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Abstract

In this chapter, innovative predictive maintenance technique is described with the aim of
highlighting the benefits of predictive maintenance compared to time-based maintenance.
The proposed technique is applied to a specific problem that occurs when time-based
maintenance is applied on grinding tables of the coal mill, in coal-grinding subsystem at
the thermoelectric power plant ‘TEKO’, Kostolac, Serbia. Time-based maintenance provides
replacement of grinding tables after certain number of working hours, but depending on
the quality of the coal and grinding table itself, this replacement sometimes needs to be
made before or after planned replacement. The consequences of such maintenance are great
material losses incurred because of frequent shutdowns of the entire coal-grinding
subsystem, as well as the possibility that the failure occurs before replacement. Innovative
predictive maintenance technique described in the chapter is used for solution of this
problem.

Keywords: predictive maintenance, T2 control chart, hidden Markov model,
thermoelectric power plant, statistical process control

1. Introduction

In today’s industry, application of the best maintenance strategies is a very important task in

ensuring stability and reliability of technical systems. Numerous papers and books about

different maintenance strategies can be found in literature, and almost everywhere the merits

of predictive maintenance in regard to time-based maintenance are emphasized [1]. Predictive

maintenance extends the period of time during which the system functions well, decreases

unnecessary shutdowns, reduces material losses and prevents catastrophic failures. Although

this field of research is very much advanced with the development of highly sophisticated

technologies, there is still a lot of room for improvement of the existing techniques and the

development of new ones.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In this research, an innovative technique of predictive maintenance is proposed and applied to a

specific problem that occurs at the thermoelectric power plant ‘TEKO’, Kostolac, Serbia. Namely,

one of the key thermoelectric power plant components is the coal-grinding subsystem. When

time-based maintenance is applied on grinding tables of the coal mill, grinding tables are

replaced after certain number of working hours. Depending on the quality of the coal and

grinding table itself, this replacement sometimes needs to be made before or after planned

replacement. The only way to determine the condition of the grinding table is visual inspection,

which implies the shutting down of the whole subsystem. Consequences of grinding table

replacement after fixed time intervals are great material losses incurred because of frequent

shutdowns of the entire coal-grinding subsystem. Also, there is a possibility that the failure will

occur before replacement.

There is an ‘urban legend’ that experienced operators in industrial plants, such as thermoelec-

tric power plants, can ‘hear’ the sounds in sound content from operational drives. Based on

these sounds, they can recognize the detritions of specific elements that can wear out, such as

mill-grinding tables. Also, in literature one can find that 99% of mechanical failures are

foregone by some very noticeable indicators [2]. Because of these facts, the idea came up for

the recording of acoustic signals while coal-grinding subsystem is operational. In this way, it is

easy to obtain condition-monitoring data which can be applied for predictive maintenance,

and there is no need for shutting down the whole subsystem for obtaining the information

about grinding table condition.

The proposed method is a trade-off between solutions already offered in the literature, and

originality of the proposed algorithm is based on the selection of failure prognostic technique.

The main goal of the proposed algorithm is the increase of energy efficiency at the thermoelec-

tric power plant.

This chapter is organized as follows: In the next section, we describe the concept of predictive

maintenance in detail. In Section 3, a description of the coal-grinding subsystem in thermo-

electric power plant will be given. In Section 4, we present a new predictive maintenance

technique. Section 5 contains the results. The last section is the conclusion, with the discussion

about gain results.

2. Predictive maintenance

Nowadays, industrial processes are very complex and cannot be imagined without modern

technologies, so highly sophisticated and very expensive maintenance strategies are needed.

Consequences of inefficient maintenance are large material losses, and because of that it is

necessary to constantly develop and improve the existing maintenance programmes.

