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Abstract

Aflatoxins (AFs) are well-known mycotoxins and contaminants of various agricultural 
commodities globally that are linked to a wide range of adverse health and economic 
complications. Because of their incessant proliferation and deleterious consequences, 
it has become mandatory to routinely monitor the levels of these toxins in agricultural 
products before they go into the market. Essentially, effective analysis is an important 
component of AFs control, and extraction is a necessary step for their analysis, irrespec-
tive of the protocol adopted. Conventional methods for AF extraction are expensive, 
the processes involved are tedious and utilize large quantities of organic solvents that 
are environmentally unfriendly. This has necessitated the quest for alternatives that are 
‘green’, cost-effective and easy to perform. In this regard, subcritical water extraction 
(SWE) is a viable alternative that has proven to be effective in the extraction of other bio-
active compounds. This chapter presents a critical appraisal of the principles and dynam-
ics of SWE, and its current applications as a viable tool in the extraction of AFs from 
various biological matrices. Although further research needs to be performed to enhance 
its applicability, the adoption of SWE in the extraction of AFs seems very promising and 
needs to be properly exploited.
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1. Introduction

The proliferated contamination of agricultural commodities by AFs has become a serious 
global concern because of their severe impact on health and the economy [1, 2]. This group 
of mycotoxins is food contaminants produced by filamentous toxigenic fungal species [3, 4] 
principally those members within the Aspergillus genera. Relative to their contamination of 
food and feed commodities, approximately 4.5 billion people in the world are at the risk of 
been chronically exposed to mycotoxins, in particular, AFs [5, 6]. Several reports have impli-
cated AFs as very poisonous human and environmental pollutants [2, 7–10]. In fact, one of the 
AFs, aflatoxin B

1
 (AFB

1
), has been recognized as the most potent naturally occurring carcino-

gen known to man [2]. As a result of their widespread proliferation and associated deleteri-
ous effects, there is a growing concern over their intake via consumption of contaminated 
food and feed by humans and animals alike. This has led to more stringent guidelines and 
regulatory limits of these toxins, especially with the globalization of the food supply chain, 
and consequently, necessitating routine surveillance of the prevalence as well as levels of AFs 
in food and feed [11, 12]. As such, the need for more sensitive and robust analytical methods 
for the determination of AFs is eminent [12], particularly one that is carried out following the 
greener route.

Extraction is an important step in AFs analysis. It is inevitable irrespective of the protocol adopted. 
Although different methods exist for extracting AFs from food and feed such as solvent extrac-
tion, solid-phase extraction, and immuno-affinity column (IAC) extraction, there are anxieties over 
human and environmental health regarding safety in their applications [13, 14]. Conventional 
techniques also involve labor-intensive and time-consuming procedures [15], requiring relatively 
large volumes of organic solvents, which are expensive and hazardous [13, 16]. Bearing in mind 
these concerns associated with extraction of AFs, the design of a greener route that is efficient, 
cheap, fast and relatively easy to address these challenges is significant. Subcritical water extrac-
tion (SWE) seems promising in this regard. Better results, recoveries, and effectiveness have been 
reported for SWE as compared to other traditional methods for extracting different bioactive com-
pounds [17–19]. In this chapter, a comprehensive review on the implications of AFs and issues 
with their analysis is presented. The need and potential applicability of SWE in AF analysis are 
highlighted. Lastly, herein, we demonstrate the basic principle of SWE, underscoring its advan-
tages and disadvantages, and wrapping up the chapter with a discussion on how SWE can be 
suitable in extracting AFs from biological matrices for routine analysis.

2. Aflatoxins

2.1. Definition and concept of aflatoxins

Aflatoxins are the most perilous and troublesome group of mycotoxins to humans and ani-
mals that are generally produced by toxigenic strains of fungi, notably Aspergillus flavus, A. 
parasiticus and A. niger [2, 20, 21]. At least 14 different types of AFs are known to exist in 
nature, however, the major ones of economic and health significance are aflatoxin B

1
 (AFB

1
), 
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metabolites of AFB
1
 and B

2
, respectively, bio-transformed by the liver and found in milk, 

urine, and other body fluids, being less harmful than their precursor toxins [22, 23]. Among 
the AF group, AFB

1
 is considered the most toxic. This one has been established as the most 

notorious naturally occurring carcinogen [2, 24, 25]. For that reason, it has been classified as 
a Group 1A human carcinogen [26]. Cereals such as maize are common crops that are con-
taminated by AFs. Additionally, crops such as oilseeds, including peanuts, different kinds of 
spices, figs and other dried fruit, are also familiar but most susceptible substrates.

