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Abstract

In this book chapter, we focus on recent advances in thermoplastic elastomers based on 
synthetic polymers from the aspects of polymer architectures such as linear block, graft, 
and star copolymers. The first section is an introduction that covers a brief history and 
classification of thermoplastic elastomers (TPEs). The second section summarizes ABA 
triblock copolymers synthesized by various methods for TPE applications. The third sec-
tion reviews TPEs based on graft copolymers, and the fourth section reviews TPEs based 
on star copolymers. The differences between TPE research in academia and industry are 
addressed in the last section as a perspective, with a view toward the generation of new, 
advanced, commercially viable TPEs.

Keywords: thermoplastic elastomers, living/controlled polymerization, polymer architecture, 
functional polymers, mechanical properties

1. Introduction

Thermoplastic elastomers (TPEs) are biphasic synthetic polymer materials consisting of a con-

tinuous soft rubbery matrix physically cross-linked by glassy plastic domains [1, 2] (Figure 1). 
Such materials have the elasticity of a conventional rubber but are suitable for high-through-

put plastic-processing techniques such as injection molding and melt extrusion without 

requiring a curing process [3, 4]. This feature allows TPEs to be manufactured on a large scale 
using short production time, which makes TPEs one of the most commonly used polymeric 
materials in many fields [5].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Commercially available TPEs, based on chemical composition and morphology, can be cat-
egorized into eight different groups: (1) styrenic block copolymers (SBCs), (2) polymer blends 
by dynamic vulcanization (TPVs), (3) polyolefin-based thermoplastic elastomers (TPOs), (4) 
halogen-containing polyolefins, (5) thermoplastic polyurethane elastomers (TPUs), (6) poly-

amide-based thermoplastic elastomers (COPA), (7) polyether ester elastomers (COPE), and 
(8) ionomeric thermoplastic elastomers. These have been extensively reviewed in many hand-

books [5–8].

Starting from the 1990s, many fascinating polymers with various functionalities, well-defined 
structures, and advanced macromolecular architectures were prepared thanks to develop-

ments in living/controlled polymerization techniques such as living anionic [9–11]/cationic 

polymerization [12], atomic transfer radical polymerization (ATRP) [13], ring-opening 

metathesis polymerization (ROMP) [14], reversible addition-fragmentation chain-transfer 

polymerization (RAFT) [15], nitroxide-mediated radical polymerization (NMRP) [16], and so 

on. Many of these new polymers have great potential to be used as thermoplastic elastomers.

Along with innovations in synthetic polymer chemistry, this chapter summarizes recent 
advances in thermoplastic elastomers based on synthetic polymers from the aspect of poly-

mer architectures including (1) ABA-type triblock polymers, (2) graft polymers, and (3) star-
branched polymers.

2. ABA triblock copolymer-type TPEs

2.1. Polymers synthesized by anionic polymerization

The most common ABA triblock copolymer-type TPEs are polystyrene-b-polyisoprene-b-
polystyrene (SIS) and polystyrene-b-polybutadiene-b-polystyrene (SBS) triblock copolymers, 

Figure 1. Structure illustration of thermoplastic elastomers.
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designed and synthesized by Milkovich and Holden from Shell Development Company in 
1965 [17]. With proper composition, PI forms a continuous rubber matrix, which is physi-
cally cross-linked by rigid component PS due to the thermodynamic incompatibility between 
these two components. In a dynamic mechanical analysis of SIS with temperature ramp/fre-

quency sweep, SIS behaves like a glassy plastic with a high storage modulus (Gʹ) when the 
temperature is below the glass transition temperature of PI (T

g
 ~ −56°C). As the temperature 

increases but remains lower than the T
g
 of PS (95°C), the polyisoprene chains start to move 

and Gʹ reaches the rubbery plateau value. This temperature range is considered as the service 

temperature range where such polymers act as elastomer with typical stress-stain behavior. 

When the temperature is above 95°C, the polymer enters the melt-flow zone and behaves as 
a viscous liquid.

