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Abstract

The complexities and challenges for reliable operation of power system have increased
due to various types of Distributed Generators (DG) in the Distribution Network (DN)
to supply the increasing load demand. It necessitates a comprehensive approach in
planning the system towards effective and reliable operation of the system. During the
operation of the system, detection of unintentional islanding is critical as non-detection
of islanding event could lead to cascaded failure of the system due to active or reactive
power imbalance leading to frequency, angle or voltage instability. If undetected, the
instability in the islanded part can cascade into the stable part of the system resulting in
complete failure of the system. A robust Modified Islanding Detection Technique
(MIDT) has been proposed for identifying the islanding event early and accurately in
the distribution networks with DGs installed for multiple objectives and is compared
with existing passive Islanding Detection Techniques (IDT). A rank-based load shedding
scheme is proposed for stable and reliable operation of the identified island, which
sheds only the most vulnerable loads in the island for regaining the frequency and
voltage stabilities. The proposed MIDT and rank based load shedding schemes were
tested on 11kV IEEE 118 Bus Test system.

Keywords: distributed generation, islanding, modified islanding detection technique
(MIDT), rank-based load shedding, frequency stability, voltage stability, reliability

1. Introduction

Distributed generator (DG) is an electric power source connected directly to the distribution

networks (DNs). The various definitions and technologies of DGs are described in Refs.

[1, 2]. The importance of the DG units in the network is more profound with the emphasis

on green energy technology and environmental concerns. DG plays a crucial role for the

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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security, reliability, and efficiency of the modern power systems [3]. An exhaustive analysis

of methods and models for optimal placement of DG units is given in Ref. [4]. The various

techniques proposed for optimal placement of the DG units in the DNs, using various AI

techniques for realizing the benefits of DGs like improvement of voltage profile, loss mini-

mization, power transfer capability, uncertainties due to load and fuel prices, planning of

dispatchable and non-dispatchable DG units, network security, reliability, etc. are described

in Refs. [5–9].

The electrical isolation distribution system from the power system due to abnormal conditions,

while being energized by the DG connected to it, is known as islanding [10]. During operation

of the system, the detection of islanding event is critical in effective operation of the system. A

comprehensive survey of islanding protection with renewable DG is reported in Ref. [11]. The

islanding detection techniques are broadly classified into active and passive techniques [12].

Active islanding detection techniques introduce small perturbations in the system for detecting

the islanding event. They have smaller nondetection zones (NDZ) but have large time of

detection. As a result of the perturbations being introduced, the performance of the system

degrades. Active techniques have been reported to work satisfactorily for single DG unit only

and their response at multiple DG units is not guaranteed. The passive scheme utilizes local

measurements of voltage and current signals. Many techniques ranging from usage of voltage

variations and its derivatives, frequency variations and its derivatives, intelligent devices, etc.

have been proposed for islanding detection in the presence of DGs in the system. The algo-

rithms of passive scheme include under/over frequency and voltage, rate-of-change of fre-

quency and power, vector surge, and harmonic distortion indices [13–18]. The passive

methods have small time of detection and do not degrade the system power quality. However,

the passive methods suffer from large NDZ.

The power mismatch may lead to collapse of the system, in the islanded part of the system, if

proper corrective actions are not initiated timely. Load shedding is a commonly used emer-

gency control action during mismatch of power in the island. Since the control action cannot be

based on under-voltage, under-frequency load-shedding method is the commonly used

method [19–22]. Most of the existing schemes need to be reinvestigated in the presence of DG

units as load shedding depends on economic reasons along with technical reasons. In some

cases higher amount of load shedding than required has been done since the load shedding

has been performed on discrete basis in distribution systems to regain the stability.