2.2. Physicochemical properties of aflatoxins

Aflatoxins are a group of closely related difuranocoumarin derivatives, with similar struc-
tures as they constitute a unique group of naturally occurring heterocyclic compounds that 
are highly oxygenated [22]. AFs can be broadly classified into two groups based on their 
chemical structure namely, difurocoumarocyclopentenone series (AFB

1
, B

2
, M

1
, M

2
, and other 

derivatives) and difurocoumarolactone series (AFG
1
, G

2
, and others) [22]. Their chemistry 

constitutes highly substituted coumarins containing a fused dihydrofurofuran moiety. The 
AFBs (i.e., members of the blue fluorescent series) generally feature a fusion of a cyclopentenone 
ring to the lactone ring of the coumarin moiety, while the AFGs possess a fused lactone ring 
[27]. AFB

1
 and G

1
 contain an unsaturated bond on the terminal furan ring at the 8, 9 position. 

Epoxidation at this position has shown to be essential for their carcinogenicity [28]. The inten-
sity of fluorescence (light) emission differs greatly among the four compounds. This property 
plays a significant role in their quantification by fluorescence techniques [29]. AFs are also 
very stable chemical compounds and notoriously difficult to eradicate in food commodities 
[30, 31]. They are chemically stable during processing and storage, even when heated at quite 
elevated temperatures such as those achieved during the production of breakfast cereals or 
baking of bread [31, 32]. This necessitates the avoidance of conditions that favor their produc-
tion, which is not always feasible in practice [31, 33].

2.3. Exposure and health implications of aflatoxins

The presence of AFs in foods and feeds is problematic as it induces vicious health repercus-
sions in humans and animals when exposed to them. Poisoning from AFs has been reported in 
different parts of the world, and victims include humans, animals and other non-human pri-
mates [34]. Common exposure routes include ingestion of AF contaminated foods and feeds; 
however, aerosol, parental (placental and breastfeeding) and dermal routes have also been 
reported [9, 35], but it can be supposed that ingestion is the main source of AF exposure among 
humans and animals. This group of poisons enters the blood stream and lymphatic system 
with the liver as targeted organ and damage macrophage systems inhibit protein synthesis 
and increase sensitivity to opportunistic infections [36]. Exposure to AFs can be chronic or 
acute, and symptoms and degree of illness depend on the type of AF, concentration, and dura-
tion of exposure, as well as species, age, sex, and health status of the exposed individual [37].

Aflatoxicosis refers to poisoning and associated illness resulting from AF exposure [38, 39]. 
There are numerous cases of aflatoxicosis reported in the literature. In Ibadan, Nigeria, the 
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death of some children who consumed mould-infested Kulikuli, was suggested to be due to 
aflatoxicosis [36]. An outbreak of hepatitis in 1974 in India that killed 100 people and caused 
ailment in hundreds of others was as a result of AFs via consumption heavily contaminated 
maize [40]. Incidence of liver cancer and aggravated cases of over 40% of diseases in devel-
oping nations including kwashiorkor, growth stunting, and HIV are directly or indirectly 
associated with dietary AF exposure [5, 27, 41]. One of the most epic episodes of aflatoxi-
cosis reported in human history occurred in rural Kenya, of which 317 cases of illness and 
125 deaths were reported [42]. The cause of this outbreak was deciphered to be consumption 
of maize products heavily contaminated with AFs (several folds above the Kenyan regulatory 
limit of 20 µg/kg). An outbreak of canine aflatoxicosis occurred in South Africa in 2011 leav-
ing over 220 dogs dead and several others seriously affected after consuming pet food con-
taminated with high levels of AFs [43]. It is, however, very problematic that aflatoxicosis often 
remains unrecognized by health workers for an extended period of time, except when a large 
number of people are affected [9].

