product (as 

a consequence of high temperatures) favours ACR formation.

2.2.3. Soil properties and fertilization

Both nitrogen and sulphur are important compositions of the soil, and subsequent concentra-

tions and amount have significant effect on the formation of ACR precursors [33–36]. According 

to Halford et al. [34], increasing soil sulphur levels and reducing nitrogen levels can effectively 
decrease the levels of ACR precursors, such as asparagine [34]. In a study conducted by De 

Wilde et al. [33] on the influence of soil enrichment on ACR formation in potatoes, differences 
occurred in ACR formation from crops grown on different soils. The effect of nitrogen fertilizer 
usage on crops has been reported in the literature to have an impact on asparagine and reduc-

ing sugar concentrations [37]. A decrease in nitrogen fertilizer resulted in a 30–65% increase in 

ACR formation [33, 38]. Moderate nitrogen fertilizer with a good provision of potassium may 

result in low levels of free asparagine and reducing sugars in tubers [39]. This clearly indicates 

that mineral composition due to either fertilizer employed or soil composition may impact on 

the presence and concentrations of ACR precursors. Deficiencies in phosphorus, potassium 
and magnesium can cause asparagine levels to rise in potato and wheat [34]. An appropri-

ate balance between levels of fertilizer application and minimum requirements of the crop 

while taking into account possible environmental impacts and legal fertilizer limits should be 

reached to obtain food products less prone to ACR formation [33].

2.3. Occurrence and levels of acrylamide in foods

There have been considerable efforts made since the discovery of ACR in foods by regulatory 
agencies such as the US Food and Drug Administration (FDA), the World Health Organization 

(WHO) and the European Commission (EC) to gather data on food levels of ACR [40, 41]. 

However, none of these were reported from the continent of Africa. Prevalent sources of ACR 

differ among countries due to differences in the diet, method of preparing foods and the 
nature of soil/agricultural practices [42]. Cereal-, tuber- and coffee-related products contrib-

ute mostly to the sources of ACR intake [43]. Since ACR is present in a variety of food prod-

ucts which are consumed on a daily basis, the risks of exposure apply to almost all consumers. 

Children may be more vulnerable due to their smaller body mass as compared to adults [44].

Though a summary of reports on the incidence of ACR have been reported in other parts of 

the world [40, 41, 43, 44], a search of literature revealed few reports from Africa. The different 
studies reported are summarized in Table 1 on ACR incidence levels reaching 12626, 9499, 

7310 and 6968 μg/kg in South America, Africa, the Middle East and Europe, respectively. Of 
the very few incidences reported so far, only a few reported on African commodities were in 

Ghana [45], Kenya [46] and South Sudan (Table 1) [47, 48]. Though majority of these com-

modities were mainly baked and fried, this does not suggest that other heat-intense processed 

foods do not lead to ACR. The death of dogs after consuming the burnt part of maize meal is 

worth noting [49]. The death of these dogs was ascribed to ACR poisoning by the authors and 

should awaken intensive research on this. Further considering the fact that maize meal is a 
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Product/produce Region of the world Acrylamide content Reference

Arabica Europe 48–3210 [50]

Baby biscuit Europe 588 [51]

Baby bread—rusks Europe 660 [51]

Baby food Europe 0–130 [41]

Baked gorasa Africa 20 [48]

Baked minnan Africa 17 [48]

Baked hilmur Africa 59 [48]

Baked potato chips Middle East 329–7310 [52]

Biscuit Asia 119 [53]

487 [54]

232 [55]

Europe 4200 [56]

1177 [51]

214 [57]

1514 [58]

South America 3180 [59]

Bread Asia 103 [55]

Middle East 90–802a [60]

Europe 2430 [56]

695 [51]

Bread and rolls Europe 400 [58]

Breakfast cereal Asia 117.3 [53]

Europe 1600 [56]

762 [51]

674 [58]

South America 2288 [59]

Cakes Europe 13–50 [61]

Candy bars Europe 39–61 [61]