The proposedmodified islanding detection technique (MIDT) is based on utilizing the advantages

of the existing passive methods of islanding detection with appropriate threshold values being

identified for early and effective detection of the islanding event. In the proposed MIDT, in

addition to the existing parameters used in the passive islanding detection techniques (IDTs), a

new parameter is utilized for effective identification of the islanding event. The proposed param-

eter is based on the voltage sensitivity to the active power (voltage-active power sensitivity

parameter (∆VP)). A rank-based load-shedding scheme is proposed in the island to alleviate the

power mismatch and to identify the island. The effectiveness of the proposed load-shedding

scheme has been determined by a quantitative reliability analysis from the available failure data

and reliability indices of the system.
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2. Proposed modified islanding detection technique (MIDT)

The complete blackout of the system may occur due to faults upstream or failure of the grid.

The major requirement of installation of DG units in the distribution system is the ability to

operate the system on islanded mode and also reducing the amount of load shedding needed

under contingencies to achieve stable operation of the system. However, active or reactive

power imbalance leading to frequency, angle, or voltage instability may take place in the

unintentional islands or improper partition of the system. This further leads to instability in

the interconnected network due to unwanted tripping of interconnected tie-lines. Hence, the

unintentional islanding event has to be detected early and accurately to assist the system

operator for ensuring appropriate control actions being initiated and avoid a blackout of the

islanded region of the system.

The passive techniques have inherent disadvantage of large NDZ and requires accurate setting of

threshold values of different parameters. Unwanted tripping occurs for low threshold values and

higher threshold values may result in failure of detection of islanding event. The less cost of

implementation of passive islanding detection techniques (IDTs) along with early detection of

islanding makes it a most preferred method for IDT. Since the DG can supply only a small

amount of load, the islanding has to be detected early and accurately. If undetected, the instability

in the islanded part could cascade into the stable part of the system resulting in complete failure

of the system. In the presence of DG units, the accurate identification of islanding becomes

difficult due to complexity in monitoring the system parameters. Hence, the existing methods

need to be reinvestigated for early and accurate detection of the islanding event. For accurate and

early detection of islanding, the existing passive IDTs are modified by utilizing more robust

parameters along with the existing parameters used in the passive IDTs. The existing parameters

are used as alarm signals for the impending islanding event and the system enters into the alert

state. The following parameters are utilized in the existing passive detection techniques:

The deviation in voltage at each bus is measured for every time instant as:

Variation of voltage ¼ dVðVoltsÞ ð1Þ

To avoid any errors in measurement, the voltage parameter is computed by averaging over

five continuous cycles and is expressed in (V/s).

Voltage parameterðδνtÞ ¼
dV

dt

�

�

�

�

�

�

�

�

< σ for 5 cycles ð2Þ

σ is the predefined threshold value for the parameter and is taken as 160 V/s [17]. The frequency

at each bus is measured and the deviation in frequency is calculated for every time instant as:

Variation off requency ¼ df ðHertzÞ ð3Þ

The rate of change of frequency (ROCOF) is computed at every bus for each cycle and is

expressed as frequency parameter in (hertz/seconds)
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Frequency parameter ðδf tÞ ¼
df

dt

�

�

�

�

�

�

�

�

�

�

< ∈ ð4Þ

The ROCOF is used for fast islanding detection as the rate of change of frequency is a sensitive

measurement. The ROCOF is calculated over few cycles and is set between 0.1 and 1.2 Hz/s for

a 60 Hz system. The ROCOF relays may become ineffective if the power imbalance in the

islanded system is <15% and is set as 2.18 Hz/s for 60 Hz system [14].

The variation of net active power is monitored at each bus for every cycle. The variation will be

less in DG buses since the power available from DG units is fixed. The buses farther away from

the DG bus will have more variations in active power for load variations

Variation of active power ¼ dPðMWÞ ð5Þ

The ROCOP is calculated at each bus for every time instant in (megawatt/seconds)

Rate of change of active power ðδPtÞ ¼
dP

dt

�

�

�

�

�

�

�

�

�

�

< ϒ ð6Þ

ϒ is the predefined threshold limit and is fixed as 0.64 MW/s [14]. In this work, the parameters

computed by Eqs. (3)–(5) are monitored and checked for threshold violation and the operator

is alerted for an impending islanding event. Two additional proposed parameters are also

monitored and computed for violations in the alert state. The voltage-active power sensitivity

parameter (ΔVP) is calculated by dividing Eq. (2) by Eq. (6) and the variation of voltage to real

power parameter at a bus and is calculated in (volts/megawatt)