Maintenance strategies were evolving during time. The first maintenance strategy was the

unplanned maintenance or run-to-failure maintenance which implies waiting for failure to

occur. It is obvious that with this maintenance strategy catastrophic failures are unavoidable,

so very rare this kind of maintenance is sustainable and profitable. Later, preventive mainte-

nance was introduced. Preventive maintenance can be conducted as planned maintenance or
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time-based maintenance, which is implemented at fixed time intervals, or it can be conducted

as predictive maintenance or condition-based maintenance where maintenance activities are

realized based on the condition of the system. Although with time-based maintenance

equipment failures sometimes can be reduced, it does not eliminate catastrophic failures

and causes unnecessary maintenance. In literature, it can be found that in the USA, because

of ineffective maintenance, more than 60 billion of dollars are spent every year [3]. Similar

situation is in other countries. Namely, the biggest shortcoming of time-based maintenance is

too often replacement of system’s parts, as well as premature stopping of the system while it

is operational, which leads to great material losses. In most situations, predictive mainte-

nance is the best choice, especially when maintenance is very expensive and occurring of

failure is unacceptable. The main goal of predictive maintenance is extension of time in

which system functions well and at the same time reduction of unnecessary stoppages and

failures. Also, the aim of predictive maintenance is to prevent the occurring of catastrophic

failures which can produce not only material costs but also loss of lives and environment

pollution. List of this kind of accidents is not small and can be found in Ref. [4]. Because of

these catastrophic failures which occasionally occur in modern industries, more attention is

paid to the improvement of the existing predictive maintenance strategies, as well as to

introducing the new ones. If it is regularly established and effectively implemented, predic-

tive maintenance can significantly reduce maintenance expenses through cutting down of

unnecessary time-based maintenance operations [5].

Diagnostics and prognostics are two very important aspects in predictivemaintenance programme.

Diagnostics deals with fault detection, isolation and identification after occurring of the fault. Fault

detection indicates when something goes wrong in a monitored system, that is, it detects that

failure has occurred. Fault isolation has a task to locate faulty component, whereas fault identifica-

tion has a task to determine the nature of the fault when the fault is detected. Diagnostics has been

developed for years, and today it presents very important area in engineering and automatic

control [6, 7].

Prognostics deals with fault prediction, before the fault will occur. In other words, diagnostics

is the posterior analysis of events, while prognostic is a priori analysis of events. Prognostics is

more efficient in regard to diagnostics for achieving zero-downtime performances. On the

other hand, diagnostics is necessary when failure prediction within prognostic fails and fault

occurs. References about prognostics can be found in Refs. [8, 9]. Predictive maintenance can

be used for diagnostics and prognostics, or both. Some newer references about predictive

maintenance can be found in Refs. [10–12]. No matter what is the goal of predictive mainte-

nance, three key steps must be followed for its implementation: (1) data acquisition, (2) data

processing and (3) maintenance decision-making.

Data acquisition is the process of data collection from specific physical resources in order to

implement predictive maintenance properly. This process is the key step in applying predictive

maintenance, both for diagnostics and for prognostics. Collected data can be classified into two

major categories: event data and condition-monitoring data. Event data include information about

what happened (faults, repairs, what were the causes, etc.). Condition-monitoring data are the

measurements about physical resource ‘health condition’.
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The first step in data processing is data cleaning. This step is very important, because data

(especially event data), which are entered manually always, have some mistakes. Without data

cleaning, it is possible that diagnostics and prognostics will be inaccurate. The next step in data

processing is data analysis. Different models, algorithms and tools for data analysis depend

mostly from data type [5]. Condition-monitoring data can be classified into three categories: (1)

value type, (2) waveform type and (3) multidimensional type.

The last step in predictive maintenance programme is decision-making. Techniques for decision-

making can be divided into two categories: diagnostics and prognostics. It is obvious that prog-

nostics is superior in regard to diagnostics, because it can prevent failure to occur, and if it is

possible it provides spare parts and planned human resources for problems that will occur. In

this way, it is possible to reduce material losses and avoid catastrophic failures. However,

prognostics cannot replace diagnostics completely, because in practice there will be always some

unpredictable faults.

Here, we focus on prognostics. There are two types of prediction when we talk about failure

prognostic. The first type is the prediction of how much time is left before failure will occur (one

or more failures) depending on the current state of the machine and past operation profile. Time

that is left before the fault is noticed is called remaining useful life (RUL). In some situations,

especially when failure is catastrophic (e.g. nuclear plant), it is much a preferable second type of

failure prognostic, that is, prediction of probability that the machine will work until some future

time (e.g. until next interval when inspection is needed) depending on the current state of the

machine and past operation profile. Actually, in any situation, it is good to know the probability

that a machine will work without failure until the next inspection or condition monitoring. Most

papers deal with the first type of failure prognostic, that is, with RUL estimation [13, 14]. Only

few papers can be found that deal with the second type of prognostic [15]. According to Ref. [8],

failure prediction can be divided into three different categories:

1. Traditional reliability approaches—prediction based on event data (experience) [16]

2. Prognostics approaches—prediction based on condition-monitoring data [17, 18]

3. Integrated approaches—prediction based on event data and condition-monitoring data [19].

Every one of these approaches has some advantages and limitations. Combinations of these

approaches are different according to their applicability, price, precision and complexity [20].