Cantonese moon cake Asia 207 [62]

Cereal-based baby foods Europe 353 [56]

11–16 [61]

Cereals Europe 52–1057 [41]

Cereal bar Europe 820 [58]

Chocolate Europe 750 [58]
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Product/produce Region of the world Acrylamide content Reference

Chocolate powder South America 1017 [59]

Chocolate products Asia 96.7 [53]

Coffee Asia 7–19 [63]

100–668 [64]

Europe 1158 [56]

16–503 [65]

3800 [58]

South America 3797 [59]

Coffee beans Europe 172 [66]

48–6968 [50]

Coffee substitute Europe 5400 [58]

Cookies Asia 50–700 [64]

Corn-based chips Middle East 329–6360 [52]

South America 78–441 [59]

Crackers Europe 2666 [51]

South America 194–1271 [59]

Crisp mahua Asia 218 [62]

Fast food Europe 210–2680 [50]

Follow-on formula Europe 32–312 [67]

Follow-on formula (ready to eat) Europe 4–46 [67]

French fries Europe 20–1325 [41]

320 [68]

724c [69]

Asia 135 [53]

78–496 [63]

940 [55]

441 [70]

French fries (home made) Europe 2668 [56]

French fries (fast food rest.) 210–2922 [50]

South America 12626–12661 [59]

Fried creole South America 83–209 [59]

Fried chicken rolls Asia 752 [55]

Fried eggplant Africa 338 [47]

325 [48]
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Product/produce Region of the world Acrylamide content Reference

Fried instant noodle Asia 54 [54]

Fried potato Africa 750 [47]

227 [48]

Fried potato chips Middle East 375–7024 [52]

Fried puffs Asia 524 [55]

Fried sweet potato Africa 1043 [45]

Fried taamia Africa 68 [47]

Fries Europe 3300 [58]

Gingerbread Europe 2100 [58]

Home-cooked potato products Europe 2175 [56]

Hot beverages Europe 93–5399 [41]

Infant biscuits Europe 3–516 [67]

Infant cereals in powder Europe 65–296 [67]

Infant cereals (ready to eat) 11–52a

Infant cereal with follow-on formula in powder 17–260

Infant cereal with follow-on formula (ready to eat) 3–46

Infant powdered formula South America 1821 [59]

Instant cereal-based baby food Europe 19.2–34.7 [61]

Jarred baby foods Europe 162 [56]

2–162 [67]

Juice Europe 267 [41]

Mahua Asia 234 [62]

Moon cake Asia 201 [62]

Non-fried instant noodles Asia 5 [54]

Nuts products Asia 105 [53]

Paicha Asia 214 [62]

Plantain chips Africa 568 [45]

Popcorn Europe 1100 [58]

South America 781 [59]

Potato Europe 131–5360 [78]

Potato-based chips Middle East 375–7310 [52]

Potato chips Asia 1021 [54]
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Product/produce Region of the world Acrylamide content Reference

151 [53]

0.4–14 [63]

330–2300 [64]

723 [70]

233 [71]

Europe 18–1782 [50]

Middle East 90–800a [60]

South America 82–1852 [59]

Potato crisps Africa 4565 [72]

NDb–9499 [46]

Asia 244–1688 [73]

Europe 30–2300 [1]

59–2336 [74]

4180 [56]

2311c [75]

954c [69]

3200 [58]

South America 40–1770 [76]

Powdered baby food Europe 174 [51]

Robusta Europe 160–6968 [50]

Seasoned laver Asia 103 [53]

Soft bread South America 102–594 [59]

Sweet binggan Asia 226 [62]

Taco, tostada and tortilla products Europe 29–794 [41]

Tajadas Europe 240 [77]

Tea products Asia 108 [53]

Toast Asia 530 [71]

Europe 460 [58]

Twisted cruller Asia 209 [71]

Wafer South America 687–2497 [59]

Yougao Asia 212 [62]

Youtiao Asia 248 [62]

aμg/L.
bND, not detected.
cAverage value.