Votlage active power sensitivity ðΔνpÞ ¼
dV

dP

�

�

�

�

�

�

�

�

�

�

< μ ð7Þ

μ is the threshold value of the proposed voltage-active power sensitivity parameter and set

at 10%. During simulations, it was observed that for “μ” values less than 10%, false trigger-

ing of islanding event set in and for greater threshold values some islanding events were not

detected. If either the voltage parameter (δvt) or frequency parameter (δft) or ROCOP (δPt)

violates the predefined threshold limit, a case of islanding is suspected and the system

operator is alerted for an impending islanding event. Mathematically it can be expressed

as*****:

Islanding suspicion ¼
dV

dt

�

�

�

�

�

�

�

�

�

�

> σðorÞ
df

dt

�

�

�

�

�

�

�

�

�

�

> ∈ ðorÞ
dP

dt

�

�

�

�

�

�

�

�

�

�

> ϒ ð8Þ

Subsequently, if the voltage-active power sensitivity parameter (Δvp) also violates the thresh-

old limit at any bus when the system is in alert state, it is classified as an islanding event and

the bus at which these proposed parameters initially violate the limit is identified for

islanding.
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Mathematically it can be expressed as

Islanding detection ¼ Islanding suspicion and
dV

dP

�

�

�

�

�

�

�

�

�

�

> μ ð9Þ

A flowchart of the proposed MIDT is shown in Figure 1.

3. Rank-based load-shedding scheme with quantitative

reliability analysis

The power mismatch in the islands makes the operation of islands a challenging task. The load

shedding is an extensively used countermeasure for the stable operation of the island under

such conditions. The quantitative reliability analysis gives a comprehensive idea to evaluate

the merits of investing in various reinforcements for the system planner. Since it is based on the

Figure 1. Flowchart for the proposed MIDT.
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number of customers being affected, standard reliability indices help in measuring the effect of

the load. A measure of number of customers affected by load shedding can also be obtained

by the computed reliability indices. A rank-based load-shedding scheme is proposed for

maintaining the power balance in the detected island when the power demand exceeds the

power output of the DG sources in the island. The ROCOF and rate-of-change of voltage is

utilized for ranking of the loads to ensure that the most vulnerable bus with overload for

tripping is ranked higher. This ranking ensures that the DG bus does not participate in the

load shedding as the frequency variation is not significant. The load shedding process con-

tinues till the frequency and voltages are brought back within threshold limits in the island.

The total amount of load shed from each bus can be calculated as:

Load shed ¼ DPCi � Pload;i ð10Þ

where Pload,i is the load at bus “i,”DPC is the definitive participation coefficient for a particular

bus and is calculated as:

DPC ¼ Ki � ζf � ζv ð11Þ

where ζf and ζv are the coefficient of frequency and voltage components, respectively, of the

buses and are calculated as follows:

ζf ¼
f i;t
f init;0

ð12Þ

ζv ¼
V i;t

V init,0
ð13Þ

where finit,0 is the frequency of the islanding bus when the islanding is detected fi,t is the

frequency at bus “i” when the proposed rank-based load-shedding process is initiated, Vi,t is

the voltage at bus “i” when the proposed rank-based load-shedding process is initiated, and

Vinit,0 is the voltage of the islanding bus when the islanding is detected. The value of Ki for the

buses is given as:

Ki ¼
0; if DG is available

1; if DG is not available

(

ð14Þ

By the proposed method of load shedding, the amount of load being shed will be less than the

total power demand in the island since loads of the most vulnerable buses are shed