3. Description of the coal-grinding subsystem in thermoelectric power

plant

Thermoelectric power plants are the largest producers of electricity in Serbia, contributing with

more than 65% of the total electricity supply. In order to ensure their stability and operational

efficiency, it is necessary to monitor their major subsystems and individual components. In this

way, it is possible to detect any change in behaviour, or failure on time, which leads to the increase

of energy efficiency and the reduction of the financial losses of the electric power industry.
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One of the key thermoelectric power plant components is the coal-grinding subsystem. Its

physical layout is shown in Figure 1. Raw coal enters the subsystem through a feeder and goes

down a chute to the grinding table that rotates at a constant speed. The coal is then moved

outward by centrifugal force and goes under three stationary rollers where it is ground. The

outgoing coal moves forward to the mill throat where it is mixed with hot primary air. The

heavier coal particles immediately move back to the grinding table for additional grinding,

while lighter particles are carried by the air flow to the separator. The separator contains a large

amount of particles suspended in the powerful air flow. Additionally, some of the particles

drawn into the primary air-and-coal mix lose their velocity and fall onto the grinding table (as

shown) for further grinding, while the particles that are fast enough enter the classifier zone.

These particles are swirled by deflector plates. Lighter particles are removed as classified fuel in

the form of fine powder that goes to burners, while heavier particles bounce off the classifier cone

Figure 1. Configuration of the coal-grinding subsystem.
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and fall back onto the grinding table for additional grinding. Both the separator and classifier

contain a significant amount of coal. These coal masses, along with the coal on the grinding table

and the three recirculating loads (primary, secondary and tertiary), play a key role in the dynamic

performance of the mill [21, 22].

In this research, one such system at the thermoelectric power plant ‘TEKO’ (Serbia) is analysed.

As it is previously described, the coal inside the mill is ground by impact and friction against the

grinding table that rotates around the mill centre line (CL). The only way to determine the current

condition of the grinding table is to shut down the entire subsystem and open it for visual

inspection. This time-based maintenance method guarantees that grinding tables will be replaced

before they become dysfunctional, but at a cost of frequent shutdowns. If inspection shows that

grinding table replacement is not yet necessary, then significant material losses will incur. In

Figure 2, two grinding tables are shown. On the left figure is a new grinding table, immediately

after replacement, and on the right figure is a worn grinding table, straight before replacement.

In practice which is common on plant A1, at thermoelectric power plant ‘TEKO’, Kostolac, grinding

tables are replaced every 1800 h. However, it often happens that because of the increased presence

of limestone, sand and other impurities in coal, grinding tables become deteriorated already after

1400 h, or even shorter. In that case, weaker effectiveness of the mill is noticeable, it is ‘chocked’,

and serious problem with regulation occurs in an attempt to regulate the temperature of air

mixture and pressure of fresh steam in front of the turbine. This appearance has for consequence

significant misbalance of temperature distribution inside the firebox, which has negative influence

on increased water injection in fresh steam, knockdown of coefficient of boiler efficiency and so on.

In such conditions, usually, mill must be stopped unplanned for grinding table replacement and

that incurs financial losses. Because of that, system which offers predictive maintenance is of great

importance.

4. Proposed new predictive maintenance technique

The proposed solution to described problem is based on predictive maintenance. In this

research, for the last step in predictive maintenance, the condition-monitoring data approach

Figure 2. New grinding table (left) and worn grinding table (right).
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is chosen. This approach can be divided into two main categories: model-based prognostic

technique and data-driven prognostic technique. Here, data-driven technique is chosen,

because condition-monitoring data were available. Model-based method requires an accurate

model of the system, which is highly complex. Maffezoni presents a useful physical model of

the mill, the so-called mass-balance model with 76 ordinary differential equations (ODE), better

known as a knowledge-based model [21]. It is obvious that it is very hard to make accurate model

of the system, so this approach was not considered. On the other hand, the experience-based

prognostic approach could not be used, because of the variable data statistics and an insuffi-

cient amount of data. For all these reasons, the data-driven approach was selected.