As many applications benefit from low-cost SBCs or styrenic-based TPEs (S-TPEs), high-tem-

perature applications and other advanced consumptions of S-TPEs, such as in tire rubber, 
are largely limited by the relatively low glass transition temperature of PS. When the service 
conditions approach 95°C, softening of PS domains dramatically reduces the tensile stress of 
S-TPEs. One major research interest in the field of anionic polymerization is to increase the 
upper service temperature of S-TPEs without changing the polymerization procedure, which 
has already existed in pilot plants for almost 50 years [18, 19]. These efforts mainly explored 
anionic polymerization of polymers with higher glass transition temperatures. Such polymers 
include the following:

2.1.1. Styrene derivatives

Styrene derivative polymers include polystyrene with functionalities at α- or para-posi-
tion: poly(α-methyl styrene) (PMS, T

g
 ~173°C) [20], poly(α-methyl p-methyl styrene) 

(PMMS, T
g
 ~183°C) [21], poly(tert-butyl styrene) (PtBS, T

g
 ~130°C) [22], and poly(p-ada-

mantyl styrene) (P-AdmS, T
g
 ~203°C) [23, 24].

For the anionic polymerization of α-methyl styrene and its derivative α-methyl p-methyl 
styrene, the bulky methyl group at the α-position results in a low monomer ceiling temper-

ature. In order to achieve quantitative yield, polymerization of these monomers requires 
low polymerization temperature (−78°C) in polar solvent (THF), which is not desirable 
in large-scale industry application [19]. High T

g
 polystyrene derivatives with bulky pen-

dent groups such as tert-butyl or adamantyl at the para-position will cause phase blending 

with polydienes due to the lipophilic nature of the tert-butyl or adamantyl group. In order 

to increase the strength of phase separation and generate effective physical cross-linking, 
high overall molecular weight is required for polybutadiene/poly(tert-butyl styrene) (PtBS, 
T

g
 ~130°C) systems [22].

2.1.2. Methacrylate derivatives

Polymers of methacrylate derivatives include syndiotactic poly(methyl methacrylate) 
(sPMMA, T

g
 ~120°C), poly(ethyl methacrylate) (PEMA, T

g
 ~90°C), poly(tert-butyl methacry-

late) (PtBMA, T
g
 ~116°C), poly(isobornyl methacrylate) (PIBMA, T

g
 ~202°C) [25], and poly(1-

adamantyl acrylate) (P-AdmA, T
g
 ~133°C) [26].
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Since the glass transition temperature of poly(alkyl methacrylate) depends both on tacticity 
and on the size of alkyl substituents [25–28], incorporating methacrylate derivatives with dif-

ferent tacticities as the hard segment in ABA-type triblock copolymers could tune the service 
condition over a large temperature range [28]. When using polydienes as the elastic matrix, 

methacrylate derivatives were initiated in THF at −78°C through a difunctional polydiene 
anion, which was synthesized in a hydrocarbon solvent since anionic polymerization of buta-

diene or isoprene in polar solvents forms less cis-1,4 microstructure, and thus dramatically 

increases the T
g
.

In a typical synthesis of all acrylic TPEs such as PMMA-poly(n-butyl acrylate)-PMMA tri-
block copolymers, PMMA-poly(tert-butyl acrylate)-PMMA precursor was first synthesized 
by sequential anionic polymerization of MMA, tert-butyl acrylate, and MMA in THF at −78°C. 
By transalcoholysis with n-butanol of the precursor, PMMA-poly(n-butyl acrylate)-PMMA 
triblock copolymer was prepared with PMMA as the rigid domain and poly(n-butyl acrylate) 
(PnBA) as the rubbery matrix [29, 30].