Table 1. Reported occurrence of acrylamide in foods by regions.
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staple food in Southern African and gets burnt during its preparation, there are indications of 

a huge risk of ACR exposure to millions of individuals consuming this product daily.

2.4. Toxicity of acrylamide

The neurotoxicity of ACR in humans is well known from occupational and accidental expo-

sures [79]. Owing to its low molecular weight and polarity, ACR is readily distributed and 

incorporated in mammals [80]. After ingestion, ACR is rapidly circulated throughout the 

whole body via the bloodstream [81] and can be found in the liver, kidney, thymus, brain, 

heart and human breast milk [82]. The conjugation of ACR to glutathione, and its epoxidation 

to glycidamide in the liver via cytochrome P450, is one of the major metabolic routes [83]. The 

formation of glycidamide is considered to be the critical step for the toxic effects of ACR and 
its metabolites. ACR and glycidamide, the latter at a much higher rate, can react with mac-

romolecules such as haemoglobin and enzymes [80]. According to the European Food Safety 
Authority, ACR and its metabolite glycidamide have shown evidences of genotoxicity (DNA 

damage) and carcinogenicity [44]. Although evidence from studies on human exposure and 

possible causes of cancer is currently limited, epidemiological studies designed to target dif-

ferent populations and different organs in relation to cancer risks have been presented, with 
absolutely none reported from the African continent [84].

Calleman [85] reported peripheral neuropathy symptoms of highly exposed workers in China. 

Characterized by numbness of hands and feet, ataxia and skeletal muscle weakness, ACR has 

been shown to be toxic to both the central and peripheral nervous system [86]. ACR induces 

nerve terminal degeneration [79] and has deleterious effects on the thalamus, hippocampus 
and cerebral cortex [79, 86]. A recent study demonstrated evidence of ACR neurotoxic effects 
of fried potato chips on rat postnatal development, causing cerebellar cortical defects and myo-

degeneration of the gastrocnemius muscle during the postnatal development of pups [87]. It has 

been postulated that neurotoxicity of ACR might be cumulative as the same neurotoxic effects 
can be seen at low and high doses of ACR with the low doses requiring longer exposure [86, 88].

In 1994, ACR was classified by the International Agency for Research on Cancer (IARC) as 
Group 2A, indicating that it is probably carcinogen to humans (Group 2A) [89, 90]. This was 

based on positive bioassay results in rodents, buttressed by evidence that ACR is transformed 
in mammalian tissues to a more reactive genotoxic metabolite (glycidamide) [8]. Evidence 
on experimental rodents indicates that ACR causes tumours in the skin, uterus, lungs, brain, 

thyroid and mammary gland [91]. The genotoxicity of ACR and glycidamide is also mani-

fested as both clastogenicity and mutagenicity. ACR has proven to be genotoxic in vivo to the 

somatic and germ cells as well as to cell cultures [8] and mammalian cells [81]. As indicated by 

Rice [91], the oxidation of this contaminant to glycidamide is the prerequisite for genotoxic-

ity of ACR. This is attributed to the higher reactivity of this metabolite (glycidamide) to form 
adducts with DNA [83].

For cancer-related effects, the margin of exposures (MOEs) of ACR have been estimated to 
range from 50 for high-consuming toddlers to 425 for average adult consumers. These num-

bers indicate concerns for public health [44]. Essentially, since any level of exposure to a 
genotoxic substance could possibly cause DNA damage and lead to cancer, no tolerable daily 
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intake (TDI) of ACR is set by European scientists [44], not to mention Africa. Nonetheless, 

Shipp et al. [13] reported that ACR administered to drinking water of rodents at doses of ≥5 
mg/kg bw/day resulted in significant decreases in the number of live pups. At higher doses, 
signs of copulatory behaviour as well as effects on sperm motility and morphology were 
observed by these authors. ACR toxicity in male animals includes decrease in sperm number/

abnormal sperm, decrease in fertility rates, degeneration of the epithelial cells of the seminif-

erous tubules and retarded development of pups [92]. These reproductive toxic effects may be 
attributed to the interfering effect of ACR on the kinesin motor proteins, resulting in a reduced 
sperm motility and subsequent fertilization [92].

