
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 4

Operational Modal Analysis of Super Tall Buildings by

a Bayesian Approach

Feng-Liang Zhang and Yan-Chun Ni

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68397

Abstract

Structural health monitoring (SHM) has attracted increasing attention in the past few
decades. It aims at monitoring the existing structures based on data acquired by differ-
ent sensor networks. Modal identification is usually the first step in SHM, and it aims at
identifying the modal parameters mainly including natural frequency, damping ratio
and mode shape. Three different field tests can be used to collect data for modal
identification, among which, ambient vibration test is the most convenient and econom-
ical one since it does not require to measure input information. This chapter will focus
on the operational modal analysis (OMA), i.e. ambient modal identification of four
super tall buildings by a Bayesian approach. A fast frequency domain Bayesian fast
fourier transform (FFT) approach will be introduced for OMA. In addition to the most
probable value (MPV) of modal parameters, the associated posterior uncertainty will be
also investigated analytically. The field tests will be presented and the difficulties
encountered will be discussed. Some basic dynamic characteristics will be investigated
and discussed. The studies will provide baseline properties of these super tall buildings
and provide a reference for future condition assessments.

Keywords: structural health monitoring, operational modal analysis, ambient vibration
test, super tall buildings, posterior uncertainty, Bayesian method

1. Introduction

Structural health monitoring has attracted increasing attention in the past few decades [1–3]. In

the past decade, much more super tall buildings have been constructed and most of them were

instrumented structural health monitoring (SHM) systems, for example, Canton Tower with

the height of 610 m, on which more than 700 sensors were installed to form a sophisticated

long-term SHM systems [3, 4]; Burj Khalifa, the tallest building in the world with the height of

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



828 m, on which an integrated real-time SHM system was instrumented [5]; Shanghai Tower

with the height of 632 m and so on. Some super tall buildings are still under construction, such

as Pingan International Financial Center with a height of 660 m, Shenzhen, China; Wuhan

Greenland Center with a height of 636 m, Wuhan, China; Kingdom Tower with the height of

1007 m, Jeddah, Saudi Arabia. These systems play an important role in monitoring the struc-

tural conditions and making an assessment when extreme events happen. For some super tall

buildings, although their heights are also more than 300 m, no long-term SHM systems were

installed. Some short-term monitoring was also carried out [6, 7], for example, Building Awith

the height of 310 m, Hong Kong; Building B with the height of 320 m, Hong Kong; Interna-

tional Finance Centre with the height of 416 m, Hong Kong; etc. When some typhoons came,

vibration data were collected to investigate the dynamic characteristics of these buildings.

For these super tall buildings, the monitoring of acceleration response plays an important role

since thedynamic characteristicsmainly includingnatural frequencies, damping ratios andmodes

shapes can be determined. They are the typical characteristics of the structures and will remain

unchanged if there is no significant damage and can be used for model updating, damage detec-

tion and SHM [8–10]. The natural frequencies can help to find potential vibration problem, e.g.

resonance, and then some measures can be designed to alleviate them. The damping ratio can

affect the vibration level and energy dissipation capability of the structure. In the structure design-

ing, this quantity is usually set to be constant, e.g., 5%. However, in reality, it can be affected by

many factors, for example, vibration amplitude. Therefore, knowing damping ratio can better

assess the structural response and provides a reference in the structural design. The mode shapes

can reflect the stiffness andmass distribution and the boundary conditions of objective structures,

whose change across extreme events can be used for damage detection and SHM.

To obtain the modal parameters, modal identification needs to be carried out using structural

response. Acceleration and velocity data are commonly used for modal identification. There are

three main ways to collect structural responses, which are free vibration test, forced vibration

test and ambient vibration test. The first one is to collect structural response when the structure is

under free vibration dominantly. However, for the structures in civil engineering, it is usually

difficult for them to vibrate freely. The second one is to collect structural response when given

some known excitation during the test. This method can improve the vibration level and provide

a high signal to noise ratio for the structural response. However, to produce forced vibration,

special equipment such as a high payload shaker is required. This makes the test expensive and

some unexpected damage may be caused if the equipment cannot be well controlled. The third

one, compared with the former two tests, is more convenient and economical since no additional

excitations are required. The excitations are mainly from the ambient loading, e.g. wind, traffic

loading, human walking, environmental noise, and so on. For this test, it requires high quality

sensors with a lower noise level to improve the signal to noise ratio. If the noise level is too high,

the modal parameters identified may have higher uncertainty.

