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Abstract

While ABO/Rh(D) red blood cells (RBC)-matched transfusions are generally considered 
as safe, a significant risk of alloimmunization to non-A/B blood group antigens exists; 
especially in chronically transfused patients. Indeed, alloimmunization to non-A/B anti-
gens can be so severe that RBC transfusion can no longer be safely administered without 
the risk of a potentially deadly immune haemolytic reaction. Currently, no satisfactory 
solutions exist either to prevent blood group alloimmunization or to cost-effectively treat 
patients with severe alloimmunization. To address this problem, we have pioneered the 
immunocamouflage of donor RBC. The immunocamouflaged (stealth) RBC is manufac-
tured by the covalent grafting of biologically safe polymers to RBC membrane proteins. 
As a result of the grafted polymer, non-A/B blood group antigens are biophysically and 
immunologically masked. Of particular interest is the immunocamouflage of the Rh(D) 
antigen which could be used to improve blood inventory and transfusion safety. The 
polymer-modified RBCs are morphologically normal and, in mice, exhibit normal in 

vivo survival at immunoprotective grafting concentration. In this chapter, we explore 
both the biophysical and immunological consequences of the grafted polymers, explore 
the conditions in which they might be appropriately used, and describe the technology 
necessary to manufacture functional transfusable units of these cells within the clinical 
setting.
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1. Introduction

The transfusion of red blood cells (RBC) remains the most common, and best tolerated, form 
of tissue transplantation. Indeed, an estimated 108 million units of whole blood (~49 million 
litres) are collected annually worldwide for processing and eventual transfusion [1]. In spite 
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of this massive collection effort, the need for blood constantly exceeds availability due to a 
combination of collection, manufacturing, storage and, most important clinically, biological 
(i.e., immunological) issues. The biological challenges facing successful RBC transfusions are 
vastly underappreciated, largely because of the long history and ubiquity of blood transfu-

sions in modern medicine. Indeed, the RBC is an immunological complex cell with 35 major 
blood group systems that give rise to over 300 unique antigens capable of eliciting an immune 
response. Moreover, this immunological complexity is further exacerbated by the finding that 
the non-A/B (often referred to as minor) blood group antigens exist with varying frequencies 
among different ethnic and racial groups [2, 3]. Within the non-A/B antigens, Rh(D) deserves 
special attention.

Among the non-A/B blood groups, the Rh system, and in particular Rh(D), is considered to 
be the most immunogenic antigen. Indeed, the Rh(D) antigen is highly immunogenic and 
when Rh(D)+ blood is transfused into an Rh(D)− individual, there is a 50% risk for the develop-

ment of anti-Rh(D) antibodies resulting in very high risk of a haemolytic transfusion upon a 
second Rh(D)+ transfusion. Consequent to its immunogenicity, Rh(D) is always determined 
simultaneously with ABO type and constitutes the ‘±’ found alongside the ABO phenotype. 
Consequent to its immunogenicity, Rh(D) poses a significant challenge to blood operators 
since Type O Rh(D)− (O−) blood is the universal donor cell. In Euro-centric populations, 6–7% 
of the population is O− making the maintenance of an adequate inventory of this universal 
donor blood problematic but possible. Indeed, in North America and Europe, virtually all 
blood service providers experience a chronic shortage of Type O− blood. However, in other 
geographic regions, especially Asia, Rh(D)− individuals are extremely rare. Indeed, in China, 
only 0.1–0.4% of the population, regardless of ABO type, is Rh(D)−, making the Rh(D)− indi-

vidual (especially with the increasing influx of European tourists) an at-risk patient [4]. Thus, 
within transfusion medicine, Rh(D) remains a significant problem in terms of both supply and 
its clinical risk.