X

c

i¼1

PLoad shed;i < PL;island ð15Þ

considering “c” is the total number of buses in the island, PLoadshed,i is the amount of load

needed to be shed in the island to regain the stability, and PL,island is the total demand in the

island. As load shedding in the distribution system is performed in discrete values, the value of
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Ki is considered as either 0 or 1. At each step of the load-shedding process, the frequency,

voltage of the islanded bus, and the power flow limits of the identified island are monitored

during each step of the load-shedding process and mathematically expressed as:

fmin ≤ f i ≤ fmax ð16Þ

Vmin ≤V i ≤Vmax ð17Þ

Pmin ≤Pi ≤Pmax ð18Þ

The values of fmin and fmax are taken to be 57.5 and 60.5 Hz. The values of Vmin and Vmax are

considered as 0.95 and 1.05 pu. The quantitative reliability of the islanded system is computed

before and after the load shedding to measure the effectiveness of the proposed load-shedding

scheme. The reliability analysis is performed through standard reliability indices and from the

failure rate and repair time of the lines in the system. From the customer failure statistics [23],

the standard quantitative reliability indices system average interruption duration index

(SAIDI), system average interruption frequency index (SAIFI), customer average interruption

duration index (CAIDI), energy not supplied (ENS), and average ENS (AENS) are computed.

A flowchart of the proposed rank-based load-shedding scheme is shown in Figure 2.

SAIDI is system average interruption duration index and expressed in terms of hours per customer

SAIDI ¼

X
of Customer interuption durations

Total number of customers
¼

X
UiNiX
Ni

ð19Þ

where Ui is the annual outage time and Ni is the number of customers of load at point i.

Figure 2. Flowchart of the proposed rank-based load-shedding scheme.
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SAIFI is system average interruption frequency index and expressed as interruptions per customer

SAIFI ¼

X
of Customer interuption durations

Total number of customers
¼

X
λiNiX
Ni

ð20Þ

where λi is the failure rate and Ni is the number of customers of load at point i.

CAIDI is customer average interruption duration index and expressed as hours per customer

interruption

AIDI ¼

X
of Customer interuption durations

Total number of customer Interruptions
¼

X
UiNiX
λiNi

ð21Þ

ENS is energy not supplied index and is measured as kilowatt hour

ENS ¼ Energy not supplied ¼
X

LaðiÞUi ð22Þ

La(i) is the average load connected to load at point i

AENS is the average ENS index and is expressed in kilowatt hour per customer

AENS ¼
Total energy not supplied

Total number of customers served
¼

LaðiÞUi

Ni
ð23Þ

4. Results and discussion

All simulations have been performed in MATLAB R2010a [24] and PSAT [25] Intel Core i5, 2.5

GHz, 4 GB random access memory machine. The proposed methods were tested for different

loading conditions (base load and 140% of base load) on standard 11 kV IEEE 118 Bus Test

system [5]. The DG units have been installed in the system by QOTLBO as mentioned in Ref.

[5] and the loads are increased exponentially from the base load. The proposed MIDT is

compared with existing passive IDT using the rate-of-change of voltage as given in Eq. (2) [3],

ROCOF as given in Eq. (4) [15], and ROCOP as given in Eq. (6) [15]. In the proposed method,

the rate-of-change of voltage with active power known as voltage-active power sensitivity is

calculated along with voltage, frequency, and active power variations at each bus for every

instant of time. The results of base case and extreme loading condition (i.e., 140% of base case)

are considered for discussion in this work. The results obtained are shown in Table 1.

From this table, it can be seen that the proposed MIDT is effective in identifying the islanding

event early and accurately. The frequency parameter initially triggers the MIDT. In the existing

passive methods, since only one parameter is used for the identification of islanding events, the

bus nearer to the grid is the vulnerable bus for islanding erroneously. In the passive method-II, at

least three averaged values are needed for the identification of the islanding event as it uses

averaging of voltage measurements for islanding detection, thus making a delayed identification