2.4. Economic implications of aflatoxins

2.4.1. Economic losses due to aflatoxins contamination of food and feed

The economic significance of AFs is globally illustrious both in the developed and in the 
underdeveloped nations. In the United States, losses due to AF contamination of maize are 
estimated at up to 1.68 billion US dollars annually [44, 45]. Globalization of trade has added 
to the cost and complexity of the situation. For example, adopting the EU standard limit of 
4 µg/kg for AFs in peanuts was estimated to cost about 450 million dollars in annual losses 
on exports [45, 46]. Although estimates on the economic impact of AFs are scarce in the 
developing countries, based on the literature reports of high levels of mycotoxins found in 
agricultural commodities in these countries, it is probable that losses consistently far exceed 
those reported in the United States [45]. To give an instance, in Southeast Asia, the impact of 
AFs is calculated to a level of 900 million US dollars, of which 500 million are costs directly 
related to human health effects [45]. In the coastal and eastern regions of Kenya, 2.3 million 
bags of maize worth over Ksh 3.2 billion (roughly 30 million US dollars) were declared unfit 
for human consumption by the Ministry of Public Health and Sanitation in 2010 due to high 
levels of AF contamination [47]. The change in policy by the European Union (EU) is expected 
to reduce imports on cereals, dried fruits and oilseeds (mainly nuts) by 64%, costing some 
nine African countries including Egypt, Nigeria and South Africa about 670 million US dol-
lars in trade per year [48]. These economic impacts add to the complexity of the AF malice 
in developing countries, as they may be compelled to export their best quality produce and 
sadly retain the poorer commodities for domestic use [47].

2.4.2. Research and surveillance costs of aflatoxins in food and feed

The economic impact of AFs is felt across the entire food and feed supply chains, that is, “from 
farm to fork.” Costs associated with AF management, that is, from sampling and related 
research expenses, surveillance, mitigation to litigation are also very significant [45, 49]. A 
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study conducted in West Africa estimated annual costs averaging 466 million US dollars from 
testing, regulatory enforcement, to other quality control measures [50]. In 2000, the USDA’s 
Agricultural Research Service (ARS) instituted a mycotoxin research program worth 17.7 mil-
lion US dollars primarily geared towards prevention of fungal contamination and toxin pro-
duction in crops [49]. On average, total value of commercially available test kits for AFs on the 
market is approximately 10 million US dollars annually, whereas the cost for analysis of AFs 
alone is placed at 30–50 million US dollars on annual basis [49].

2.5. Regulation of aflatoxins

As elucidated earlier in Section 2.4, AFs constitute a major concern to human health and national 
economies around the world. Due to the fact that AFs are ubiquitous contaminants and potent 
carcinogens even at low concentrations, they require stringent regulation to ensure food safety 
and human health. Different countries have established various limits for AFs in agricultural 
commodities marketed within their jurisdiction based upon their own perception of risk assess-
ment. At present, over 100 countries have regulations in limiting AFs and other mycotoxins 
in the food and feed industry [51]. AFs are the most regulated mycotoxins, and 61 countries 
have regulatory limits of AFB

1
 in foodstuffs ranging from 1 to 20 µg/kg, 76 countries have lim-

its up to 35 µg/kg for total AFs in foodstuffs, whereas 21 countries have limits of up to 50 
µg/kg for total AFs in animal feeds [52]. In South Africa, regulations exist for total AFs in 
peanuts intended for further processing (15 µg/kg), in ready-to-eat foodstuffs for humans 
(10 µg/kg of which AFB

1
 is not more than 5 µg/kg), and AFM

1
 in diary milk (0.05 µg/L) [53, 

54]. The Joint Expert Committee on Food Additives (JECFA) of the Food and Agriculture 
Organization (FAO) and World Health Organization (WHO) serving as a scientific advisory 
body to CODEX Alimentarius Commission recommended that levels of AFs in food should 
be kept As Low As Reasonably Achievable (ALARA) [52]. FAO [52] has published a compen-
dia summarizing worldwide regulations for AFs and other mycotoxins. Many other similar 
synopses on limits and regulations for AFs are available in literature and could be consulted 
for additional information [55–57].