Despite the immunological complexity of the RBC, simple ABO/Rh(D) matching has been, typi-
cally, considered sufficient for most acute transfusion needs. However, even when ABO/Rh(D) 
are appropriately matched, transfusion reactions still occur as mismatched non-A/B antigens 
do carry some immunological risks to a patient. While the incidence of clinically noteworthy 
(i.e., significant patient morbidity) transfusion reactions is relatively low (~0.017% of transfused 
individuals), less severe transfusion reactions (e.g., transient fever, malaise, premature RBC 
clearance) and alloimmunization are considerably more frequent and increase with the num-

ber of transfusions received by an individual [5–9]. Indeed, with approximately 108 million 
units of whole blood collected worldwide per annum for blood product preparation, the actual 
numbers of adverse events become quite significant. Of clinical importance, alloimmuniza-

tion to non-ABO group antigens is significantly exaggerated in individuals (~30%), especially 
minorities, receiving chronic transfusion therapy as seen in thalassemia and sickle cell anemia. 
Indeed, alloimmunization to non-ABO blood groups can be so severe that blood transfusion 
can no longer be safely administered without risk of a potentially deadly immune haemolytic 
reaction.

Historically, various interventions have been used in an attempt to prevent transfusion 
reactions arising from alloimmunization. While ABO/Rh(D) typing has been used since the 
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1940s, the practice of phenotyping some of the more problematic non-A/B/Rh(D) antigens is 
still uncommon and likely underlies the high frequency of alloimmunization in chronically 
transfused patients. In studies on β thalassemia, up to 20% of these chronically transfused 
individuals demonstrate clinical evidence (i.e., mild to severe transfusion reactions) of alloim-

munization against non-A/B donor blood group antigens [10, 11]. Rates in patients with sickle 
cell anemia are even higher (>30%) [12]. As a result, many US National Institutes of Health 
(NIH) funded Sickle Cell Centres now evaluate a blood recipient for high risk (for alloimmu-

nization) blood group antigens and to prophylactically utilize phenotypically matched blood 
for transfusion in this cohort of patients. However, even antibody screening does not identify 
patients alloimmunized to less common RBC antigens or, more importantly, prevent primary 
alloimmunization to non-tested antigens. To date, the only solutions to prevent alloimmuniza-

tion, or for individuals with very rare blood type, are to store autologous blood (4°C), maintain 
an inventory of frozen rare blood group units, keep a blood bank registry of potential donors 
with rare blood types, utilize extensive RBC phenotyping prior to transfusion and/or encour-

age minority blood donations [7, 12–27]. While all of these steps are prudent and variably 
effective, situations still arise where an appropriate (or even satisfactory) blood match cannot 
be made.

2. Bioengineering the red blood cell

Currently, no satisfactory solutions exist to prevent or cost-effectively treat blood group allo-

immunization or to improve the inventory of Rh(D)− blood. To address these unmet needs, 
the covalent grafting of biocompatible polymers to donor RBC has been proposed to immu-

nocamouflage the allogeneic RBC. The immunocamouflaged (stealth) RBC is manufactured by 
the covalent grafting of methoxypoly(ethylene glycol) [mPEG; PEGylation], as well as other 
polymers (e.g., polyoxazolines, POZ; and hyperbranched polyglycerols, HPG), to membrane 
proteins on the surface of allogeneic donor RBC (Figure 1).

Most commonly, the chemically activated polymers are covalently grafted to proteins at 
exposed lysine residues. As a result of the grafted polymer, donor blood group antigens are 
biophysically and immunologically masked while the modified RBC remaining biologically 
and functionally viable. To date, most studies have focused on mPEG as the polymer of choice 
due to its superior ability to both sterically and charge camouflage allogeneic RBC and its 
well-characterized, and safe, pharmacological profile. The basic chemical structure of mPEG 
is HO-(CH

2
CH

2
O)

n
-CH

2
CH

2
CH3. mPEG is of low toxicity and is US FDA approved for oral, 

intravenous, subcutaneous and intramuscular administration [29]. The mPEG polyether poly-

mer is neutrally charged, available in an extraordinarily wide range of molecular weights, 
and is highly soluble in aqueous-based solutions making it very suitable for pharmacological 
use. In contrast, both the POZ (e.g., PEOZ) and HPG polymers are poorly soluble in aqueous 
solutions and only confer weak charge camouflage.