3. Prevention and mitigation of acrylamide

Agencies such as the FAO and WHO in collaboration with the academia and food industry 

have put forth strategies for reducing levels of ACR in food. In Europe, food manufactur-

ers have collaborated with researchers and the academia through the Confederation of the 

Food and Drink Industries of the EU (CIAA) to produce series of strategies called the ‘CIAA 
Acrylamide Toolbox’ for decreasing ACR levels in different foods [93]. However, it should be 

noted that designing mitigation strategies is quite challenging, considering the fact that pre-

cautions must be taken to avoid compromising the nutritional, chemical, physical and micro-

biological quality and safety of the food. Accordingly, such measures must not result into the 

formation of other process contaminants nor detrimentally affect the organoleptic properties 
and acceptability of the final product [20, 94].

3.1. Methods that interrupt reactions leading to acrylamide formation

Several approaches have been successful at preventing ACR formation by preventing the key 

reactions responsible for generating it. Lowering the pH of foods blocks the nucleophilic addi-

tion of asparagine with a carbonyl compound, preventing the formation of the Schiff base, a 
critical intermediate in the formation of ACR [95, 96]. While this approach could be successful in 

lowering ACR levels in fried potato products, it may bring about undesirable taste to foods [21]. 

The use of organic acids and the addition of mono- and divalent cations (Na+ or Ca2+) to foods 

are other approaches of mitigating ACR by preventing the Schiff base formation [95–97]. The 

addition of proteins or free amino acids other than asparagine has also been investigated as a 

strategy for reducing ACR formation by causing competitive reactions and/or covalently bind-

ing ACR via Michael addition reactions [95, 96]. These additions however had low-to-moderate 

success at decreasing ACR levels in both cereal-based and potato foods [98].

3.2. Treatments that reduce acrylamide precursor’s levels

As asparagine and reducing sugars are the major ACR precursors in foods, eliminating either 

of these substrates is a viable way to reduce ACR formation [94]. Procedures for achieving this 

include rinsing and blanching treatments, using asparaginase, fermentation and controlling 

storage conditions [21].
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Rinsing, blanching and soaking treatments have been effective at reducing ACR formation 
in potato products [4, 21]. Soaking potato slices in water before frying resulted in over 50% 

reduction in ACR [21]. Further experiments by blanching slices in warm or hot water removed 

more glucose and asparagine than ordinary water immersion [4]. Changing the design of fry-

ing units to reverse the flow direction of the heated oil may alter the thermal load, which will 
reduce ACR levels in finished products [99]. Blanching and soaking treatments reduce ACR 

formation by leaching out asparagine and sugars from the surface of the slices [4]. Using aspar-

aginase, an enzyme which hydrolyzes asparagine into aspartic acid and ammonia, has suc-

cessfully reduced ACR levels in potato and bakery products [4, 20]. Asparaginase treatment of 

gingerbread dough resulted in a 75% decrease in free asparagine and a 55% reduction in ACR 

levels in the baked products [20]. To this effect, two commercial asparaginase preparations 
have been developed and are available in the market: Acrylaway® (Novozymes, Denmark) and 

PreventAse™ (DSM Food Specialties, Denmark), respectively, synthesized from Aspergillus 

oryzae and Aspergillus niger. They are generally recognized as safe (GRAS) ingredients [100].

Likewise, fermentation with yeast has been identified as a way to reduce ACR through the 
elimination of free asparagine [28]. A 2 h fermentation of rye and whole wheat dough caused 

a 77 and 87% reduction in ACR levels in rye and grain breads, respectively [101]. Yeast fer-

mentation was observed to be more effective than sourdough fermentation in reducing the 
asparagine content of the dough [101]. Ingredients and additives may also increase ACR 

formation during baking of cereal-based products. In a study by Amrein et al. [20], baking 

agent and ammonium bicarbonate reportedly improved ACR formation in bakery products, 

possibly by creating more reactive carbonyl compounds. Using an alternative baking agent 

(sodium hydrogen carbonate), sucrose rather than honey or inverted sugar syrup can also 

reduce ACR content by more than 60% [20].