2.6. Analysis of aflatoxins in food and feed

Due to the severe effects that AFs elicit in animal and man, several countries and politico-eco-
nomic unions have placed high priority on the safety of agricultural commodities marketed and 
consumed within their jurisdiction [51, 52, 58]. Particularly with the globalization of trade, much 
efforts have been put into mitigation and control of the prevalence of this toxin group in food 
and feed [59–62]; however, it is apparent that the complete elimination of AFs from foods is an 
unattainable objective [37]. This has led to various interventions put in place to manage and mini-
mize risk exposure to them [63, 64]. Adequate risk management has been identified as a critical 
frontline defense in the overall control of AFs in food and feed supplies [36, 63, 65–67]. Any good 
food safety management program for naturally occurring toxicants [such as Hazard Analysis 
and Critical Control Point (HACCP)] assumes a holistic approach, involving various phases such 
as determination of exposure levels, establishment of analytical capabilities, setting and ensuring 
compliance with regulatory limits, and establishment of surveillance programs [36, 66].
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Such critical approaches provide for routine and detailed analysis of every step throughout 
the food supply chain (from farm to fork) [36, 63]. This positions analysis at the epicenter 
of AFs management and risk control, which is a global priority [11, 68]. Bearing in mind 
that decisions relating to regulatory issues or commercial arbitration need to be based on 
well-defined methods of analysis [66], it is thus vital to ensure that methods for AF analysis 
are sensitive, efficient and validated against standard guidelines [69, 70]. In AF analysis, the 
role played by extraction and sample preparation, in general, cannot be overemphasized. 
Extraction is an inevitable step in AFs analysis no matter the analytical method employed. It 
has been estimated that up to 70% and perhaps even more of the effort and time that goes into 
sample analysis comprises the extraction and sample preparation process [71]. Proper design 
of the extraction process facilitates rapid, efficient and quality analytical results [71].

2.6.1. Extraction of aflatoxins

Many efforts have been geared towards developing suitable methods to quantitatively extract 
and detect AFs in agricultural commodities. For any bioanalytical chemists, the goal is to 
develop methods with improved sensitivity and selectivity, while at the same time maintain-
ing the credibility of the results, as well as reduce cost and time [72].

2.6.1.1. Conventional extraction methods for aflatoxins in food and feed

Different methods have been used for AFs extraction in food and feed. Of these methods, 
solvent extraction is one of the oldest but still most frequently used method [73]. This 
method separates analytes based on their relative solubility in two different liquids that 
are immiscible [74]. One or more solutes contained in a feed solution are transferred to 
another immiscible solvent, often by rigorously mixing the two immiscible phases, then 
allowing the two phases to separate [74, 75]. The enriched solvent is called the extract [76]. 
Common solvents used for solvent extraction include methanol, acetonitrile, chloroform, 
ethyl acetate, isooctane, ethanol and dichloromethane [4, 73, 77]. The most commonly used 
solvent extraction approach for AFs is the multi-mycotoxin extraction method of Patterson 
and Roberts [78]. This method utilizes different organic solvents and reagents such as ace-
tonitrile, isooctane, potassium chloride, dichloromethane and sulfuric acid. It has been 
widely favored because it selectively extracts several mycotoxins in a single extraction. 
However, the application of solvent extraction has been greatly limited because it enables 
the consumption of large quantities of organic solvents, which pose hazards to the envi-
ronment [16, 79]. Furthermore, solvent extraction often involves long extraction times and 
laborious procedures with the process extending up to 24 h or more [4, 78]. Moreover, sol-
vents of the required purity tend to be expensive and there are often additional costs with 
proper disposal of wastes after use [74, 79].

Solid phase extraction (SPE) is another very commonly used extraction method for AFs. It 
involves the separation of analytes between a liquid mobile phase and a stationary phase con-
tained in a cartridge. Typical materials used at the solid adsorbent phase include ethyl (C2), octyl 
(C8), octadecyl (C18), cyanopropyl (CN), aminopropyl (NH2), and an ion exchange phase [80]. 
Non-specific SPE materials are commonly still employed in AF analysis, which is often used 
for the extraction of more than one mycotoxin [73]. The use of more analyte-specific stationary 
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phases such as immunoaffinity (IA) materials that contain specific antibodies that bind to the 
analyte of interest is also gaining much attention [70, 81]. Although SPE techniques are relatively 
simple, have higher specificity and require little quantities of solvents, they are also very expen-
sive and the antibodies are not available for some mycotoxins and products [80].