Development and Integration of Microgrids142



Loading

level

Islanding detection

Passive method–I Passive method–II Passive method–III Proposed method

Time of

detection

Islanded

bus

No. of buses

in island

Time of

detection

Islanded

bus

No. of buses

in island

Time of

detection

Islanded

bus

No. of buses

in island

Time of

detection

Islanded

bus

No. of buses

in island

Base load 1.052 4 38 1.083 23 Wrong

trigger

1.0187 29 37 1.0187 31 18

140% of

Base load

1.052 4 38 1.083 24 Wrong

trigger

1.0187 29 37 1.0187 31 18

Table 1. Islanding analysis of 118 bus system with DG units.
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of the islanding event. The proposed MIDTworks satisfactorily when the minimum base load in

the system is increased to 140% of the base load. The islanding event is simulated by increasing

loads from t = 1 s and the islanding event is identified at time t = 1.05 s. As the effect of DG

penetration cannot be effective on buses away from the DG buses, the islanded bus moves away

from the grid as the minimum load in the system is increased. The MIDT as the variations of

voltage to active power is considered for each bus overcoming the problem of NDZ prominent in

the frequency parameter. The islanded bus is identified accurately by the proposed MIDTand is

not triggered due to switching of capacitors or switching events. This occurs as the variations of

all the parameters are considered in every bus. Moreover, as the cross-coupling of parameters,

namely, the voltage-active power sensitivity parameter does not vary much during nonislanding

events. The identification of islanding event is effective as the cross-coupling of parameters

exhibit large variations only under actual islanding conditions. A comparison of the formation

of the island by different methods is shown in Figure 3.

In the identified islands the proposed rank-based load shedding is initiated. The load shedding

is initiated at t = 1.084 s, i.e., after two cycles (in 60 Hz) system after the islanding is detected.

The effect of the DPC parameter on the load shedding is measured when load shedding is

performed without the DPC parameter. The load shedding is performed by shedding the loads

from the buses farther away from the DG bus when the DPC parameter is not considered

leading to more amount of load shedding to regain the voltage and frequency stability. The

results of the proposed load-shedding scheme in the islands are shown in Table 2.

The effect of the load-shedding scheme is measured by quantitative reliability analysis, based

on the failure data of the line and the repair time of the lines. The results of the reliability

analysis are shown in Table 3. It can be seen from the indices that the number of customers

affected by the proposed load-shedding scheme is less by considering the DPC parameter for

load shedding.

The variations of frequency and voltage at the islanded bus, before and after the proposed load

shedding, are shown in Figures 4 and 5.

Figure 3. Identification of islands by proposed MIDT and existing IDT.
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Figure 5. Comparison of voltage at islanded bus before and after load shedding.

Cases Before load shedding After load shedding

SAIDI SAIFI CAIDI ENS AENS SAIDI SAIFI CAIDI ENS AENS

With DPC 0.3463 0.4090 0.8466 1.38 0.0511 0.3403 0.3993 0.7983 0.72 0.036

Without DPC 0.3463 0.4090 0.8466 1.38 0.0511 0.3419 0.4035 0.8428 0.9 0.05

Table 3. Reliability analysis of the island.

Load shedding

technique

Islanded bus Number of buses

in the island

Power available,

MW

Load, MW Actual load

shed, MW

Amount of

load shed, %

With DPC 31 18 4.8302 7.612

Without DPC 31 18 4.8302 7.612

Table 2. Load shedding in island at base load.

Figure 4. Comparison of frequency at islanded bus before and after load shedding.
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As seen from the figures, the regain of frequency and voltage in the islanded bus is faster

and effective by the proposed rank-based load-shedding method which considers the DPC

parameter as the most vulnerable loads are shed from the islanded part of the system.

5. Conclusion

For identifying the islanding event in the presence of DG units, an additional voltage-active

power sensitivity parameter which measures the variation of voltage with active power at a

bus is proposed along with the existing parameters utilized in the passive IDTs. The additional

voltage-active power parameter ensures against the false triggering of islanding event and also

identifies the vulnerable bus accurately. Due to cross-coupling of voltage-real power and

frequency-reactive power, the proposed parameter is more sensitive to sudden large load

variations or disturbances and does not trigger the islanding event due to sudden switching

of loads or capacitor switching events.