Ambient modal identification, also called operational modal analysis (OMA), can be used to

obtain the modal parameters using ambient vibration data [11]. The excitation is usually

assumed to be stochastic stationary. Many methods have been developed for OMA, for exam-

ple, stochastic subspace identification (SSI) [12], peak-picking (PP), and frequency domain

decomposition (FDD) [13]. In addition to these non-Bayesian methods, a series of Bayesian

Structural Health Monitoring - Measurement Methods and Practical Applications66



methods have been developed [14–15], for example, Bayesian spectral density approach,

Bayesian time domain method, and Bayesian fast fourier transform (FFT) approach. Recently,

a fast Bayesian FFT method has been developed based on Bayesian FFT approach [16–20]. It

has been extended to forced vibration data [21], free vibration data [22–23], and so on. This

method views modal identification as an inference problem where the probability is taken as a

measure for the relative plausibility of outcomes given a model of the structure and measured

data. Both the most probable value (MPV) and the associated posterior uncertainty can be

determined, making it possible to assess the accuracy of the identified modal parameters.

Based on the technique of OMA, many super tall buildings have been studied, for example,

Canton Tower, super tall buildings in Hong Kong, and so on. This chapter presents the work on

OMA of four different super tall buildings, including two super tall buildings in Hong Kong,

Canton Tower and Shanghai Tower. It is organized as follows. In Section 2, the fast Bayesian FFT

method will be introduced and it will be used for the latter study in the MPVand the associated

posterior uncertainty. In Section 3, the OMA of two super tall buildings in Hong Kong will be

presented. The data were collected during different strong wind events. The amplitude-

dependence behaviour of modal parameters was investigated. In Section 4, Canton Tower was

studied using the data collected during one day’s measurement by the SHM system installed. In

Section 5, Shanghai Tower, the second tallest building in the world until now, was investigated

by ambient vibration tests in different stages. Finally, the summary is given in Section 6.

2. Fast Bayesian FFT method

2.1. Bayesian method for single setup

A fast Bayesian FFT approach is employed to identify the modal properties of the

instrumented building using the recorded ambient vibration data in a single setup. The

theory is briefly described here. The reader is referred to Ref. [14] for the original formulation

and to Refs. [11, 16–18] for a recently developed fast algorithm that allows practical imple-

mentation.

The measured acceleration data are assumed to consist of the structural ambient vibration

signal and prediction error

€yj ¼ €xj þ ej ð1Þ

where €xj ∈Rn and ej ∈Rn (j = 1,2,…, N), respectively, denote the theoretical structural acceler-

ation response and the prediction error, n measured degrees of freedom (DOFs), N the sam-

pling points number. The FFT of the collected data €yj is given by

F k ¼

ffiffiffiffiffiffiffiffi

2Δt

N

r

X

N

j¼1

€yj exp �2πi
ðk� 1Þðj� 1Þ

N

� �

ð2Þ

in which i2 ¼ �1, Δt the sampling interval, k ¼ 1,…, Nq withNq ¼ int½N=2� þ 1, int½:� the integer

part.
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Let θ denote the targeted modal parameters, including f i, ζi,ϕi, i ¼ 1,…, m (m is the number of

modes), where fi and ζi denote, respectively, the natural frequency and damping ratio of the i-th

mode, and ϕi ∈Rn is the i-th mode shape vector; S∈Rm�m, Se, the (symmetric) power spectral

density (PSD) of modal forces and the PSD of prediction error, respectively.

Let Zk ¼ ½ReF k; ImF k�∈R2n denote the real and imaginary parts of the FFT data at fk, where fk
is the FFT frequency abscissa. When performing the modal identification, the FFT data in a

selected frequency band are used and they are denoted by fZkg. Based on Bayes’ theorem, the

posterior probability density function (PDF) of θ can be expressed as

pðθjfZkgÞ∝ pðθÞpðfZkgjθÞ ð3Þ

in which p(θ) denotes the prior PDF. The prior information is assumed to be uniform, and so

the posterior PDF can be taken to be proportional to the ‘likelihood function’ pðfZkgjθÞdirectly.