2.6.1.2. Other methods for aflatoxin extraction

Aside from the extraction methods discussed above, several other methods have been investi-
gated for the extraction of AFs, some of which include quick, easy, cheap, effective, rugged, and 
safe (QuEChERS) [82, 83], supercritical fluid extraction (SFE) [84], ultrasonic extraction [85], 
and many others reviewed in the literature [12, 70, 73, 86, 87]. However, as elucidated previ-
ously in Section 2.6.1.1, these techniques are fundamentally limited by the use of large volumes 
of organic solvents, some of which are well known to be toxic and considered as environmen-
tal hazards, issues of low recovery, long and laborious procedures and high costs involved 
amongst others [72]. Moreover, novel advancements in spectrometric analysis of bioactive com-
pounds (e.g., “omics”) are pushing the limits of conventional techniques of extraction [72, 88].

Further to this, the adoption of an extraction method strongly depends on the analytical objec-
tives; hence, for AF analysis, methods are required to meet established benchmark standards 
of the survey, monitory work, legislation and research [89]. It is in line with this that we 
propose the adoption of SWE as an alternative to conventional extraction methods for AFs, 
particularly with respect to improved recovery and selectivity, reduced organic solvent con-
sumption and extraction time, at a lower cost. SWE has been in the spotlight as an efficacious 
and highly promising alternative to traditional techniques of extraction, whose successful 
applications in the biochemical, pharmaceutical and chemical engineering fields have been 
well documented in the literature [14, 90–96]. A brief description of this method of extraction 
is presented in the proceeding sections of this chapter.

3. Subcritical water extraction

3.1. Concept and principle of subcritical water extraction

The term subcritical water refers to liquid water between the boiling point temperature and 
critical point temperature of water (100–374°C) (Figure 1) [14]. Pressure is applied to keep the 
water in liquid state. Subcritical water extraction (SWE) is a green, cheap and easy-to-adopt 
extraction technique that utilizes water within its subcritical region as the extraction solvent [14]. 
The phenomenon behind the extractability of subcritical water is based on the fact that when the 
temperature of water is raised and the pressure kept sufficient to maintain it in its liquid state 
(e.g., 250°C and 50 bar), the dielectric constant of water decreases and the hydrogen bond and 
other intermolecular forces of water weakens, which greatly enhancing its extractability [14, 97].

At atmospheric temperature and pressure (25°C at 1 bar), water has one of the highest dielec-
tric constants amongst non-metallic liquids (ε=80) [98]. However, when the temperature and 
pressure of water are raised to 250°C and 50 bar, respectively, the dielectric constant falls 
(ε=27), which is around the range of non-polar solvents such as methanol (ε=33), acetone 
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(ε=20.7), ethanol (ε=24), and acetonitrile (ε=37) [13, 97]. As a result of the drop in the dielectric 
constant of subcritical water, its surface tension and viscosity decrease, while its diffusivity 
increases [13, 14]. As such, water behaves like an organic solvent, dissolving a wide range of 
low and medium polarity analytes [14]. Interestingly, the extractability and selectivity of sub-
critical water can be easily maneuvered to extract a range of analytes by simply varying the 
temperature conditions of the water [90]. Another theoretical explanation on the extractability 
of subcritical water basis this ability on the fact that, as the temperature of water increases, the 
average kinetic energy of the molecules of the mixture also increases. This thus disrupts the 
bonds that exist within and between the molecules, as such, increasing extraction rate.

3.2. Instrumentation of subcritical water extraction

A typical setup of a laboratory scale SWE unit comprises a source of water, temperature reten-
tion coil, a solvent pump, an oven and extraction cell, a backpressure valve and a condenser 
connected to the outlet (Figure 2). The grounded sample to be extracted is placed inside the 
extraction cell, which is located inside the oven. The oven, which usually has an automatic 
thermostat mechanism, is set to the desired temperature, the backpressure valve is partially 
locked to maintain the desired pressure and water is pumped at a preset flow rate through 
the retention coil into the extraction cell. The extraction takes place in the extraction cell as 
the subcritical water flows through it and mixes with the sample. The hot water extract flows 
through the condenser and is collected at the outlet [14].