The proposed rank-based load shedding identifies the vulnerable buses for load shedding

by using a dynamic DPC parameter. The amount of load shed by the proposed method is

lesser compared to the conventional load shedding strategy for regaining the frequency and

voltage stability in the island. The availability of DG unit, frequency, and voltage variations

in a bus is taken into account in the proposed DPC parameter for identifying a bus for load

shedding. The effectiveness of the proposed load shedding is analyzed by a quantitative

reliability analysis in the islands before and after the load shedding. The reliability indices

are improved as the number of customers affected by the load shedding is less. This is

because only the vulnerable loads are shed when DPC parameter is considered. The pro-

posed DPC parameter is effective in improving the reliability of the island as the reliability

indices also depend on the number of customers being affected. Further investigations are

needed for proper control actions when the DG power available is more than the demand in

the island.

Author details

Narayanan Krishnan1*, Shahbaz A. Siddiqui2 and Manoj Fozdar3

*Address all correspondence to: narayanan.mnit@gmail.com

1 Department of Electrical & Electronics Engineering, SEEE, Sastra University, Thanjavur,

Tamil Nadu, India

2 Department of Electrical Engineering, Manipal University, Jaipur, Rajasthan, India

3 Department of Electrical Engineering, MNIT, Jaipur, Rajasthan, India

Development and Integration of Microgrids146



References

[1] Zeineldin HH, Kirtley JL, Jr. A simple technique for islanding detection with negligible

nondetection zone. IEEE Transactions on Power Delivery. 2009;24(1):779-786. DOI:

10.1109/PES.2009.5275939

[2] Laaksonen H. Advanced islanding detection functionality for future electricity distribu-

tion networks. IEEE Transactions on Power Delivery. 2013;28(4):2056-2064. DOI: 10.1109/

TPWRD.2013.2271317

[3] Pourbabak H, Kazemi A. A new technique for islanding detection using voltage phase

angle of inverter-based DGs. International Journal of Electrical Power and Energy Sys-

tems. 2014;57:198-205. DOI: http://dx.doi.org/10.1016/j.ijepes.2013.12.008

[4] Georgilakis PS, Hatziargyriou ND. Optimal distributed generation placement in power

distribution networks: Models, methods, and future research. IEEE Transactions on

Power Systems. 2013;28(3):3420-3428. DOI: 10.1109/TPWRS.2012.2237043

[5] Sultana S, Roy PK. Multi-objective quasi-oppositional teaching learning based optimiza-

tion for optimal location of distributed generator in radial distribution systems. Interna-

tional Journal of Electrical Power & Energy Systems. 2014;63(2014):534-545. DOI: http://

dx.doi.org/10.1016/j.ijepes.2014.06.031

[6] Kansal S, Kumar S, Tyagi B. Optimal placement of different type of DG sources in

distribution networks. International Journal of Electrical Power and Energy Systems.

2013;53(2013):752-760. DOI: http://dx.doi.org/10.1016/j.ijepes.2013.05.040

[7] Rao RS, Ravindra K, Satish K, Narasimham SVL. Power loss minimization in distribution

system using network reconfiguration in the presence of distributed generation. IEEE

Transactions on Power Systems. 2013;28(1):317-325. DOI: 10.1109/TPWRS.2012.2197227

[8] Aman MM, Jasmon GB, Bakar AHA, Mokhlis H. A new approach for optimum DG

placement and sizing based on voltage stability maximization and minimization of

power losses. Energy Conversion and Management. 2013;70:202-210. DOI: http://dx.doi.

org/10.1016/j.enconman.2013.02.015

[9] Othman MM, El-Khattam W, Hegazy YG, Abdelaziz AY. Optimal placement and sizing

of distributed generators in unbalanced distribution systems using supervised Big Bang-

Big Crunch Method. IEEE Transactions on Power Systems. 2015;30(2):911-919. DOI:

10.1109/TPWRS.2014.2331364

[10] IEEE Application Guide for IEEE Std. 1547. IEEE Standard for Interconnecting [Internet].