As it is described earlier, the first step in predictive maintenance programme is data acquisi-

tion. In this research, acoustic signals recorded in the vicinity of the mill were used to detect the

condition of the mill. The acoustic signals were acquired from a coal mill at the ‘TEKO’

thermoelectric power plant, while it was operational. The main mill rotation frequency was

about 12.5 Hz and the mill from which the signals were acquired had 10 impact plates.

Namely, in the literature it can be found that failure information is hidden in the spectral charac-

teristics of vibration signals [23], but it has been demonstrated that in some cases acoustic signals

are equally informative. In 2001, Baydar conducted a parallel analysis of the frequency character-

istics of vibration signals and acoustic signals to detect various types of failures of rotary compo-

nents, concluding that both signals can be used equally effectively [24]. The present research uses

acoustic signals because they are simpler and less costly to record than vibration signals. They can

also be acquired without interfering with mill operation because they are recorded externally.

The acoustic signals were acquired by means of a directional microphone at a distance of several

millimetres, while the coal-grinding subsystem was operational. Recording of these signals is

performed at the low altitude in thermoelectric power plant, where acoustic contamination is

highly expressed. Because of that, special system for microphone fixation is projected, at a

distance of several millimetres from the walls of analysed mill, so the power of useful signal could

be multiple higher than the power of contaminating acoustic sources as neighbouring mills, feed

pumps, surrounding valves and so on. The sampling frequency of recorded acoustic signals was

48 kHz. Data acquisition was conducted every 2 weeks on average, and it lasted for several

minutes. Table 1 shows the dates of recording, the dates of grinding table replacement and the

duration of each signal. For faster implementation of the algorithm, the sampling frequency was

decimated from 48 to 4.8 kHz, and the duration of the analysed signals was 1 min.

We can see from Table 1 that the whole time period from the moment of grinding table replace-

ment until the moment when grinding tables are worn is covered. After the first cycle of acoustic

signal recording, three more recordings were performed after grinding table replacement. In this

way, based on recorded acoustic signals, coal-grinding subsystem data are collected in different

states. A large base of condition-monitoring data is obtained (without disturbing coal-grinding

subsystem while it is operational) which can be further processed.

The second step in predictive maintenance is data processing. Given that collected data are

acoustic signals, they are classified as waveform type of data. In order to overcome disadvantages

encountered when such data are analysed in time domain and frequency domain [25], these data

are analysed in time-frequency domain. A spectrogram was used to assess the acoustic signals in

Predictive Maintenance Based on Control Charts Applied at Thermoelectric Power Plant
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the time-frequency domain, which represented the spectral components of the signals in three

dimensions very well: time information along the horizontal axis, frequency information along

the vertical axis and amplitude depicted by a colour-coded scale. Colour intensity illustrated the

strength of the spectral components. Figure 3 [26] shows the spectrogram of an acoustic signal

recorded on 30 March 2012, 6 days after grinding table replacement.

Figure 3 clearly shows the dominant frequencies, and indicates that they are the high har-

monics of the basic frequency of mill rotation, which was f0 =12.5 Hz. Also, the dominant peaks

in the spectrum occurred at frequencies 10f0,20f0 and so on, according to the fact that there

were 10 impact plates inside the mill, such that the basic frequency of grinding table travelling

alongside the microphone was 10f0. Given that the microphone was positioned so as to be as

close as possible to the grinding table, these spectral components were much more pronounced

than the other components.

Date of acquisition Signal duration Time since last maintenance

2 February 2012 10 min 51 s 14 days

24 February 2012 8 min 8 s 36 days

1 March 2012 8 min 8 s 42 days

15 March 2012 7 min 3 s 54 days

30 March 2012 6 min 6 days

5 April 2012 5 min 12 days

19 April 2012 6 min 26 days

Table 1. Recorded acoustic signals.