Figure 1. Phase diagram of water as a function of temperature and pressure [14].
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3.3. Operational modes of pressurized hot water extraction

Extraction with subcritical water is performed in two common modes, static mode and flow-
through (dynamic) mode. Extraction in the static mode involves retaining the sample in the 
extraction cell with subcritical water for short periods after which the fluid is allowed to flow 
out purging the extraction cell and extract collected. It is important to optimize the retention 
periods to allow for an equilibrium to be reached between the solvent and analyte. The disad-
vantage of operating in this mode is that within a short time the analyte fluid equilibrium is 
reached, and hence, no further extraction of the analyte occurs no matter how long the sam-
ples are retained in the extraction. On the other hand, extraction in the dynamic mode allows 
for a continuous flow of fresh fluid through the extraction cell, which reduces or eliminates 
analyte-fluid equilibrium in a single operation when properly optimized. As such, recovery 
efficiency is higher in the dynamic mode, although, fluid consumption could be more, result-
ing in lower energy efficiency compared to the static mode [13, 14]. In a study by Yang et al. 
[99], it was observed that extraction in dynamic mode resulted in the higher recovery of lignin 
and hemicelluloses from maize stover cellulose than the static mode.

3.4. Factors affecting subcritical water extraction

A number of factors such as temperature, flow rate, pressure, particle size, co-solvents 
and surfactants affect the performance of SWE. Some of these factors are further described 
below.

3.4.1. Temperature

The extraction efficiency of SWE is strongly affected by changes in temperature [100]. 
Generally, extraction efficiency increases with increase in temperature. A higher recovery of 
total antioxidants was achieved from grape pomace by increasing the extraction temperature 
[101]. Despite the increase in efficiency by increase in temperature, excess temperatures can 
result in degradation of thermolabile analytes, hence the need for optimization [100, 102]. The 

Figure 2. Simple laboratory setup of a PHWE unit [95].
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recovery of carvacrol and thymol from Zataria multiflora between 100 and 175°C indicated that 
recoveries increased steadily with the increase in temperature up to 150°C, then a degradation 
phenomenon followed with a noticeable burning smell [103].

3.4.2. Pressure

The effect of pressure on the extraction efficiency SWE has been described as insignificant 
[104, 105]. In a study by Shalmashi et al. [106], changes in pressure, that is, 20, 30 and 40 bar 
during SWE did not show any significant effect on the recovery caffeine from tea waste. This 
is because water is fairly incompressible at temperatures below 300°C, which implies that 
pressure has very little influence on the physicochemical properties of water, as long as it can 
maintain in a liquid state [107, 108]. Nevertheless, increased pressure can compromise matrix 
tissue membranes and force the extraction fluid deep into matrix pores where water at lower 
pressure may not normally reach [109].

3.4.3. Cosolvents and modifiers

Cosolvents and solvent modifiers are often used to enhance the extractability of SWE. Cosolvents 
are secondary solvents (usually organic solvents) that are added to subcritical water to enhance 
its solvation power [95, 110]. The incorporation of methanol during SWE was observed to sig-
nificantly (p < 0.05) increase yield of flavonoids and di-acylated cinnamic acids from Bidens pilosa 
[95, 111]. Solvent modifiers such as salts and other reagents can alter important physicochemi-
cal properties of water such as polarity, surface tension, and hydrogen bonding strength, which 
results in an enhanced extractability [13, 112]. Modifiers can also interact directly with the sample 
matrix, reducing the activation energy required for analyte desorption and diffusion [14, 113]. 
Elsewhere [112], it was observed that the solubility of atrazine can be doubled when urea was 
added to subcritical water, and when ethanol was used, the solubility increased by over 10-folds.

In addition to the above-described factors, other factors that influence the extractability of 
SWE include solvent flow rate, physicochemical and functional characteristics of the sample 
matrix and analyte, matrix particle size and geometry of extraction cell [13, 14, 114].

3.5. Advantages and disadvantages of subcritical water extraction

3.5.1. Advantages of subcritical water extraction

The major advantage of SWE is that it is a green (i.e., environmentally friendly) extraction 
method. The extractant is water, which is non-toxic, non-flammable and renewable. Moreover, 
water is readily available and cheap, and extraction with it does not generate harmful by-
products [90, 115]. In comparison with traditional extraction methods, SWE is less time-con-
suming and much easier to perform with very few extraction steps, as such, human errors 
are greatly minimized. When put side-by-side with supercritical fluid extraction (SFE), SWE 
edges on the basis of being a simple technology, hence, requiring much lower maintenance 
and engineering cost for equipment [14, 19]. During extraction with subcritical water, the fluid 
can be maneuvered to selectively extract a range of analytes with different polarities by mere 
adjusting the temperature of the water, whereas SFE extracts only nonpolar or light-weight 
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compounds [90, 112]. Further to this, SWE is very compatible with various analytical instru-
mentations because water is colorless and may not interfere with sorts of photodetection such 
as UV detection or flame ionization detection [14, 116].