A large number of biological and biophysical studies have been done to characterize the effects 
of polymer grafting on immune recognition and in vitro and in vivo viability [28, 30–58]. These 
studies have demonstrated the significant potential of this immunocamouflage technology in 
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transfusion medicine. Example uses include but are not limited to: (1) derivitize RBC to dimin-

ish transfusion reactions arising from mismatched blood or alloimmunization; (2) utilization 
by clinical blood banks to camouflage the Rh(D) antigen to improve blood inventories and 
utilization; (3) use of mPEG-modified RBC as a ‘chain-breaker’ (i.e., preventing RBC aggre-

gates arising from abnormal cell-cell interaction) in vascular occlusive diseases such as sickle 
cell anemia; and (4) prevention of transfusion-associated graft-versus-host disease. Other uses 
outside of transfusion medicine include the implantation of derivitized cells or cell aggregates 
(e.g., pancreatic islets) to correct enzyme deficiencies; the induction of tolerance via PEGylated 
leukocytes; and the prevention of viral infections via antiviral gels.

Biophysical and biological characterization of the stealth RBC: The immunocamouflage of cells 
is a function of the biophysical and biochemical nature of the grafted polymer (Figure 1). 
Biophysically, the grafted polymers confer its immunoprotective effects via both steric hin-

drance and charge camouflage (Figure 2). The efficacy of membrane immunocamouflage is 
dependent upon both the density (i.e., how much) and depth (i.e., thickness; polymer molecu-

lar weight) of the polymer layer. As shown in Figure 1, steric hindrance arises from either 

the rapid mobility arising from intra-molecular flexibility of the polymer (mPEG and PEOZ) 
and/or polymer density itself (HPG). Perhaps of even more importance is the ability of the 
polymer to obscure the surface charge (charge camouflage) of the cell. Biophysically, charge 
camouflage arises from polymer-mediated extension of the shear plane (SP) thereby decreas-

ing the apparent surface charge (Figure 2A and B). The grafted polymers can give rise to both 
DIRECT (direct binding to the antigen in question) and INDIRECT (binding to sites other than 

Figure 1. Comparison of mPEG, PEOZ and HPG. The repeating structures of mPEG and PEOZ are denoted by the 
shaded areas while HPG, consisting of repeating polyglycerols, functions more as a mass. The (a) and (b) notations 

denote the independent rotational segments of mPEG and PEOZ (respectively) governing intra-chain mobility. The 
relative intra-chain mobility of the polymers, coupled with polymer size (e.g., 2 versus 20 kDa), underlies the radius of 
gyration of the grafted polymer. The relative radii of gyrations for mPEG, PEOZ and HPG are indicated by the arrows 
denoting the Flory radii (RF: root mean square of end-to-end length of the polymer chain) of the polymers. As illustrated, 
the side-branches of PEOZ decrease intra-chain mobility producing a larger hydrodynamic volume relative to mPEG. 
Similarly, the highly branched HPG has very limited intra-chain mobility but yields a dense steric ‘mushroom’. Modified 
from Kyluik-Price et al. [28].
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the antigen but conferring indirect camouflage) immunocamouflage of blood group antigens 
(Figure 2C). The importance of indirect immunocamouflage is significant as blood group anti-
gen proteins do not exist in isolation but are most commonly part of complex protein clusters. 
As shown, the Rh(D) protein is deeply buried within a large protein complex on the surface 
of the RBC making the direct camouflage of Rh(D) difficult. However, the indirect immuno-

camouflage of Rh(D) arising from polymers grafted to surrounding proteins (e.g., Kell protein, 
Band 3) results in the highly efficient immunocamouflage of RhD [28, 52, 55, 59].