Figure 3. Spectrogram of acoustic signal.
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After data acquisition, it was necessary to extract proper characteristics of the recorded acous-

tic signals in the frequency domain, in order to obtain vector of observations for analysis with

T2 control charts. As it was mentioned earlier, a spectrogram was used for acoustic signal

representation. If recorded acoustic signal is denoted as y[n], the spectrogram of acoustic signal

Sp is often denoted as short time fast Fourier transform (STFFT) in literature [27] and computed as

fast Fourier transform (FFT) on sliding window data. The idea of STFFT is dividing of the whole

signal on segments with short time window, and applying the Fourier transform on each

segment. The spectrogram represents a function of time and frequency arguments, which can

be written as follows:

Sp ¼ STFFT{y½n�} ¼ Sp½f , n� ð1Þ

where f denotes the frequency and n the time argument of spectrogram.

The extracted quality characteristics in the frequency domain are the values of Sp across the

time at the frequencies which represents the values around the high harmonics or the high

harmonics themselves. Fourteen selected frequencies are shown in the vector fp:

f p ¼ ½14 18:7 23:4 28:1 32:8 60:93 126:5 178:1 187:5 262:5 346:8 754:6 1200 2025� ð2Þ

Accordingly, the 14-dimensional vector of observations is formed at each time point:

X½n� ¼ ½ x1½n� x2½n� … x14½n� �
T ð3Þ

Coordinates of the vector X[n] are calculated as follows:

xi½n� ¼
Xn

j¼n�Lw

Sp½ f i, j� ð4Þ

where fi represents the ith coordinate of the frequency vector fp, and Lw is the length of the

window function. This is a procedure for the generation of the initial observation vector. In this

way, the data-processing step and feature extraction are completed.

The last step in predictive maintenance programme is maintenance decision-making. As it is

described in the beginning of this section, data-driven technique is chosen, that is, it is decided

that the input of the sequence of observations be analysed with T2 control charts, and then,

outputs of control charts will be the input sequence for hidden Markov model (HMM). HMM

should give us the information about the grinding tables condition, that is, are they worn so

that their replacement is necessary. This would be the second approach in failure prognostic,

because of the prediction that the system will work without failure until some future time, that

is, until the next interval when inspection is needed.

After obtaining the vector of observations, T2 control charts were constructed. Generally

speaking, a control chart is a statistical tool used to detect failure. Control charts make a clear

distinction between common causes of variations in the process and failures of the system. For
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a system where only common causes of variations are present, we say that such a system is

under statistical control. A control chart generally has a centre line (CL), upper control limit

(UCL) and lower control limit (LCL). The centre line represents the mean value of the quality

characteristic of interest, detected while the process is under statistical control. The control

limits are selected such that while the process is under statistical control, nearly all the points in

the control chart will fall between these two lines.

The first step in constructing the control charts requires an analysis of preliminary data, which

are under statistical control. This step is called Phase I, and data used in this phase are called

the historical data set. In Phase II, the control chart is used to monitor the process by compar-

ing the sample statistic for each successive sample as it is drawn from the process to the control

limits established in Phase I [28, 29].

A multivariate analysis with Hotelling T2 control charts was undertaken in the present

research [30]. Based on observation vectors, T2 sequence of values may be calculated according

to the following equation:

T2½n� ¼ ðX½n� � XÞTS�1ðX½n� � XÞ ð5Þ

where X and S denote the sample estimators of the mean value vector and the covariance

matrix, respectively. Assuming that during the data acquisition sequence of N observations

{X½0�, X½1�,…, X½N � 1�} is generated, sample estimators of vector of mean values and covari-

ance matrix can be written as follows:

X ¼
1

N

X

N�1

i¼0

X½i� ð6Þ

S ¼
1

N � 1

X

N�1

i¼0

ðX½i� � XÞðX½i� � XÞT ð7Þ

The control limits in Phase II are

UCL ¼ χ2
ðα,pÞ, LCL ¼ 0 ð8Þ

where χ2
ðα,pÞ is the upper α percentage point of the chi-squared distribution with p degrees of

freedom (p represents the number of variables which is in our case 14). When the number of

preliminary samples n is large (n > 100), using chi-squared control limit in Phase II is reason-

able approximation [29]. In Phase I, the limits are based on beta distribution:

UCL ¼
ðn� 1Þ2

n

" #

βðα;p=2, ðn�p�1Þ=2Þ, LCL ¼ 0 ð9Þ

where βðα;p=2, ðn�p�1Þ=2Þ is the upper α percentile of beta distribution with parameters p/2 and

ðn� p� 1Þ=2.
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According to relation (5), the time sequence of T2 values is formed, denoted as {T2½0�, T2½1�,…,