The polymerization of the abovementioned monomers requires low polymerization tempera-

ture in a polar solvent. However, anionic polymerization on an industry scale is generally 
carried out in hydrocarbon solvent at mild temperature [18]. Thus, a high T

g
 polymer system 

that can be synthesized in hydrocarbon solvent at mild temperature is ideal for large-scale 
application. To follow this endeavor, the anionic polymerization of a third group of mono-

mers was explored:

2.1.3. Rigid-conjugated diene monomers

Polymer prepared by rigid-conjugated diene monomers includes poly(1,3-cyclohexadiene) 
(PCHD) and polybenzofulvene (PBF) (Table 1). One feature of anionic polymerization of con-

jugated dienes is that the microstructure of the resulting polymer varies with different initia-

tion systems. 1,3-Cyclohexadiene demonstrated controlled anionic polymerization behavior 
with three different initiation systems: n-butyllithium/tetramethyl-ethylenediamine (TMEDA), 
n-butyllithium/1,2-dimethoxyethane (DME), or sec-butyllithium/1,4-diazabicyclo[2.2.2]-octane 

(DABCO) [31–33]. Resulting poly(1,3-cyclohexadiene) (PCHD) has 55, 75, and 90% of 1,4-addi-
tion, respectively. T

g
s of these polymers decreased from 155 to 110°C as the percentage of 

Name Monomer structure Polymer structure

1,3-Cyclohexadiene

benzofulvene

Table 1. Monomer and polymer structure of 1,3-cyclohexadiene (CHD) and benzofulvene (BF).
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1,2-microstructure decreased. PCHD-PB-PCHD triblock copolymer with 30 wt% of PCHD 
exhibited 10.2 MPa ultimate stress with a relatively low strain at break of 290% [34]. This might 

be due to side reactions during anionic polymerization of CHD. By partial hydrogenation of 
PB without saturated PCHD, ultimate stress increased to 14.0 MPa with better strain at break of 
570%, indicating a stronger physical cross-linking. The end block PCHD of this triblock copo-

lymer can completely hydrogenated into polycyclohexylene, a polyolefin with T
g
 above 231°C 

[35]. The completely hydrogenated triblock copolymers displayed 10.0-MPa tensile stress at 
600% strain without breaking.

Benzofulvene (BF), the polymer from which was first synthesized by Ishizone, is another 
interesting conjugated diene monomer that undergoes living anionic polymerization in both 
THF and benzene [36–39]. The resulting PBF has a T

g
 of 160°C when polymerizing in THF, 

and 145oC in benzene. The relatively high T
g
 and the ability to synthesize PBF-PI diblock 

copolymer in hydrocarbon solvent at room temperature make benzofulvene an ideal candi-
date to prepare high-temperature thermoplastic elastomer.

By using a difunctional lithium anionic initiator, we synthesized a serious of PBF-PI-PBF tri-
block copolymer (FIF) via sequential living anionic polymerization with 14, 22, and 31 vol% 
of PBF [39]. In dynamic mechanical analysis (Figure 2a), all samples showed two T

g
s, respec-

tively, at −56°C for PI, and 145°C for PBF. For FIF with 14 vol% of PBF, the polymer displayed 
1390% strain at break with 14.3 MPa ultimate stress (Figure 2b). These mechanical properties 
are competitive with Kraton D1112P [40], a widely used commercial SIS triblock copolymer-

type thermoplastic elastomer.

Another interesting feature of BF is that by using different additive or solvent during the 
polymerization, the microstructure of the resulting polymer can be tuned from 24% (ben-

zene as the solvent), 41% (THF as the solvent), to 98% (1,2-dimethoxyethane as the additive 
and benzene as the solvent). The T

g
 of PBF with these three polymers is increased linearly 

from 152, 162, to 199°C as the percentage of 1,2-addition increases. Such properties open new 
opportunities to prepare TPEs with tunable upper service temperature. The chemical struc-

tures and T
g
s of the abovementioned rigid and soft components have been summarized in 

Table 2.

Figure 2. (a) Dynamic mechanical analysis of FIF, (b) tensile test of FIF. (Reprinted with permission from Ref. [40]. 