Indeed, one of the most promising prospects of RBC immunocamouflage is in both diminishing 
the risk of Rh(D) alloimmunization and safely increasing blood inventory during emergency situ-

ations or in circumstances where Rh(D)- blood is unavailable. As shown in Figure 3A, immune rec-

ognition and phagocytosis of anti-D (RhoGAM®; Rh
o
(D) Immune Globulin (Human) RhoGAM 

Ultra-Filtered PLUS; Ortho Clinical Diagnostics)-opsonized Rh(D)+ RBC are blocked in a grafting 
concentration-dependent manner by the grafted mPEG polymer. Importantly, RhoGAM® is a 
highly purified and concentrated human-derived anti-D IgG antibody that is highly effective at 
RBC opsonization yielding Monocyte Index (MI) scores in the monocyte-monolayer assay (MMA) 
in the range of 60–100%. The RhoGAM® antibody is used clinically for the prevention of Rh 

Figure 2. Biophysical mechanisms of immunocamouflage. Panels A and B: Prevention of plasma protein (e.g., 
immunoglobulins) interaction with the cell membrane is due to both steric exclusion (shaded areas induced by 
the polymers radius of gyration; RF: Flory radii is the root mean square of end-to-end length of the polymer chain) 
and surface charge camouflage. The effects of both short chain (Panel A) and long chain (Panel B) polymers on the 
immunocamouflage of surface proteins (X, Y, Z) are schematically shown. The steric effect is maximized when chains are 
grafted at higher density, that is, with small separation between the chains (d). Importantly, antibody-antigen interaction 
is, biophysically speaking, charge-mediated. Membrane surface charge camouflage is primarily driven by polymer-
mediated extension of the shear plane (SP) toward a region of decreased surface potential (Surface Potential Gradient). 
In the absence of polymer, the inherent shear plane (SP) of a cell is typically located 1–3 nm above the surface. The 
extension of SP is proportional to the hydrodynamic thickness of the polymer layer, which in turn is governed by the 
RF of the grafted polymer. Thus, 20 kDa polymers (large RF; Panel B) provide improved charge camouflage over 2 kDa 
polymers (small RF; Panel A). Delta (Δ) is the difference in the surface potential at the shear plane of a particle modified 
with the short (∆1) versus the long polymer (∆2). The membrane proteins X, Y and Z denote blood group antigens 
extending different distances from the cell surface. Panel C: Not all proteins in the complex topology of the RBC are 
equally accessible to grafting by the activated polymer, due to either its location in the protein complex or the paucity 
of lysines (the grafting site of activated mPEG). For example, Rh(D) is deeply buried in the complex while Kell is easily 
accessible. Thus, indirect immunocamouflage maybe more critical than direct immunocamouflage (i.e., direct modification of 
Rh(D) by mPEG) for many blood group antigens. Modified from Refs. [47, 28].
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immunization, including during and after pregnancy and other obstetrical conditions or incom-

patible transfusion of Rh-positive blood. However, RhoGAM® does not fully reflect the biologi-
cal/clinical heterogeneity of anti-D alloantibodies arising in alloimmunized individuals. To assess 
the potential utility of mPEG-RBC in alloimmunized individuals, human-sourced anti-D alloan-

tibodies (N = 8) were assessed using the MMA. Of note, the naturally occurring heterogeneity of 
anti-D responses is demonstrated by the wide range in MI values when used to opsonize Rh(D)+ 

RBC (Figure 3B). Indeed, only five of eight of the alloantibodies exhibited MI values of >5% (i.e., 
potential for acute haemolytic transfusion reaction). However, as predicted by the RhoGAM find-

ings, grafting of the 20 kDa polymer (2 mM) yielded significant reductions (p < 0.01) in the MI 
values of all samples. Of the five plasma samples with MI values >5%, PEGylation resulted in 
four having MI values of <5% while the remaining sample had an MI of 5.5 ± 0.9. Moreover, 
the anti-phagocytic effect of polymer-mediated immunocamouflage of Rh(D)+ RBC was observed 

regardless of the IgG subclass of the alloantibody. It is also important to note that the serological 
score (ranging from W+ to 4+) did not correlate significantly with the MI value [59]. These findings 
are in line with previous studies that demonstrated that the antiglobulin test does not accurately 
reflect the amount of IgG bound and is, at best, only a weak predictor of RBC phagocytosis [60–63]. 
In aggregate, these findings suggest that immunocamouflaged Rh(D)+ RBC could be safely trans-

fused into Rh(D)− patients in an emergency situation.