T2½n�} where n denotes the sequence number of sliding window data. In order to account for

system dynamics, instead of the very last control chart sample, the last 10 samples were used

for the characterization of the actual state of grinding tables. In other words, vector

O½n� ¼ ½T2½n� 9� T2½n� 8� … T2½n� �
T ð10Þ

will be used for further estimation of system states. However, if this vector had been intro-

duced as observation in HMM, it would be necessary to estimate joint probability function for

this, tenth-dimensional vector. In order to avoid this complex numerical problem, it has been

decided, as it is usual in the literature, to apply the procedure of vector quantization. In this

purpose, the method of k-means clustering is used [31]. The result of k-means clustering is the

sequence of k-cluster centres (centroids). In our case, based on try-and-error approach, it turned

out that for k = 4 satisfying results are gain and cluster centres ðCi, i ¼ 1, 2, 3, 4Þ are obtained.

Accordingly, the final vectors of observations Ô½n� are formed and forwarded to HMM in the

following way:

minjkO½n� � Cjk
2 ¼ kO½n� � Ckk ) Ô½n� ¼ Ck ð11Þ

After the samples were coded as described above, the next step was to construct the HMM. An

HMM is a statistical model used to describe the transition of a system between states. It is an

extension of the ordinary Markov chains with non-observable or partially observable states.

Generally, HMM has N states S ¼ {S1, S2,…, SN} andM observation symbols V ¼ {v1, v2,…, vM}.

HMM with three states is shown in Figure 4. The states are connected in such a way that it is

possible to move from any one to the other. The hidden state at time t is denoted by qt, and the

Figure 4. HMM with three states.
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move from one state to the other is subject to Markov’s rule (that state qt depends solely on state

qt�1). In addition to the number of states, N, and the number of observation symbols, M, several

other HMM characteristics need to be defined.

The transition matrix A = {aij} represents the probability of moving from state i to state j. The

coefficients aij are non-negative in the general case, and equal to zero if there is no direct

switching from one state to another. The sum of probabilities in each matrix of type A needs

to be equal to 1. The observation matrix (also called the emission matrix) B = {bj(k)} shows the

probability that observation k was produced by the jth state.

Figure 5. Flow diagram of the proposed algorithm: offline procedure (left) and online procedure (right).
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The sequence of initial states π = {πi} carries information about initial probabilities, indicating

the likelihood that a new input sequence will move from a given state. Finally, the HMM can

be defined by the triplet:

λ ¼ ðA,B,πÞ ð12Þ

There are three fundamental problems that can be solved by means of HMM. A detailed

description of HMMs and the solutions to these three problems is available in Ref. [32].

Figure 5 [26] shows how the proposed algorithm for predictive maintenance is organized. For

the purpose of the practical implementation of the proposed method, it should be clarified that

certain activities are realized only once (like offline procedure) in order to determine the

necessary statistics and HMM training. On the other hand, once the offline procedure is over,

the algorithm can be implemented in real time and thus providing online monitoring of the

mill-grinding plates states.

5. Results

In this chapter, gained results after applying the proposed technique for predictive mainte-

nance on described problem at thermoelectric power plant will be presented. As it is previ-

ously explained, after data acquisition and feature extraction from recorded acoustic signals,

T2 control charts are formed.

The acoustic signal recorded on 30 March 2012 was used for X and S estimation in Eqs. (6) and

(7), knowing that a new grinding table was operational. In this way, this signal was observed as

historical data set. This was in effect Phase I of statistical control, where the entire coal-grinding

subsystem was under statistical control. The estimated values of X and S in Phase I were to be

used in Phase II of the multivariate analysis. The chi-squared control limit was taken as theUCL,

as in Eq. (8). For the 14 quality characteristics,UCL = 36.12 (for the value α = 0.001) and LCL = 0. In

order to justify the using of chi-squared control limit, in Figure 6,Q-Q plot [29] with T2 quantiles

on y-axis and chi-squared quantiles on x-axis are shown. For illustration, Q-Q plot for T2 values

for signals recorded on 30 March 2012 is shown, that is, for the signal recorded 6 days after

grinding table replacement. During research, this check is done for all the signals in order to

confirm that the choice of chi-squared control limit is justified.