Copyright 2016 American Chemical Society).
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Name Structure T
g

Styrene derivatives Polystyrene (PS) 95°C

Poly(α-methyl styrene) 
(PMS)

173°C

Poly(α-methyl p-methyl 
styrene) (PMMS)

183°C

Poly(tert-butyl styrene) 
(PtBS)

130°C

Poly(p-adamantyl styrene) 
(P-AdmS)

203°C

Methacrylate derivatives Poly(methyl methacrylate) 
(sPMMA)

120°C

Poly(ethyl methacrylate) 
(PEMA)

90°C

Poly(tert-butyl 
methacrylate) (PtBMA)

116°C

Poly(isobornyl 
methacrylate) (PIBMA)

202°C

Rigid conjugated 
polydienes

Poly(1,3-cyclohexadiene) 
(PCHD)

140–150°C

Polybenzofulvene (PBF) 140–195°C
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Name Structure T
g

Soft segments Polyisoprene (PI) −56°C

Polybutadiene (PB) −90°C

Poly(n-butyl acrylate) 
(PnBA)

−40°C

Table 2. Hard and soft segments of ABA-type TPEs synthesized by anionic polymerization.

2.2. Block copolymers synthesized by cationic polymerization

Since PI or PB was mainly used as the elastic domains for TPEs synthesized by living anionic 
polymerization, poor resistance to UV/oxidation can become another issue for PI or PB con-

taining TPEs. A renaissance in living cationic polymerization [12] advanced many research 

toward TPEs with better UV/oxidation stability and higher UST by employing isobutylene as 
the elastic block. Many cationically synthesized TPEs used polyisobutylene (PIB) as the elastic 
middle block due to its softness and chemical resistance. Triblock copolymer PS-PIB-PS pre-

pared by sequential living cationic polymerization through a difunctional initiator displayed 
an ultimate tensile stress of 26 MPa, which was competitive with commercial Kraton SIS TPEs 
[41, 42].

Another feature that distinguishes cationic polymerization from anionic polymerization 
is the ability to control the polymerization of high T

g
 monomers such as p-chlorostyrene 

(pCS) [43], indene (ID) [44], and acenaphthylene (ACP) [44, 45]. Triblock copolymers using 

PpCS (T
g
 ~129°C), PID (T

g
 ~225°C), or PACP (T

g
 ~250°C) as the hard segment and PIB as the 

soft segment were successfully prepared by cationic polymerization and showed stress-
strain behavior similar to typical TPEs. Notice that PpCS is a polar polymer with weather 
and flame resistance. Indene is potentially a very cost-effective monomer for high-temper-

ature applications.

2.3. Block copolymers synthesized by ring-opening transesterification polymerization

Poly(lactide) (PLA, T
g
 ~60°C) is an amorphous biodegradable polymer synthesized by ring-

opening transesterification polymerization (ROTEP) from racemic D,L-lactide, whereas isotac-

tic poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) are semicrystalline polymers (T
m

 ~170°C). 
Blends of PLLA and PDLA can form stereocomplex crystals, which further improve chemical 
resistance with higher melting temperature (T

m
 ~203°C) [46]. Preparing polymers from renew-

able resource materials instead of from petroleum resources has been a lasting goal of chemists 

for many decades. Monomers including 3-hydroxybutyrate (HA), menthide (MD), 6-methyl-ε-
caprolactone (MCL), ε-caprolactone (CL), β-methyl-δ-valerolactone (MCL), and ε-decalactone 
(DL) potentially could be produced from sustainable resources [47]. These monomers undergo 

ring-opening transesterification polymerization (ROTEP), yielding biodegradable elastic poly-

mers [48, 49].
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Since ROTEP generated polymers with hydroxyl functionality on both ends, the resulting 
polymers could be directly used as a macroinitiators to polymerize lactide, producing vari-
ous types of biodegradable ABA triblock copolymer TPEs. When poly(3-hydroxybutyrate) 
(PHA) was used as elastic block, TPEs had strain at break lower than 200% [50]. Using poly-

menthide (PM) as elastic block, the strain at break was largely improved to 960% compared 
to PHA system. With diethylene glycol as a difunctional initiator and ZnEt

2
 as the catalyst, α, 

ω-functionalized polymenthide (HO-PM-OH) was prepared via ring-opening transesterifica-

tion polymerization (ROTEP). This difunctional PM was used as the initiator for ROTEP of 
(±)-lactide to yield PLA-PM-PLA triblock copolymers used as TPEs (Figure 3). Sample PLLA-
PM-PLLA (13-33-13) displayed a strain at break of 765% with ultimate tensile strength of 
19.5 MPa [51, 52]. With 30 vol% of poly(6-methyl-ε-caprolactone) (PMCL) as the elastic block, 
1880% strain at break was achieved with 10.2 MPa ultimate stress [53].