Figure 3. Polymer size and grafting concentration governs the efficacy of D immunocamouflage and the inhibition of 
erythrophagocytosis. Panel A: Effect of polymer size and grafting concentration on MMA phagocytosis of RhoGAM-
opsonized Rh(D)+ RBC. As shown, short chain polymers (2–10 kDa) were ineffective at inhibiting erythrophagocytosis. In 
contrast, membrane modification of Rh(D)+ RBC with both the 20 and 30 kDa mPEG showed a significant (p < 0.005 at ≥0.5 
mM grafting concentration) dose dependent decrease in phagocytosis. Importantly, the 20 kDa polymer effectively reduced 
the MI values to ≤5% at grafting concentrations ≥1.5 mM. Interestingly, at equimolar concentration, the 30 kDa polymer 
was less effective than the 20 kDa polymer. Shown are the mean ± SD of a minimum of three independent experiments. 
Also shown are representative photomicrographs of an RhoGAM-opsonized Rh(D)+ MMA experiment. Oil-immersion 
light microscopy of Wright-Giemsa-stained MMA slides. Panel B: Immunocamouflage inhibits erythrophagocytosis 
of Rh(D)+ RBC opsonized with a diverse array of human anti-D alloantibodies. Similar to the findings with RhoGAM, 
polymer size is a critical factor in inducing clinically relevant immunocamouflage. Results shown are the mean ± SD for 
all eight anti-D alloantibodies tested. Also indicated are the IgG subclass of the alloantibodies. The green zone (a) indicates 

MI ≤ 5%, the clinically acceptable range for a non-significant reaction. Panel C: Positive control; multiple monocytes with 
phagocytized RhoGAM-opsonized Rh(D)+ RBC. Panel D: Shown are the same Rh(D)+ donor RBC as Panel B but modified 
with mPEG (20 kDa; 2 mM) prior to opsonization. Data derived from Li et al. [59].
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Importantly, at immunologically protective grafting concentrations, the grafted polymer does 
not affect RBC structure or function as evidenced by normal morphology, O

2
 uptake and deliv-

ery, cellular deformability or ion transport [30, 33, 34, 37, 41, 52, 55]. While virtually indistin-

guishable from unmodified cells in most aspects, one interesting difference was noted between 
unmodified and mPEG-modified RBC. Consequent to the charge camouflage of the RBC, the 
cell:cell interactions necessary for Rouleaux formation were abrogated (Figure 4). Because the 
grafted polymer camouflages the charge of the cell necessary for cell:cell interaction, Rouleaux 
formation is inhibited resulting in attenuation of RBC sedimentation and, physiologically, 
decreased low-shear viscosity (Figure 4). Importantly, the decrease in low-shear viscosity may 
make the use of stealth RBC highly suitable for patients with diseases characterized by RBC-
vaso-occlusive events (e.g., sickle cell). Importantly, RBC PEGylation inhibits both non-anti-
body (e.g., sickle cell self-aggregation) and antibody-mediated aggregation events and donor 
mPEG-RBC can serve as an efficient chain-breaker in pro-aggregation states [33].

The grafting of immunologically ‘inert’ polymers to the membrane of allogeneic RBC effec-

tively camouflages multiple non-ABO antigens from immune recognition. The combined 
actions of both steric and charge camouflage underlie the ability of the grafted polymer to 
camouflage allogeneic blood group antigens (immunocamouflage) from the recipient’s 
immune system. These immunocamouflaged (i.e., stealth) RBC may be an effective tool in 
both preventing and treating alloimmunization in the chronically transfused patient; the 
transfusion of individual patients with rare blood phenotypes; emergency situation or geo-

graphic locations (e.g., China) where Rh(D)− blood is unavailable. Moreover, immunocamou-

flaged RBCs are inexpensively and easily manufactured in the clinical setting.