The ‘most probable value’ (MPV) of θ can be obtained by maximizing pðfZkgjθÞ.

When N is large and Δt is small, the FFT can be shown to be asymptotically independent at

different frequencies and follows a Gaussian distribution [14]. Therefore, pðfZkgjθÞ can be

expressed as

pðfZkgjθÞ ¼
Y

k

1

ð2πÞnðdetCkÞ
1=2

exp �
1

2
Zk

TCk
�1Zk

� �

ð4Þ

in which det(.) denotes the determinant, Ck the covariance matrix of Zk given by

Ck ¼
1

2

Φ
Φ

� �

ReHk �ImHk

ImHk ReHk

� �

ΦT

ΦT

� �

þ
Se
2
I2n ð5Þ

and I2n ∈R2n denotes the identity matrix, Φ ¼ ½ϕ1,ϕ2,…,ϕm�∈Rn�m the mode shape matrix,

Hk ∈Rm�m the transfer matrix, and its (i, j) element can be given by

Hkði, jÞ ¼ Sij β2ik � 1
� �

þ 2iζiβik
� ��1

β2jk � 1
	 


� 2iζjβjk

h i�1
ð6Þ

and βik ¼ f i=fk; fi is the natural frequency of the i-th mode; Sij is the cross spectral density

between the i-th and j-th modal excitation. The first and second term in Eq. (5) represent the

contribution from the modal response and the prediction error, respectively.

Theoretically, the modal parameters can be determined by maximizing the posterior PDF.

However, there are some computational difficulties. To develop an efficient algorithm, a fast

algorithm was developed, and it allows the MPVand the associated posterior uncertainty to be

obtained efficiently [16–18].

2.2. Bayesian method for multiple setups

In full-scale ambient tests, usually there are a large number of DOFs to be measured, but the

number of available sensors is often limited. In this part, a fast Bayesian method for modal
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identification of well separated modes incorporating data from multiple setups will be

presented. For the details of this part, please refer to [11, 19, 20].

Assume that in a selected frequency band, there is only one contributing mode and ϕ∈Rn

denotes the global mode shape containing all the DOFs of interest. To relate the ϕ to the mode

shape in a given setup covering a possibly different set of DOFs, the selection matrix in Setup i

ði ¼ 1,…, nsÞ, Li ∈Rni�n will be defined and ni denotes the number of measured DOFs in Setup

i. In Setup i, the (j,k) entry of Li is set to 1 when DOF k is measured by the j-th channel, and it is

equal to zero for the other situations. The theoretical mode shape confined to the measured

DOFs in Setup i can be given by ϕi ¼ Liϕ∈Rni. The modal parameters to be identified are

defined as

θ ¼ ½f i, ζi, Si, Sei : i ¼ 1,…, ns;ϕ∈Rn�∈R4nsþn ð7Þ

in which f i, ζi, Si, Seiði ¼ 1,…, nsÞ denote the modal parameters in Setup i.

Let Z
ðiÞ
k ¼ ½ReF ik; ImF ik�∈R2niði ¼ 1,…, nsÞ denote the FFT data at frequency fk in the i-th

setup; Di ¼ fZ
ðiÞ
k g denote the FFT data in a selected frequency band in Setup i and

D ¼ fDi : i ¼ 1,…, nsg denote the FFT data in all the setups. Assuming the data in different

setups are independent, based on Bayes' Theorem, given the data in all setups, the posterior

PDF of θ is given by

pðθjDÞ∝ pðfD1, D2,…, DnsgjθÞ ¼ pðD1jθÞpðD2jθÞ…pðDns jθÞ ð8Þ

Note that pðDijθÞ is independent with the modal parameters in other setups, and so

pðDijθÞ ¼ pðDijf i, ζi, Si, Sei,ϕiÞ. Eq. (8) can be given by

pðθjDÞ∝
Y

ns

i¼1

pðDijf i, ζi, Si, Sei,ϕiÞ ð9Þ

Similar to above section, pðDijf i, ζi, Si, Sei,ϕiÞ is asymptotically a Gaussian distribution, with

negative log-likelihood function (NLLF)