From Figure 6, we can see that the values follow chi-squared distribution, that is, the figure

shows approximately linear trend along the line of 45�, except the last few points which are

slightly away from the projected trend line. Before T2 control charts were constructed, we

expected that the number of outliers will increase as grinding tables become worn out. Figure 7

[26] shows the T2 control chart for the acoustic signal recorded on 2 February 2012, 2 weeks

after grinding table replacement.

Figure 8 [26] shows the T2 multivariate control chart for the acoustic signal recorded on 24

February 2012, 5 weeks after grinding table replacement.
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Figure 6. Q-Q plot for recorded acoustic signal 6 days after grinding table replacement.

Figure 7. T2 control chart for acoustic signal recorded 2 weeks after grinding table replacement.
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Figure 9 [26] shows the T
2 control chart for the acoustic signal recorded on 15 March 2012,

8 weeks after grinding table replacement.

It is apparent from Figures 7–9 that the number of points above the UCL on the T
2 control

chart grew as the grinding table became increasingly worn. Eight weeks after replacement,

nearly all the points were beyond the UCL. To confirm the results, the multivariate analysis

was repeated using the signals recorded on 5 and 19 April 2012. Table 2 shows the exact

number of outliers for all the recorded signals for the different values of UCL (i.e. for

different values of parameter α).

The difference in the number of points above theUCL for the signals recorded on 2 February and

19 April 2012 can be explained. Namely, both signals were acquired 2 weeks after grinding table

replacement, but the results are different for two reasons: (1) The signal acquisition conditions

were not ideal because of noise. All the recorded signals reflect this noise, as well as other

disturbances (e.g. when a large chunk of coal or stone hits the mill). The signals were not filtered,

because of the possible information loss. All this could have influenced the accuracy of the

results. (2) Grinding table wear depends on the quality of the coal and of the grinding table itself.

It is therefore impossible to ascertain what the right time for grinding table replacement would

be, unless the entire subsystem is shut down and opened for visual inspection.

According to Table 2, we can conclude that with the choice of parameter α = 0.001, ‘over

controlling’ control chart is constructed, while with the choice of parameter α = 0.025, false

alarm rate is too large. Anyway, no matter which value of UCL we have chosen, the number of

outliers is larger as grinding tables are getting worn out. Namely, in the proposed method

Figure 8. T
2 control chart for acoustic signal recorded 5 weeks after grinding table replacement.

Predictive Maintenance Based on Control Charts Applied at Thermoelectric Power Plant
http://dx.doi.org/10.5772/intechopen.68685

41



control charts were not used for classical fault detection, yet for forming of T2 statistics that will

be parameterized for making the HMM observations. The choice of the UCL does not have an

influence on T
2 statistics value, that is, on forming of observations for HMM. Thus, the choice

of parameter α, that is, making of compromise between the first type error and the second type

error, does not have an influence on observation values for HMM, which is not usually the case

Figure 9. T
2 control chart for acoustic signal recorded 8 weeks after grinding table replacement.

Date of

recording

Number of weeks

after grinding

table replacement

Number of points

above UCL (%), α =

0.001, UCL = 36.12

Number of points

above UCL (%), α =

0.005, UCL = 31.32

Number of points

above UCL (%), α =

0.01, UCL = 29.14

Number of points

above UCL (%), α =

0.025, UCL = 26.12

2 February

2012

2 weeks 1.43% 2.14% 2.46% 5%

24 February

2012

5 weeks 68.27% 79.5% 83.78% 88.41%

15 March

2012

8 weeks 84.85% 90.91% 92.87% 95.54%

05 April

2012

2 weeks 16.75% 27.63% 32.98% 43.14%

19 April

2012

4 weeks 57.58% 70.05% 74.87% 81.64%

Table 2. Number of points above UCL.
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when classical control chart needs to detect the fault and when the choice of parameter α has

large influence for the correct determination of UCL.

After T2 control charts were constructed, vector quantization was undertaken, as described in

the previous section, in order to represent the control chart samples as a sequence of observa-

tions for the HMM. Figure 10 [26] shows the estimated probability density functions of the T2

control chart samples for the signals recorded 2, 5 and 8 weeks after grinding table replace-

ment. It is apparent that the T
2 statistics change over time and that they are a function of the

condition of the grinding table (i.e. they change as the condition of the grinding table changes).