Figure 4. Biophysical consequences of RBC PEGylation. Panel A: Charge camouflage of RBC is readily accomplished 
by polymer grafting and is a function of both grafting concentration and polymer size. As shown, the electrophoretic 
mobility of the human RBC was completely abrogated by the 20 kDa-activated mPEG at very low grafting concentrations. 
Mobility of the unmodified human RBC was −1.18±0.12 (µm/s)/(V/cm). Per cent change in mobility was normalized to 
the mobility of unmodified RBC. Panel B: Polymer grafting prevents cell:cell interaction (Rouleaux formation) via steric 
and charge camouflage. The loss of Rouleaux formations leads to a dramatically decreased RBC sedimentation rate. 
Panel C: Low-shear viscosity of the PEG-RBC is significantly reduced in comparison to normal control cells. Control and 
PEGylated (5 kDa mPEG) RBCs were resuspended to a 40% hematocrit in autologous plasma. Viscosity was measured 
over a range of shear rates using a Contraves LS30 low-shear viscometer (Contraves AG, Zurich, Switzerland). Data 
derived from Armstrong et al. [64]. INSERT: PEGylation of RBC alters many characteristics of the RBC. Shown on side 
(a) is the effect of antibody binding to control cells. The RBC agglutinate resulting in a potentially vaso-occlusive event 
mediated by both antibody binding and enhanced blood viscosity under low-shear conditions. In contrast, as shown 
on side (b), antibody-mediated aggregation is suppressed in the PEGylated cells, and low-shear viscosity is actually 
enhanced due to the loss of aggregation and the neutral surface charge of the modified RBC. In addition, the PEGylated 
cells do not readily interact with the vascular endothelium.
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3. Manufacturing the ‘stealth RBC’

The immunocamouflaged RBC is unlikely to be a mass-market product but rather a boutique 
blood product for the discriminating customer. Hence, on demand manufacturing of the stealth 

RBC will be the most likely scenario facing the clinician and blood provider. Fortunately, the 
manufacturing process of the stealth RBC is rapid and straightforward and requires no spe-

cialized equipment on part of the blood provider, hospital or clinic. Moreover, current labora-

tory tests exist that can, relatively rapidly (~48 h), evaluate the potential clinical utility of the 
stealth RBC in the at-risk alloimmunized patient. Crucial to the clinical use of the stealth RBC 
is the manufacturing process. The key tenet of the manufacturing process is the maintenance 
of a constant polymer:cell ratio in order to achieve a homogenous grafting of the polymers to 
the individual cells within donor RBC unit (Figure 5). If cells are under-PEGylated, they retain 

significant immunogenicity/antigenicity; if cells are over-PEGylated, the in vivo viability (i.e., 
circulation time) of the cell is compromised.

To achieve the homogeneity necessary for a clinical mPEG-RBC unit (Figure 5), two scalable 

devices (Figures 6 and 7) utilizing micro-mixing chambers (alternatively Y-connectors to 
induce turbulence and mixing) have been designed, constructed and validated to semi-auto-

mate the RBC derivatization process and minimize the risk of contamination. Both approaches 
can be done aseptically using modifications of existing blood bags and sterile docking devices. 

Figure 5. Homogeneity of polymer grafting is a critical concern. Extreme grafting levels yield mechanically unstable RBC, 
while minimally modified RBC retain significant immunologic recognition. To achieve improved grafting homogeneity, 
‘manufacturing’ processes and devices have been developed by our lab. Panels B and C: Using the semi-automated 
devices described in this chapter, RBCs are uniformly modified by the activated polymer. The uniformity of grafting was 
documented using an mPEG polymer formulation containing 1% fluorescent 20 kDa mPEG. As shown, the PEGylated 
RBCs are all fluorescently labeled showing complete derivatization with the semi-automated devices described in this 
chapter. Modified from Wang et al. [52].
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Figure 6. Schematic representation for the clinical PEGylation of a single blood unit using the Syringe Pump Method. At a 
minimum, a two-syringe pump is used. Syringe pumps able to handle four or more syringes are commercially available 
and would speed up the PEGylation process. The syringes can be of either equal or unequal volumes thereby governing 
the ratio of RBC to activated polymer. The syringe lines lead to the micro-mixing chamber (or Y-connector which will 
induce turbulence facilitating mixing). The diluted RBC are collected and re-concentrated prior to transfusion. A RBC 
washing step could be combined with the centrifugation to concentrate the RBC as desired. If desired, a RBC washing 
step can be combined with the centrifugation step to remove any unreacted polymer though the mPEG is considered 
safe for injection. Also shown are photographs of the two-syringe pump method and the final stealth RBC blood bag.