2008. Available from: www.ieee.org

[11] Chowdhury SP, Chowdhury S, Crossley PA. Islanding protection of active distribution

networks with renewable distributed generators: A comprehensive survey. Electric Power

Systems Research. 2009;79(6):984-992. DOI: http://dx.doi.org/10.1016/j.epsr.2008.12.012

[12] Shayeghi H, Sobhani B. Zero NDZ assessment for anti-islanding protection using wavelet

analysis and neuro-fuzzy system in inverter based distributed generation. Energy

Detection and Operation of Unintentional Islands in the Presence of Distributed Generation Units
http://dx.doi.org/10.5772/intechopen.68859

147



Conversion and Management. 2014;79:616-625. DOI: http://dx.doi.org/10.1016/j.enconman.

2013.12.062

[13] Narayanan K, Siddiqui SA, Fozdar M. Identification and reduction of impact of islanding

using hybrid method with distributed generation. In: IEEE Proceedings of PES General

Meeting; 27-31 July 2015; Denver, Colorado. Denver, CO: IEEE; 2015. pp. 1-5. DOI:

10.1109/PESGM.2015

[14] Samantaray SR, El-Arroudi K, Joos G, Kamwa I. A fuzzy rule-based approach for

islanding detection in distributed generation. IEEE Transactions on Power Delivery.

2010;25(3):1427-1433. DOI: 10.1109/TPWRD.2010.2042625

[15] Samui A, Samantraray SR. New active islanding detection scheme for constant power

and constant current controlled inverter-based distributed generation. IET Generation,

Transmission & Distribution. 2013;7(7):779-789. DOI: 10.1049/iet-gtd.2012.0607

[16] Narayanan K, Siddiqui SA, Fozdar M. An improved hybrid method to reduce the effect of

islanding in the presence of optimally located DGs. In: IEEE INDICON; 17-20 December

2015; New Delhi. New Delhi: IEEE; 2015. pp. 1-6. DOI: 10.1109/INDICON.2015.7443690

[17] Garmrudi M, Nafisi H, Fereidouni A, Hashemi H. A novel hybrid islanding detection

technique using rate of voltage change and capacitor tap switching. Electric Power Com-

ponents and Systems. 2012;40(10):1149-1159. DOI: 10.1080/15325008.2012.682249

[18] Samantaray SR, Babu BC, Dash PK. Probabilistic neural network based islanding detec-

tion in distributed generation. Electric Power Components and Systems. 2011;39(3):191-

203. DOI: 10.1080/15325008.2010.526986

[19] Rudez U, Mihalic R. Monitoring the first frequency derivative to improve adaptive

underfrequency load-shedding schemes. IEEE Transactions on Power Systems. 2011;26

(2):839-846. DOI: 10.1109/TPWRS.2010.2059715

[20] Rudez U, Mihalic R. Predictive underfrequency load shedding scheme for islanded power

systems with renewable generation. Electric Power Systems Research. 2015;126:21-28. DOI:

http://dx.doi.org/10.1016/j.epsr.2015.04.017

[21] Laghari JA, Mokhlis H, Karimi M, Bakar AHA, Mohamad H. A new under-frequency

load shedding technique based on combination of fixed and random priority of loads for

smart grid applications. IEEE Transactions on Power Systems. 2015;30(5):2507-2515. DOI:

10.1109/TPWRS.2014.2360520

[22] Ketabi A, Fini MH. An underfrequency load shedding scheme for hybrid and multiarea

power systems. IEEE Transactions on Smart Grid. 2014;6(1):82-91. DOI: 10.1109/TSG.

2014.2349999

[23] Billinton R, Allan RN. Reliability Evaluation of Power Systems. 2nd ed. New York:

Springer; 1994

[24] The Math Works, Inc., MATLAB programming; 2008

[25] Milano F. An open source power system analysis toolbox. IEEE Transactions on Power

Systems. 2005;20(3):1199-1206. DOI: 10.1109/TPWRS.2005.851911

Development and Integration of Microgrids148