3.3. Modifying processing/cooking conditions

A reduction in cooking temperatures and times can decrease ACR levels in foods. However, 

loss of desirable colour, flavour and texture may occur, since the Maillard reaction which is 
responsible for ACR formation also guarantees desirable flavour and colour compounds in 
heated food [28]. Conditions that minimize ACR in French fries involve optimizing frying 

or baking processes to obtain a surface golden in colour and crispy texture [21]. Blanching, 

soaking, parboiling and washing treatments may be adopted, as these can leach the reducing 

sugar/asparagine reactants before the subsequent cooking step [102]. Overall, prolonged bak-

ing/frying and excessive browning should be avoided to minimize ACR formation in baked 

and fried products. Since a linear relationship exists between ACR formation and baking pro-

cess, there is a need to ensure proper and optimum cooking endpoint to minimize ACR for-

mation. This suggests that the degree of surface browning could be used as a visual indicator 

of ACR formation during cooking.

3.4. Agronomic factors

Selective crop propagation is a potential strategy for controlling ACR levels by decreasing 

levels of ACR precursors [94]. Since the first occurrence of ACR in foods, several researchers 
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have demonstrated the significance of variety and cultivar selection on the formation of ACR 
[103]. Amrein et al. [29] found a 50-fold variation in total reducing sugars in the different 
potato cultivars the authors studied. Cultivars with low reducing sugars were more suitable 

for potato products, cooked or processed at high temperatures [29]. Konings et al. [28] estab-

lished the significant impact of fertilizer application rate on ACR levels mainly due to differ-

ences in crude protein and asparagine and contents. A study by Claus et al. [38] demonstrated 

the effect of nitrogen-based fertilizers in causing high amounts of protein and amino acid. This 
resulted in increased ACR levels in breads, ranging from 10.6 to 55.6 μg/kg [38]. Producers 

should best adopt effective fertilizer application regimes that will subsequently yield suitable 
produce for processing, as this influence the levels of reducing sugars [29]. Tubers should be 

harvested at full maturity as selection of immature tubers for further processing increases the 

chances of ACR occurrence, because they have relatively higher reducing sugars and produce 

products with potentially higher ACR levels [104, 105]. Unfortunately, most African subsis-

tence farmers harvest immature tubers to immediately obtain income for their needs. While 

this should be discouraged, effective handling, packaging and storage of produce must also be 
emphasized. Selection and use of crop varieties that are low in ACR precursors will most defi-

nitely help reduce ACR occurrence. Storage is also another component and practicable way of 

mitigating ACR in foods. While storage of potatoes at low temperatures is generally meant to 

minimize shrinkage and spoilage, studies have shown that low temperatures tend to increase 

sugar levels (an ACR precursor) [106]. Though for a short-term storage, hot temperature is 

desirable (this can however lead to sprouting, which can be controlled using suppressants); 

for long term, a minimum storage temperature of 6°C is desirable [97].

3.5. Antioxidants and other phytochemicals

According to Kahkeshani et al. [107], the correlation between antioxidants and ACR can be 

considered from two different points of view, namely, antioxidants as exogenous additives 
and as endogenous secondary metabolites. According to these authors, lack of sufficient stud-

ies and discord in the results available from literature hinders a logical judgement about the 

effectiveness of phytochemicals against ACR. While some reports have reported their benefi-

cial effect, some have been shown to facilitate ACR production [107]. While these compounds 

can react with asparagine to produce ACR, they could also possibly react with the amide group 

of the intermediates in Maillard reaction and block ACR formation [107–110]. The oxidation of 

polyphenols to corresponding quinones, which can react with 3-animopropionamide (3-APA), 

thus preventing the deamination of 3-APA to ACR, has also been proposed as a mechanism for 

ACR reduction by these compounds [111]. Nonetheless, studies demonstrating the effective-

ness of these compounds towards the reduction of ACR have been presented in the literature. 