Figure 7. Schematic representation for the clinical PEGylation of a single blood unit using the Four-Channel Peristaltic 
Pump Method. Pump tubing used in Channels 1–4 can be of equal or different diameters to govern RBC dilution and the 
ratio of diluted RBC to activated polymer ratio. A RBC washing step can be combined with a centrifugation process to 
remove any unreacted polymer though the mPEG is considered safe for injection.
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The Syringe Pump Method (Figure 6) has an advantage in better controlling the hydrolysis rate 
(i.e., inactivation rate; t1/2 of 33 min for succinimidyl valerate-activated methoxypoly(ethylene 
glycol) [SVAmPEG]) of the activated mPEG as the activated polymer is prepared in smaller 
batches. The Peristaltic Pump Method (Figure 7) has the advantage of being a continuous 

flow device with fewer points of possible disruptions in blood sterility. As demonstrated in 
Figure 6, the described manufacturing devices are capable of producing a transfusable unit of 
PEGylated RBC.

RBC manufacturing and product quality control: Quality assurance of the mPEG-RBC to docu-

ment the reproducibility and homogeneity of SVAmPEG derivatization can be assessed using 
a two-phase (PEG-Dextran) partitioning system [37, 41]. The partitioning of PEGylated RBC 
in this system is governed by the ratio of PEG:Dextran, as well as by the density and size 
(m.w.; number of ethoxy units) of the grafted mPEG. In this simple assay, mPEG-RBC are 
added to an immiscible PEG:Dextran solution, rapidly mixed and allowed to separate. As 
shown, unmodified RBC preferentially partition to the Dextran or interface region while the 
PEGylated RBC preferentially partition to the PEG-rich phase (Figure 8). Importantly, both 
the automated derivatization and the purification methodologies are highly scalable and can 
be applied to existing blood bank devices and workflows.

Figure 8. Assessing the efficacy of the derivatization reaction via the two-phase PEG-Dextran partitioning system. Panel 
A: Quantification of phase separation was done via hemoglobin concentration in the PEG layer. Results are expressed as 
mean ± standard error mean (SEM). Panel B: Representative photos of phase separation of 20 kDa mPEG-RBC over 0–2 
mM grafting concentrations. Reflecting increased grafted polymer, the mPEG-RBCs show increased partitioning into 
the upper PEG layer. Photos were taken 20 min post mixing. Data derived from Bradley and Scott [41] and Kyluik-Price 
et al. [28].
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The PEGylation Recipe

PEGylation Buffer: While buffer flexibility exists, the chemistry of PEGylation via activated 
mPEG requires alkaline conditions [28, 30–58]. The formulation of the mPEG-buffer used by 
our laboratory for the PEGylation of RBC is as follows: 50 mM K

2
HPO4, 105 mM NaCl, pH 8.0.

Activated mPEG: Following extensive analyses of multiple polymer molecular weights and 
linker chemistries, 20 kDa succinimidyl valerate-activated methoxypoly(ethylene glycol) 
[SVAmPEG] has been selected as our primary polymer species. While a wide range of poly-

mer molecular weights (e.g., 2–40 kDa) have been tested, in vitro (human and mouse) and in 

vivo (mouse) studies demonstrate that the 20 kDa polymer provides the optimal immuno-

logical camouflage of the allogeneic cell while maintaining normal in vivo survival. Linker 
chemistry selection was based on the commercial availability of the polymer, the relatively 
long half-life of the activated polymer and its excellent in vitro and in vivo findings. Clinically 
compliant SVAmPEG can be purchased from Laysan Bio Inc. (http://laysanbio.com//; Arab, AL, 
USA). Because the half-life of the activated polymer upon hydration is short (t1/2 of 33 min for 
SVAmPEG), the polymer should only be solubilized immediately before beginning the graft-
ing event. Specific activated mPEG and buffer volumes for the syringe pump and peristaltic 
pump method are provided within the method schematics.