The final step of the proposed algorithm was to construct the HMM. The states of HMM are

chosen so to represent the physical condition of mill-grinding plates. In order to illustrate the

proposed method, it is assumed that HMM has three states. The first state is the condition of

the grinding table immediately after replacement (i.e. that of a new grinding table). Having in

mind that the average length of mill-grinding table duration is 1600 h approximately, the fact

that HMM is in the first state could be interpreted as the grinding tables being in the first third

of their life. The second state was the ‘intermediate state’, where the grinding table becomes

partially worn out, but there is still time before replacement is needed. Consequently, the

system staying in the second state can be interpreted as the grinding tables entering the second

third of their lifetime. The third state means that the condition of the grinding table had

deteriorated to the point where replacement is necessary. Namely, this research started from

the assumption that HMM has only three states, but if it is needed that the grinding table

Figure 10. Estimated probability density functions for signals recorded 2, 5 and 8 weeks after grinding table replacement.
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conditions are characterized with greater precision, the number of states could be increased.

Figure 11 [26] shows the sequence of observations and corresponding HMM states.

It is apparent from Figure 11 that the HMM provides information about a change in the

condition of the grinding table. It is obvious that the time of HMM entry into the third state

(worn-out grinding table) coincides with the beginning of observations that correspond to the

control chart samples for the signal recorded 8 weeks after replacement.

6. Conclusion

Based on the presented results, we can make several conclusions. Firstly, the assumption set at the

beginning of this research, that useful information from spectral components of acoustic signals

can be extracted is confirmed. Based on this information, the condition of rotating elements of the

mill can be recognized. As it is previously explained, in the literature there are mostly preferred

vibration signals in regard to the acoustic signals, when we talk about informative content. Given

Figure 11. HMM states.
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that the recording of acoustic signals is much cheaper than the recording of vibration signals, and

processing of acoustic signals is much simpler from vibration signals processing, confirmation

about informative content of acoustic signals is very important.

The originality of the proposed method is a combination of control charts and HMMs in failure

prognostic, as well as in the application of control charts on extracted components from spectro-

gram. Namely, in the literature one can find control charts whose construction is based on

spectral analysis of the signal [33]. Here, a different approach is proposed, that is, to apply the

T2 control charts on spectral components of the signal. Based on the results, this approach has

proven to be very efficient. In the literature, one can also find the application of control charts

andHMMs for degradation process diagnosis [34], as well as for fault detection [35], but in these

papers standard p-charts and Hotelling T2 control charts are used. Reports of other research

dealing with the detection of certain types of failures at thermoelectric power plants can be found

in the literature [36–38]. Also,HMM-based diagnostic models founded upon the condition of the

system can be found in Refs. [39, 40]. In regard to all mentioned references, the original approach

is proposed here.

As it is previously described, in the case of failure prognostic, in literature the most common

approach is the first approach, that is, the estimation when the fault will occur (RUL estima-

tion). In this research, the accent is on the second approach, that is, on the estimation of

probability that the machine will work without failure until some future time (in our case,

until the next interval when inspection and grinding table replacement are needed). With the

proposed method, HMM gives us the information about grinding tables condition, that is,

when the grinding tables are worn out, so that their replacement is needed.

The advantage of the proposed method is that it is non-invasive, because for the acquisition of

condition-monitoring data it is not necessary to interrupt coal-grinding subsystem operation

and shut down the whole subsystem. Another advantage is that it is based on acoustic signals

processing which are simpler for processing and acquisition in regard to vibration signals.

Software realization of the proposed algorithm is not too much complex and it is not time

consuming when HMM is once trained.

A shortcoming of this method is the recording of acoustic signals in the presence of the unavoid-

able noise, which can influence on the accuracy of the results. Presented results are gathered

offline, that is, HMM is trained based on the already recorded signals. For applying this method

on online data, much larger amount of data are needed for adequate HMM training and more

accurate determining of time moment when the grinding table replacement is needed. Anyhow,

the proposed method can be applied in real time and used for higher stability and reliability of

one of the most important subsystems in a thermoelectric power plant.

Further direction in this research would be the making of an adaptive system which would be

adjustable to new statistics which are consequences of components ageing, not just the condition

of grinding tables plates. Also, significant study could be made when condition-monitoring data

would be recorded vibration signals, for comparative analysis with acoustic signals. Additional

event data could upgrade the proposed method in combination with condition maintenance

data. Some future research could be to make optimal maintenance policy in thermoelectric

power plant, according to gain results.
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