Fernandez et al. [112] recorded a 50% ACR reduction after the addition of a flavonoid spice 
mix to potato chips. Zhang and Zhang [108] reported a 76% reduction in ACR after French fries 

were dipped into extracts of bamboo leaves with antioxidant properties, while a 59% decrease 

in ACR was recorded when fried chicken wings were dipped into same extracts [111]. Further 

reports in the literature on this have been adequately reviewed by Kahkeshani et al. [107] and 

can be consulted for further reading. Interestingly, Africa is the home to a vast and diverse 

number of plants and other botanicals with rich phytochemicals. Extracts of these plants and 
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herbs are used for various purposes prominently in traditional medicines. Application of such 

extracts would go a long way in the mitigation of ACR occurrence in foods.

3.6. Genetic modification

As defined by Key et al. [113], genetically modified crops/plants are those that have been 
genetically altered through the use of recombinant DNA technology. This may be to express 

a gene not native to the plants or to modify endogenous ones [113]. This issue has in the 

recent years attracted worldwide attention especially regarding its risk to the environment 
and human health. While it is widely accepted in many parts of the world, including parts of 

America and Asia, it still remains a controversial issue in Europe [35]. Most African continents 

follow the latter, as concerns regarding the immediate and long-term effects of genetically 
modified crops are major hindrances to adopting this technology. Although different authors, 
government agencies and international organizations have backed and supported genetic 

modification, there is still a stiff opposition against its acceptance. Inconsistencies in free 
sugar, amino acid and asparagine contents in crops of different cultivars (varieties) and geno-

types however suggest that the varying concentration of these parameters is due to genetic 

variations [19, 29, 38, 114]. Consequently, fast tracking the natural breeding process through 

the use of genetic engineering to develop cultivars (varieties) with lower concentration of 

asparagine and reducing sugars should be possible and encouraged [35]. It has been shown 

that simultaneous silencing of the genes (StAst1 and StAst2) that encode for asparagine syn-

thetase which is the enzyme that catalyse the formation of asparagine in potato, significantly 
reduced the levels of asparagine in the transgenic crop [115]. Another study demonstrated 

reduction in the concentration of reducing sugars, which also participate in reaction leading 

to ACR formation. For instance, since reducing sugar is accumulated during the cold storage 

of potato (cold-induced sweetening), silencing of the enzyme acid invertase resulted in potato 

with reduced concentration of fructose and glucose as well as low ACR concentration when 

processed into French fries [116]. While genetic modification continues to be controversial, the 
farmers, the food industry and other vital stakeholders should be proactive in the develop-

ment of crop varieties that would yield lower ACR levels in food.

4. Conclusion and future prospects

This chapter gives an overview of ACR in foods, significant progress in its formation and miti-
gation strategies with a dearth of information in Africa. Its occurrence and exposure in other 

parts of the world have been extensively reviewed by other authors with little focus on the 
African continent. Starch-based foods and food products constitute a major and basic daily 

diet for millions in the developing world, particularly in Africa. Coupled with the myriad of 

associated traditional heat processing operations, it is justified to conclude that inhabitants in 
this region are exposed to high risk of ACR contamination. This is expected to stimulate inter-

est among scientists working in the field of food safety and quality, for making better efforts 
towards investigating the occurrence and exposure of ACR in Africa. With such data lacking, 

there is also insufficient information on the impact of lower levels of exposure to ACR content, 
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which needs to be established. Concerted efforts must also be directed towards this, using 
validated models of predicting dose exposure and mechanism of toxicity relationship to assist 

in measuring the public health risk of ACR in foods. Furthermore, adequate enlightenment 

and sensitization of the populace by government agencies and the industry about the dangers 

and possible ways of reducing this food contaminant must be provided and emphasized.
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