LiðθiÞ ¼
1

2

X

k

ln detCikðθiÞ þ Z
ðiÞ
k

T
CikðθiÞ

�1
Z
ðiÞ
k

h i

ð10Þ

in which θi ¼ ff i, ζi, Si, Sei,ϕig and

CikðθiÞ ¼
SiDik

2

ϕiϕ
T
i 0

0 ϕiϕ
T
i

� �

þ
Sei
2
I2ni ð11Þ

is the theoretical covariance matrix of the FFT data at the k-th frequency abscissa in Setup i, in

which
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Dikðf i, ζiÞ ¼ ðβ2ik � 1Þ2 þ ð2ζiβikÞ
2

h i�1
ð12Þ

with βik ¼ f i=fk. Consequently,

pðθjDÞ∝ exp ð�LðθÞÞ ð13Þ

in which

LðθÞ ¼
X

ns

i¼1

LiðθiÞ ð14Þ

Similar to the case in single setup in Section 2.1., there are some computational difficulties. For

the purpose of developing a fast computational procedure, it is found detCik and C�1
ik can be

analysed and obtained in a more manageable form. As a result (proof omitted here), the

overall NLLF can be reformulated as

LðθÞ ¼ �ðln 2Þ
X

ns

i¼1

niNf i þ
X

ns

i¼1

ðni � 1ÞNf iln Sei

þ
X

ns

i¼1

X

k

lnðSiDikkLiϕk2 þ SeiÞ þ
X

ns

i¼1

S�1
ei di �ϕTAðϕÞϕ

ð15Þ

where

AðϕÞ ¼
X

ns

i¼1

S�1
ei

X

k

ðkLiϕk2 þ
Sei

SiDik
Þ�1LT

i DikLi ∈Rn�n ð16Þ

Dik ¼ ReF ikReF ik
T þ ImF ikImF ik

T
∈Rni�ni ð17Þ

di ¼
X

k

ðReF ik
TReF ik þ ImF ik

TImF ikÞ ð18Þ

Based on Eq. (15), an iterative scheme for the full set of solution of modal parameters can be

developed, which makes the identification of modal parameters very efficiently even for a

large number of measured DOFs. The associated posterior uncertainties can be calculated by

the analytical formulas without resorting to finite difference. Details can be found in Refs.

[19, 20].

3. Two super tall buildings in Hong Kong

Buildings A and B are two super tall buildings in Hong Kong. Building A is 310 m tall, 50 m by

50 m in plan, which is a tabular concrete building with a central core wall system. Building B is

320 m tall, 50 m � 50 m in plan, whose lateral structural resistance is provided by two outrigger

trusses with core walls near the centre and mega columns at the corner. Figure 1 shows the mode
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shapes of the first three modes of Buildings A and B. They were identified based on ambient data

by placing four tri-axial accelerometers at four corners on the roof. The two numbers near to the

mode name are the natural frequency and damping ratio, respectively. For Building B, due to

connection to a neighbouring building, the principal modal directions do not align with the

building sides.

Figure 2 shows the sensor layout inside the rooms on the roof of the buildings, and the sensor

locations were kept the same for all the typhoon events. The vibration data investigated were

measured during two typhoon events (namely, Typhoon Goni and Koppu) and two monsoon

events (MS1 and MS2). Typhoon Goni attacked Hong Kong during 4–6 August 2009. The wind

speed changed between 22 and 60 km/hr. One month later, Typhoon Koppu attacked Hong

Kong. Koppu travelled faster than Goni. The wind speed changed between 25 and 120 km/hr.

Typhoon Koppu provides much more information due to large structural vibrations in the

current study. The MS1 visited during 4–7 January 2010. The wind speed changed between 15

and 50 km/hr. TheMS2 visited in December 2010. Thewind speed ranged between 12 and 45 km/

hr. The wind speeds in the twomonsoon events are significantly lower than those in the typhoon

events. The typhoon events can provide information for large amplitude vibration study, while

the monsoon events can provide information in the low to moderate wind speed regime.