2.4. Block copolymers prepared by controlled radical polymerization

Starting from the late 1990s, tremendous progress has been achieved in the field of controlled 
radical polymerization such as atomic transfer radical polymerization (ATRP) [13, 54], revers-

ible addition-fragmentation chain-transfer polymerization (RAFT) [15, 55], and nitroxide-medi-

ated radical polymerization (NMRP) [16]. These techniques open up various opportunities to 

prepare functionalized polymers with predictable molecular weight, narrow molecular-weight 
distribution, and complicated macromolecular architectures [56]. Controlled polymerization 
was achieved for many monomers such as acrylonitrile [57], acrylamide [58], and vinyl amide 

[59], which cannot be controllably polymerized by anionic or cationic mechanisms.

Many block, star, grafted, and brush polymers with different functionalities have been 
prepared by ATRP [60]. However, ABA-type block copolymers synthesized by ATRP have 
received limited success for TPE applications mainly due to two reasons: (1) relatively broad 
distribution of the hard block reduces the strength of phase separation and (2) unavoidable 
diblock copolymer mixture in triblock copolymers acts as plasticizer diminishing the phase 
boundary [25, 30]. Significantly lower tensile stress and strain were observed for PMMA-
PnBA-PMMA triblock copolymers prepared by ATRP compared with triblock copolymers 
prepared by anionic polymerization followed by transalcoholysis [30]. The copolymerization 

Figure 3. ROTEP to synthesize PLA-PM-PLA. (Reprinted with permission from Ref. [49]. Copyright 2014 American 
Chemical Society).
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of methyl methacrylate with α-methylene-γ-butyrolactone as glassy block was necessary to 
improve the tensile properties of triblock copolymers with poly(n-butyl acrylate) as elastic 
block [58]. However, the ultimate stress was still lower than 3.2 MPa with strain at break of 
650%.

Poly[2, 5-bis[(n-hexogycarbonyl)]styrene] (PMPCS) is a mesogen-jacketed liquid crys-

talline polymer with a T
g
 of about 120°C. As a new type of rod-coil-rod TPE based on 

PMPCS and PnBA, tensile tests showed 1050% strain at break with 3.2-MPa ultimate stress 
[61]. Poly2,5-bis[(n-hexogycarbonyl)]styrene (PHCS) is an amorphous polymer with a T

g
 

of about −10°C due to long-chain alkyl substitution at the 2- and 5- positions of styrene 
(Figure 4). Poly(4-vinylpyridine) (P4VP) is a high T

g
 polymer that can complex with Zn2+. 

Tuning stress-strain properties, glass transition temperature and morphology of TPEs 
based on P4VP-PHCS-P4VP was achieved by adding different amounts of Zn(ClO

4
)

2
 [62].

In order to minimize undesired chain transfer and termination reactions, controlled radi-
cal polymerization needs to maintain a very low radical concentration. This increases the 
reaction time compared to conventional free radical and ionic polymerization [63]. Radical 
segregation effect introduced by (mini)emulsion polymerization in heterogeneous system, 
on the other hand, reduced the reaction time and suppressed radical termination [64, 65]. 

Combining emulsion polymerization with RAFT, PS-PnBA-PS triblock copolymers with dif-
ferent molecular weight and composition were prepared in shorter reaction time [66]. By 
varying weight percentage of PS from 20.2 to 71.5%, the ultimate tensile strength was in the 
range from 3.0 to 12.5 MPa and strain at break was in the range from 90 to 1300%. It was also 
found that by using a poly[styrene-alt-(maleic anhydride)] (PSM) as a macro-chain-transfer 
agent in emulsion polymerization for PS-PnBA-PS [67], ultimate stress increased whereas 

strain at break decreased as the percentage of PSM increased. Another TPE based on PS and 
poly(lauryl acrylate) was prepared by a solution RAFT polymerization process [68]. Ultimate 
stress was lower than 1 MPa and strain at break was lower than 280%. An interesting ABA 
triblock copolymer was prepared by RAFT polymerization based on P4VP as a hard seg-

ment and random copolymer of PnBA and poly(acrylamide) (PAM) as the elastic block. The 
PAM moiety in the middle block cross-linked the elastic domain through hydrogen-bonding 
association [69].