3.5.2. Disadvantages of subcritical water extraction

A major setback of SWE is the thermal degradation of some thermolabile analytes at elevated 
temperatures [117, 118]. When the temperature and pressure of water are extremely high 
(i.e., above 374°C and 221 bar), there is also the risk that water can become very reactive and 
could oxidize or catalyze the hydrolysis of some compounds [13]. However, optimization by 
means of the adoption of a cosolvent or modifier could ameliorate or eliminate these issues [95].

3.6. Application of subcritical water extraction

In the last decade, SWE has been widely investigated for the extraction of various nutritional 
constituents, organic pollutants, and pharmacoactive compounds from vegetal tissues, food 
products, soil residues and other ecological biomasses [13, 14, 100, 119]. Free fatty acids and 
other oils were extracted from spent bleaching earth using SWE [120]. Likewise, it was pos-
sible to recover important metabolites from Moringa oleifera leaves using SWE [117]. The simi-
lar extraction method was used for the recovery of proteins, carbohydrates, and lignans from 
flaxseed meal [121], catechins and proanthocyanidins from grape seeds [122], flavonoids from 
aspen knotwood [123] and antioxidants from microalga Spirulina platensis [124]. The use of 
SWE in various applications in different scientific disciplines has been reviewed [90, 100, 107].

3.7. Prospects of subcritical water extraction of aflatoxins

In a recent study [125], we developed and validated an SWE method for the extraction of AFB
1
 

from maize and subsequently, analysis on high-performance liquid chromatography followed. 
Results obtained from that study revealed that SWE is suitable for the effective extraction of 
AFB

1
 from maize matrix, with recovery rates ranging from 37 to 128%. Subsequent validation 

of the optimized method showed acceptable values for accuracy or recovery rate (116%), linear-
ity (%RSD 0.93) and repeatability (%RSD 1.63). It has been stated earlier in Section 2.5 that more 
countries are enforcing stringent regulations limiting AFs in food and feed, which is increas-
ing demand for their analysis. The efficiency, simplicity, safety and low-cost implications of 
using SWE are very attractive and compelling in this regard. In comparison with conventional 
solvent extraction techniques, SWE is very easy to use and requires less time and money [18].

It is known that AFs occur in a diverse manner and can be found deeply deposited inside the 
food matrices, and as such, their extraction usually requires a process that allows the solvent to 
penetrate all areas of the matrix to reach hidden toxins trapped in matrix pores [126]. The high 
pressures involved in SWE seem very suitable in meeting this requirement. Although issues 
with thermal degradation of some analytes have been a major limiting factor of SWE, it is inter-
esting to know that AFs and most other mycotoxins are relatively thermally stable [31, 62]. 
Moreover, optimization using cosolvents has been found effective in ameliorating this setback 
[95, 127]. Accordingly, in our recent study [125] described in the beginning of this section 
(Section 3.7), we observed a clear positive enhancement on the recovery of AFB

1
 by means of a 
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cosolvent (methanol). Based on these observations and other consulted literature reports, it is 
evident that SWE is a viable alternative to conventional extraction methods for AFs [14, 125].

4. Conclusion

From the literature documents reviewed herein, it has been established that AFs are very 
potent natural toxins that constitute a significant nuisance to human and animal health as 
well as the economy. One way to amply combat the prevalence of these toxic substances is 
by frequent monitoring of their occurrence levels at various critical points along the food 
supply chain. To this effect, various national and international regulations have been estab-
lished and are being enforced. Efficient analytical capabilities provide adequate insights on 
the prevalence of these toxins, which constitute a basis to monitor and where necessary read-
dress such interventions. This has positioned analysis as a critical element in AF management 
and control. Extraction is an important step during AF analysis, and hence, improvement in 
extraction has been a priority in aflatoxicology research. There is a continual quest for efficient 
extraction methods that are fast, safe and deliver suitable results at reduced cost. SWE meets 
all these requirements and could make for efficient routine analysis of AFs and other impor-
tant fungal metabolites in foods and feeds. These observations could stimulate interest and 
further propel the adoption of SWE in many other applications even beyond the mycotoxicol-
ogy domain, as well as its scale-up for subsequent industrial applications.
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