The recorded acceleration data are used for identifying the modal parameters of the structures

by the Bayesian method. For the purpose that the loading and the response can be modelled as

stationary stochastic process, the whole time history is divided into non-overlapping time

windows of 30 minutes. Figure 3 shows the singular value (SV) spectra of the first half hour

data of Building A during Typhoon Koppu. Six modes below 1 Hz can be observed while the

Figure 1. Mode shapes of Buildings A and B identified under normal wind.
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first two modes are closely spaced. Similarly, in Building B, whose SV spectra is omitted here,

there are also six modes below 1 Hz and the first two modes are closely spaced modes. The

closely spaced modes may be due to their square-shaped floor plan of Buildings A and B. The

first three modes are investigated including the first two translational modes and the first

torsional mode.

Table 1 shows the modal parameters for Building A. The MPV of modal parameters and

the corresponding posterior coefficient of variations (c.o.v.) are provided in the table. The

posterior c.o.v.s of the natural frequencies are all less than 1%, which are much smaller

than those of the damping ratio or the PSD of modal force. The posterior uncertainty of

the damping ratio governs the data length requirement and with 30 minutes of data its c.

o.v. is about 30%, showing a moderate level of accuracy. Similar investigation to Building

B is also performed.
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Figure 3. Root singular value spectra, 30-minute acceleration data, Building A.

(a) Building A                                 (b) Building B 

Figure 2. Equipment used during strong wind event.
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Next, the correlation between the identified natural frequencies and damping ratios with the

vibration amplitude calculated based on Ref. [6] is investigated. Figures 4 and 5, respectively,

show the MPV of natural frequencies and damping ratios versus the modal vibration root-

mean-square (RMS) for Buildings A and B. The results for all time windows in four different

events are plotted in the figure. A circle, a cross and a triangle denote the results for Typhoon

Goni, Typhoon Koppu andMS2, respectively, in Building A, while for Building B, a cross and a

Mode f (Hz) ζ (%) S ½ðμgÞ2=Hz�

MPV (c.o.v.) MPV (c.o.v.) MPV (c.o.v.)

TX1 0.153 (0.16%) 0.5 (36%) 225.4 (9.0%)

TX2 0.170 (0.31%) 1.7 (20%) 349.1 (10%)

R1 0.302 (0.17%) 0.9 (20%) 4.5 (10%)

Table 1. Summary of identified modal properties, building A, first 30 minutes in Koppu.

Figure 4. Identified modal frequency and damping ratio versus modal RMS of Building A (o: Goni; �: Koppu; ⊳: MS2).
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triangle, respectively, denote the result for Typhoon Koppu and MS1. In the figures, each point

is centred at the MPV with an error bar covering +/– one posterior standard derivation of the

modal parameter. It is obvious from that the scatter in the MPV is significantly larger than

those implied by the error bars, indicating some systematic dependence on the vibration

amplitude.

There is an inverse trend between the natural frequency and the RMS value of the modal

response, regardless of mode and building. Due to a season effect, the identified natural

frequencies in Koppu (�) (in summer) are not the same with those in MS1 (⊳) (in winter) at

lowmodal RMS. The natural frequency tends to decrease with the increase of modal RMS. One

possible reason is the loosening of friction joints at sufficiently high vibration levels, which

results in the reduction of stiffness. The right column of Figures 4 and 5 shows a positive

correlation between the damping ratio and RMS. Compared to that in the frequencies, the

scatter is much bigger. The scatter in these figures can be due to limited identification preci-

sion, modelling error in the damping mechanism, modelling error in stationarity, unknown

amplitude-dependence mechanism, etc. For the more detailed information of the study about

the two super tall buildings, please refer to [6].

Figure 5. Identified modal frequency and damping ratio versus modal RMS of Building B (�: Koppu, ⊳: MS1).
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4. Canton Tower

The Canton Tower as shown in Figure 6 situated in Guangzhou, China, is a super tall structure

with a height of 610 m. It is composed of two tube-like structures, i.e., a reinforced concrete

inner structure and a steel outer structure with concrete-filled-tube (CFT) columns.