Figure 4. Chemical structure of P4VP-PHCS-P4VP.
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3. Graft copolymer-type TPEs

As an important class of commercial polymeric materials, graft copolymers are composed of 
a polymer backbone with polymer side chains attached to it. Graft polymers can be prepared 
by three strategies: (1) “Grafting onto,” where both polymer backbone and side chain are pre-
synthesized and then through the end functionalities on side chain and in-chain functionality 
on backbone, side chains are grafted onto the polymer backbones. (2) “Grafting from,” where 
multifunctional polymer backbones serve as the macroinitiator and initiated the polymeriza-

tion of side-chain monomers to graft from the backbone. (3) “Grafted through” or “macro-

monomer approaches,” where polymer side chains having a polymerizable end group are 
synthesized, and those macromonomers are subsequently polymerized to form the backbone 
creating graft polymer [70–73].

By using anionic polymerization followed by polycondensation, Mays and coworkers pre-

pared a series of graft copolymers with regular spaced trifunctional, tetrafunctional, and 

hexafunctional junction points where PI was the backbone and PS was the side chain [74, 

75]. Structure-property relationship of these graft copolymers was elucidated by character-

izing morphology [76, 77] and mechanical properties [78–80] of grafted polymers with dif-

ferent compositions (14–23 vol% of PS) and architectures (trifunctional, tetrafunctional, 
and hexafunctional junction points). From their research, multigraft polymers with tetra-

functional junction points showed 1550% strain at break which is 500% higher than that for 
the commercial product Kraton 1102. This superelasticity is a consequence of having the PI 
backbone anchored by multiple PS physical cross-links (Figure 5). Both tetra- and hexafunc-

tional multigraft polymers displayed higher elasticity than commercial TPEs like Kraton or 
Styroflex. Polymers with more functionalities at one junction point had higher tensile stress 
and modulus.

Inspired by this work, the same group prepared graft all-acrylic TPEs based on PMMA side 
chain and PnBA backbone [81]. The PMMA macromonomers were synthesized by living 
anionic polymerization and copolymerized with nBA by RAFT polymerization. Similar to 
other linear and star all-acrylic TPEs, low modulus and stress were found in PnBA-g-PMMA 
graft polymers due to high entanglement molecular weight of PnBA and phase blending 

Figure 5. (a) Multigrafted copolymers based on PI backbone and PS branches. (Reprinted with permission from Ref. 
[75]. Copyright 2002 American Chemical Society.) (b) Chain conformation of multigrafted copolymers in microphase-
separated state. (Reprinted with permission from Ref. [78]. Copyright 2001 American Chemical Society).
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between PMMA and PnBA. Zhang and Mays further extended the versatilities of graft 
polymer architecture by a cost-efficient process combining (mini)emulsion polymerization 
with anionic polymerization or ATRP to prepare trifunctional- and tetrafunctional-grafted 
copolymers with PS or PMMA as side chain, and PI or PnBA as the backbone [82–85]. In a 

typical procedure (Figure 6), a hydroxyl end-functionalized PS (PS-OH) was first prepared 
by living anionic polymerization. Through esterification reaction, the end group of PS-OH 
was converted into a polymerizable styrene group as the PS macromonomer for emulsion 
polymerization.

4. Star-branched copolymer-type TPEs

Star-branched polymers are polymers with more than two arms radiating from the same core. 

If these arms have different chemical compositions or molecular weights, the star polymer is 
named miktoarm (mixed-arm) star polymer. Generally, star polymers are prepared by two 
methods: (1) “Arm-first,” where polymer arms are synthesized first and coupled onto a core 
decorated with appropriate reaction sites. (2) “Core first,” where polymer arms are grown 
from a multifunctional initiator [86, 87].