The SHM system deployed on the Canton Tower is composed by more than 700 sensors,

including anemometers, accelerometers, fibre optic strain and temperature sensors, global

position system, and so on [24, 25]. Among them, 20 uni-axial accelerometers are installed on

eight different cross-sections of the inner structure. On cross-sections 4 and 8, four accelerom-

eters are instrumented at two locations for bi-axial measurement; while on each of the other

cross-sections, two sensors are installed at two locations for uni-axial measurement. Sensors

01, 03, 05, 07, 08, 11, 13, 15, 17, 18 are deployed to collect the structural response in the short-

axis direction, while sensors 02, 04, 06, 09, 10, 12, 14, 16, 19, 20 measure the structural response

in the long-axis direction. The frequency range of accelerometers is DC to 50 Hz and amplitude

range is �2 g. The 24-hour acceleration data were collected from 18:00, 20th January 2010 to

18:00, 21st January 2010 under normal wind condition. The sampling frequencies of accelera-

tion are set to be 50 Hz.

As the last example, the 24-hour data were separated into 48 time windows with 30 minutes

for each window. Figure 7 shows the root PSD spectra of the structural responses of a typical

Figure 6. Overview of Canton Tower.
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time window. Fifteen peaks can be observed below 2.0 Hz. The first mode is less than 0.1 Hz,

and it is the foundational mode of the Canton Tower. In the operational modal analysis by the

Fast Bayesian FFT method, all the 15 modes are identified. Table 2 shows the identified modal

parameters of the 15 modes. From the second to the ninth column, every two columns are

considered as one group with first denoting the MPV and second denoting the associated

posterior c.o.v. The c.o.v. of modal frequencies are quite small (less than 0.5%), implying that

the MPVs are quite accurate. The damping ratios for this structure are small and only those of

the first and fourth modes are higher than 1%. This is consistent with the results obtained in

Ref. [24]. The posterior uncertainty of damping ratios is relatively high in comparison with that
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Figure 7. Power spectral density for a typical 30-minute window.

Mode Characteristics f (Hz) COV (%) ζ (%) COV (%) S (μg2/Hz) COV (%) Se (μg2/Hz) COV (%)

1 Bending 0.094 0.37 1.20 32.5 1.64 17.5 5.56 3.21

2 Bending 0.138 0.18 0.48 39.9 0.92 17.3 3.49 3.50

3 Bending 0.366 0.08 0.26 32.5 0.30 10.9 1.49 2.28

4 Bending 0.424 0.07 0.21 35.7 0.05 17.1 2.25 3.28

5 Bending 0.475 0.05 0.12 41.6 0.88 11.8 1.77 2.58

6 Torsion 0.506 0.04 0.10 46.4 0.05 21.5 8.83 4.00

7 Bending 0.522 0.07 0.27 29.1 0.19 15.6 2.52 3.01

8 Bending 0.796 0.05 0.23 23.2 0.08 7.8 0.81 1.61

9 Bending 0.966 0.06 0.36 17.5 0.06 7.6 0.65 1.50

10 Combined 1.151 0.03 0.13 26.8 0.01 11.7 0.63 2.35

11 Bending 1.191 0.03 0.11 29.1 0.01 12.9 0.84 2.53

12 Torsion 1.250 0.03 0.11 27.6 0.01 9.8 0.66 1.94

13 Bending 1.388 0.05 0.33 16.0 0.05 8.4 0.50 1.63

14 Bending 1.643 0.04 0.22 16.7 0.07 6.4 0.51 1.33

15 Combined 1.946 0.08 0.74 11.6 0.09 10.3 0.62 1.53

f: modal frequency; ζ: damping ratio; S: PSD of modal force; Se: PSD of prediction error.

Table 2. Identified modal parameters and the associated posterior uncertainty.
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of modal frequencies, with an order of magnitude of a few tens' percent. The PSD of modal

force and PSD of prediction error are all related to the excitation environment. The c.o.v. of the

former is apparently larger than the c.o.v. of the latter.

Figures 8 and 9 show the identified mode shapes of the fifteen modes projected in short- and

long-axis directions, respectively. As aforementioned, on cross-sections 4 and 8, four acceler-

ometers were deployed for bi-axial measurement at two plane locations. With this information,

the torsional behaviour of these modes can be investigated. From the mode shapes identified

(omitted here), although the mode shapes of some modes in Figures 8 and 9 are similar when

projected in short- or long-axis direction, they are different in top view, i.e. Modes 6, 10, 12, 15

exhibit a significant torsional behaviour.
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Figure 8. Identified mode shapes for the first 15 modes projected in short-axis direction.