When more than two PS-b-PI diblock copolymers are connected at the same core through the 
end of PI end blocks, such (PS-b-PI)

x
 star-branched polymers displayed mechanical properties 

similar to SIS linear triblock TPEs. By using an arm-first divinylbenzene-linking strategy, Bi 
and Fetters [88] prepared polystyrene-polydiene star block copolymers with number of arms 

up to 29. They found that these star copolymers had superior tensile properties compared to 

linear triblock copolymers of similar composition. The enhancement of tensile strength satu-

rated when the number of arms larger than six. Morphological analysis indicated multi-arm 
star polymers had smaller PS domain size as compared with linear polymers with the same 

molecular weight [89]. Thus, star polymers had more condensed physical cross-links per unit 

volume, which were attributed to their higher tensile strength. Another reason for better ten-

sile strength was that the core in star polymers acted as permanent cross-links due to covalent 

Figure 6. Scheme for emulsion polymerization route to superelastomers. (Reprinted with permission from Ref. [82]. 

Copyright 2014 American Chemical Society).
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chemical linkage. Besides better tensile stress of star polymers, the intrinsic viscosity of star 
polymers was lower than their linear analogs.

Confirmed by both experiments [90] and theory [91], the morphological dependence of block 

copolymers could be decoupled from chemical composition by varying chain architecture. 

Progress in self-consistent field theory (SCFT) [92] facilitated the ability to design TPEs based 
on nonlinear architectures such as miktoarm star polymer with superior mechanical proper-

ties [93]. For SIS triblock copolymer, over 36 vol% of PS component leads to lamellar mor-

phology which is unfavorable for TPE applications [94]. For A(BAʹ)
4
 miktoarm star polymer 

with one A block and four BAʹ blocks emanating from the same core, Fredrickson [93, 94] 

predicted a stable morphology, of cylindrical A phase hexagonally dispersed in B matrix with 
a volume fraction of A polymer up to 70%. As shown in Figure 7a, asymmetric miktoarm star 

polymer S(ISʹ)
3
 contains one long PS chain and three PSʹ-PI chains connecting at the same 

core. For S(ISʹ)
3
 with 50 vol% of PS, a stable cylindrical morphology was observed (Figure 7b) 

where lamellar morphology was typically observed for an SIS triblock copolymer with the 

same composition [94]. The high volume fraction of PS enabled these new types of TPE with 
a higher modulus, strength toughness, and recoverable elasticity, while SISʹ with 50 vol% of 
PS yield at low elongation indicated its thermoplastic nature (Figure 7c). By blending with 
PS homopolymers, a new stiff TPE (modulus was 99.2 MPa) with aperiodic “bricks and mor-

tar” mesophase morphology was achieved with up to 82 wt% of PS [95]. Using similar mik-

toarm star polymer by blending with PS, a lamellar morphology with up to 97 wt% of PS was 
observed by Shi [96].

For the “core-first” strategy: developing multifunctional anionic initiators received limited 
success mainly because of the poor solubility of such initiators in hydrocarbon solvents [97]. 

However, multifunctional initiators for cationic polymerization are possible. (PpCS-PIB)8 

Eight arms star polymers were prepared through a calixarene core with eight initiation sites 
[98]. (PMMA-PIB)

3
 Three arms star polymers were prepared by a trifunctional cationic initia-

tor followed by ATRP of MMA [99]. For the “arm-first” strategy: at the end of living cationic 
polymerization, vinyl functionality was introduced by reacting the living cation of with all-
yltrimethylsilane. The vinyl end functionality further reacted with Si-H on cyclosiloxane by 

Figure 7. (a) Structure of S(ISʹ)
3
 miktoarm star copolymer-type TPEs. (b) TEM of S(ISʹ)

3
 miktoarm star copolymer with 50 

vol% PS. (c) Stress-strain curve of S(ISʹ)
3
. (Reprinted with permission from Ref. [94]. Copyright 2014 American Chemical 

Society).
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Pt-catalyzed hydrosilylation and produced star polymers with different number of arms based 
on different numbers of Si-H on cyclosiloxane [100–102]. Similar to arm-first divinylbenzene-
linking strategy for anionic polymerization, 1,4-cyclohexane dimethanol divinyl ether was 
applied as the linking agent for arm-first cationic polymerization to prepare star polymers 
with poly(2-admantyl vinyl ether) as hard segment and poly(n-butyl vinyl ether) as elastic 
segment [103].