Figure 9. Identified mode shapes for the first 15 modes projected in long-axis direction.
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To verify the results identified by the Fast Bayesian FFT method, the enhanced FDD method is

used to identify the modal parameters using the same data. Table 3 shows the identified

modal frequencies and damping ratios. The identified modal frequencies for different modes

are consistent with their counterparts identified by the Fast Bayesian FFT method. However,

there is a larger discrepancy for the damping ratios. A noticeable difference can be observed

between the two groups of results, implying that high uncertainty exists in the identified

damping ratios, as shown by the large posterior c.o.v. of damping ratios obtained by the Fast

Bayesian FFT method. For the more detailed information of the study about Canton Tower,

please refer to [4].

5. Shanghai Tower

The Shanghai Tower (Figure 10) is a 124-story 632 m high super tall structure, situated in

Lujiazui, Shanghai, China. The structure has eight electromechanical floor zones with six

two-storey outrigger trusses together with eight boxy space circular trusses set along these

different zones. It has a mega frame-tube-outrigger lateral resistant system, where the mega

frame is composed by the boxy space circular truss and the giant column. To monitor the

structural condition of the super tall building, an SHM system was instrumented on this

structure. Many kinds of sensors were installed including accelerometers, temperature sen-

sors, GPS, etc. A series of field vibration tests were conducted to investigate its modal

parameters.

Mode Modal frequency (Hz) Damping ratio (%)

1 0.094 2.48

2 0.138 1.33

3 0.366 0.46

4 0.424 0.32

5 0.475 0.29

6 0.506 0.28

7 0.522 0.43

8 0.796 0.46

9 0.965 0.64

10 1.151 0.16

11 1.191 0.16

12 1.250 0.16

13 1.390 0.34

14 1.642 0.27

15 1.948 0.86

Table 3. Modal parameters identified by enhanced FDD method.
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5.1. Field vibration tests in different stages

From April 2012 to December 2014, to study the modal parameters during construction, 15

ambient vibration tests were carried out over a period of two and a half years. Table 4 shows

the time to carry out the field test corresponding to the number of floors constructed. Two

different locations were measured in each test. They were at the top of a core tube and the top

of composite slabs after completion of concrete pouring. A series of finite element models

(FEMs) (built by ETABS) of the first eight construction stages were also developed to perform

comparison. The measured structures and the FEM model are shown in Figure 11.

When the main structure was finished, one field test was conducted to measure different

corners of the tube to investigate the dynamic characteristics of a typical floor. For the conve-

nience of sensor alignment and cables arrangement, 101th floor was selected since only the

shear walls were constructed on this floor. It was planned to measure nine locations bi-axially,

Figure 10. Overview of the building.

Setup 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Year/Month 12/04 12/07 12/08 12/10 13/01 13/03 13/05 13/07 13/08 13/12 14/02 14/03 14/07 14/10 14/12

Floors 55 68 71 81 94 102 111 120 125 125 125 125 125 125 125

Table 4. Measurement information.
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which are shown in Figure 12. It includes one location at the centre and the locations in the

eight corners. With the help of core walls, sensor alignment was finished in half an hour.

In this test, only four uniaxial sensors were available, and so to finish the whole measurement,

multiple setups were designed. Two reference channels were put in Location 1 to provide

common information for mode shapes assembling and they were kept unchanged during the

whole measurement. Based on the number of sensors and locations, eight different setups were

Figure 11. Overview of buildings in different stages and finite element models, field test on a typical floor.

Figure 12. Setup plan.
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arranged. The plans for these setups can be found in Ref. [26]. Forty minutes are required at

least for each setup. Thirty minutes were used for data collection and the remaining 10 minutes

were used for roving the sensor. It covered 10 am to 7 pm during a working day to finish the

whole measurement with the sampling frequency of 2048 Hz. For the convenience of analysis,

the measured data were decimated to a sampling frequency of 64 Hz.

5.2. Data analysis

Using the data collected in different construction stages, the variations of modal parameters

were investigated. In each test, 20 minutes data in the Location 2 were analysed. Figure 13

provides the identified results of natural frequencies and damping ratios for Modes 1 and 2.