By using trifunctional ATRP initiator for “core-first” strategy, three arms star polymers with 
PMMA [104], polyacrylonitrile (PAN) [105], and PS [106] as glassy segment, PnBA as elas-

tic segment were prepared for TPE properties evaluation. As an all-acrylic TPE, three arms 
star (PMMA-PnBA)

3
 with 36% of PMMA showed 11-MPa ultimate stress with 545% strain at 

break. (PAN-PnBA)
3
 Star polymers displayed ultimate tensile stress from 6.3 to 12.7 MPa as the 

strain at break in the range from 382 to 700%. Phase separation between PAN and PnBA was 
retained when the temperature belows 250°C . As the temperature further raised up to 280°C, 
the PAN domain started to cross-link chemically, and the storage modulus of these materials 
dropped when the temperature was close to 300°C. With multifunctional ATRP initiator of 10 
and 20 initiation sites, 10 arms and 20 arms PMBL/PnBA star polymers were prepared for high-
temperature TPE applications [107]. The highest ultimate tensile stress achieved was 7.8 MPa. 
Strain at break was lower than 140%.

5. Perspective

The past 60 years has witnessed rapid development of thermoplastic elastomers from dis-

coveries in the laboratory to widely applied commodities involved in everyone’s daily life. 

Starting from the twenty-first century, progress made in different polymerization tech-

niques has advanced to new types of TPEs with various chemical compositions and mac-

romolecular architectures. However, each polymerization technique has both merits and 
weaknesses.

Kraton styrenic thermoplastic elastomers are the most commercially successful polymeric 

materials synthesized by living anionic polymerization. The disadvantage of S-TPEs is obvi-
ous: low service temperature and poor UV/oxidation resistance. All-acrylic TPEs show better 
chemical resistance; however, the mechanical properties of these materials are much lower 

than those of S-TPEs.

Cationic polymerization was used to prepare PIB-based TPEs showing higher service tem-

perature with better chemical resistance. The problem for cationic polymerization is the low 
polymerization temperature, which is not favorable for industrial applications. Low polym-

erization temperature also limits large-scale production of (methyl) acrylate-based TPEs by 
anionic polymerization.

Ring-opening transesterification polymerization produced biodegradable polymers from sus-

tainable resources. However, most metal-catalyzed ROTEPs need toxic tin as the catalyst. 
Atomic transfer radical polymerization needs to reduce the radical concentration in order 
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to control the polymerization. Polymers prepared by ATRP generally contain residual metal 
catalyst. Terminating the reaction at low conversion is necessary for block polymers prepara-

tion by ATRP.

Well-defined PI-g-(PS)
n
 (n = 1–3) showed great mechanical properties competitive with 

Kraton products. However, these anionically prepared polymers required laborious synthetic 
procedures. As one of the most favorable polymerization techniques in industry, emulsion 
polymerization offers many benefits: polymers with high weight average molecular could 
be prepared quickly in water as the reaction medium. Particles of polymers could be directly 
applied for coating and painting without purification. Recent research using macromono-

mer approaches to synthesize PI-g-PS by a combination of anionic polymerization and emul-
sion polymerization opens up opportunities to prepare thermoplastic elastomers with highly 
tunable mechanical properties by a cost-efficient strategy. However, the PS macromonomer 
was prepared by anionic polymerization. Living anionic polymerization required oxygen- 
and moisture-free environment in order to retain the reactivity of chain-end anion. Thrilling 

opportunities are waiting if PS macromonomer could be prepared by all emulsion process 
with more than one branch point in the same macromonomer.
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