The MPV is denoted by a dot, while �2 posterior standard deviations were expressed by an

error bar. The MPV of natural frequencies decreases with the number of floors and the increas-

ing speed tends to be stable after the main structure was finished. The posterior uncertainty of

the natural frequency is small, and so the decrease of the natural frequency with the number of

floors constructed is due to the structural height instead of identification error since the error

bars among neighbouring setups have no overlap. For the damping ratios, the MPVs are all

around or less than 1% and no obvious trend can be observed with the structural height. The

posterior uncertainty of damping ratios is relatively large, which can be seen in Figure 13.

The identified results of the first two modes and the corresponding ones obtained from the

FEM are shown in Figure 14. From the figure, it is seen that the two group results were

consistent with each other, which implies that the influence of the increase of structural height

Figure 13. Modal parameters in different construction stages.
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on the reduction of natural frequency is reasonable. No obvious problem from the point of

view of this modal parameter can be observed during construction.

Next, the data of the field test in a typical floor will be investigated. Figure 15 plots the PSD

spectra of the data in Setup 1. Eight obvious peaks can be observed from 0 to 1 Hz. The

numbers near to each peak indicate the potential modes. There are two closely spaced modes

(Modes 1 and 2) whose mode shapes can be predicted by the FEMmodel to be two transitional

modes in x- and y-directions of the building, respectively. Therefore, to use the proposed

multiple setups algorithm, the data in x- and y-directions were analysed separately to obtain

the mode shapes. For Mode 3 to Mode 8, they can be taken as well separated, and so they are

identified directly using the collected data.

The mode shapes of the first three identified modes were shown in Figure 16. Modes 1 and 2 are,

respectively, two translational modes along the x- and y-directions. The third mode is a torsional

mode and its torsion centre is at the centre of the tube. The mode shapes of Modes 4–6 are similar

to Modes 1–3. Modes 7 and 8 (omitted here) are also, respectively, the two translational modes in

the x- and y-directions. From the mode shapes, it is observed that although this super building

was designed in a novelty manner, the mode shapes of the first eight modes are still all regular,

Figure 14. Comparison between the identified results and FEM results. (a) Mode 1 and (b) Mode 2.

Figure 15. PSD spectrum of the data in Setup 1: (a) PSD spectra and (b) SVD spectra.
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i.e. two translational modes and then one torsional mode. Table 5 gives the averaged posterior c.

o.v. and the sample c.o.v. (=sample standard derivation/sample mean) of identified modal

parameters for the first eight modes among different setups. The posterior c.o.v. tends to be

larger than the sample c.o.v., while their orders of magnitude are still similar. These two quanti-

ties are well consistent with each other, although they can, respectively, reflect Bayesian and

frequentist perspectives. For the more detailed information of the study about Shanghai Tower,

please refer to [26].

6. Conclusion

This chapter presents the work on the operational modal analysis of four super tall buildings

including two super tall buildings situated in Hong Kong, Canton Tower and Shanghai Tower.

A fast Bayesian method is used to perform the OMA. It is found that the Bayesian method can

be well applied into these four field structures. The natural frequencies of the first fundamental

mode of these four buildings are around 0.1 Hz, while the damping ratios are all around 1%. In

addition to the most probable values of modal parameters, the associated posterior uncer-

tainties are also investigated. The posterior c.o.v. of natural frequencies are usually small,

indicating the identification of this quantity is accurate, while that of damping ratios are

obviously larger than the natural frequencies. This is consistent with the common finding.

The investigation in this chapter provides a reference for future OMA of super tall buildings,

and the Fast Bayesian FFT method is a robust method having the potential to be used in other

field structures.

Mode 1 2 3 4 5 6 7 8

f(%) Pc.o.v. 0.37 0.34 0.23 0.18 0.35 0.14 0.18 0.21

Sc.o.v. 0.48 0.37 0.27 0.17 0.40 0.21 0.12 0.67

z(%) Pc.o.v. 57 46 38 48 48 25 26 32

Sc.o.v. 88 48 53 41 62 31 27 33

Table 5. Posterior c.o.v. and sample c.o.v..

Figure 16. Identified mode shapes: Mode 1, Mode 2, and Mode 3.
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