4. Evaluating the potential clinical utility of the stealth RBC

While multiple studies have demonstrated that RBC immunocamouflage can effectively block 
immune recognition of multiple blood group antigens, the diversity of alloantibodies pro-

duced to a single blood group antigen by humans is staggering. Hence, a crucial step in the 
clinical use of the stealth RBC should be evaluating the potential efficacy of the stealth cell in 
the individual patient. While one might assume that standard serological testing techniques 
would suffice, this is not the case for a variety of reasons. Primary among these reasons, and 
as shown in Figure 3C, is that the laboratory serological score does not correlate significantly 
with the MI value or the risk of an acute transfusion reaction. Indeed, multiple studies have 
demonstrated that the antiglobulin test poorly reflects the amount of IgG bound and is, at 
best, a very weak predictor of RBC phagocytosis [60–63]. This confounding finding is actu-

ally by design. Serological testing is ‘overly’ sensitive in order to detect miniscule amounts of 
bound antibody to assure the appropriate typing of an individual or to detect the presence of 
a potentially dangerous alloantibody. Another potential complication is that a large number 
of commercial testing protocols employ PEG (as either a listed or unlisted ingredient) as a 
component of the testing reagents. The reagent PEG will cause the mPEG-RBC to segregate 
as ‘PEG likes PEG’ (Figure 8B). Hence, other predictors of the potential clinical utility of the 
stealth RBC for an individual patient are needed.

Perhaps the most definitive testing approach for the potential clinical value of the stealth RBC 
is the monocyte-monolayer assay (MMA). The MMA assesses FcγR-mediated adherence and 
phagocytosis of alloantibody-opsonized donor RBC by monocytes and has been clinically 
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correlated with in vivo transfusion safety (i.e., prevention of acute transfusion reactions) and 
efficacy (24 h RBC survival) [60–62, 65–68]. The in vitro MMA is reliable, reproducible and, 
within the transfusion medicine community, is considered to be the best assay currently avail-

able for the evaluation of FcγR-mediated phagocytosis of antibody-coated human red cells, 
having more than 20 years of proven validity for the comparison of in vitro phagocytosis to in 

vivo clinical relevance.

Schematically, the MMA is described in Figure 9 (and experimentally demonstrated in 
Figure 3). The MMA examines FcγR-mediated phagocytosis in vitro using adherence-purified 
monocytes isolated from peripheral blood mononuclear cells obtained from normal volun-

teers. Blood group antigen positive RBCs are incubated with buffer (negative control) or sera 
or plasma from alloimmunized patients for opsonization, washed and overlaid on the mono-

cyte monolayer. Both donor-obtained and reagent RBC are suitable for use in the MMA. The 
MMA uses a visual readout whereby the numbers of adherent and phagocytized control and 
opsonized RBC are enumerated per 100 monocytes (MI). For validation purposes, consistent 
positive and negative controls should be used, most commonly anti-Rh(D)-opsonized Rh(D)+ 

(positive control) and Rh(D)− (negative control) human RBC (see Figure 3). The visual inspec-

tion is simplified and enhanced by the use of phase contrast microscopy. Using the MMA, MI 
values of ≤5% indicate that the donor cells can be given without risk of an overt haemolytic 
reaction. However, it is worth noting that the MMA is most predictive of acute haemolytic 
transfusion reactions and is less predictive of long-term survival of donor RBC.

Figure 9. Individualized testing of the potential clinical utility of the stealth RBC. Schematic representation of the 
monocyte-monolayer assay (MMA). (A) Untreated RBC; (B) RBC treated with control (antigen matched) serum or 
plasma; (C) RBC treated with alloimmunized serum/plasma; and (D) PEGylated RBC treated with alloimmunized 
serum/plasma. Representative photomicrographs for panels C and D are shown in Figure 3.
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By using the MMA, the potential efficacy of RBC PEGylation can be done on an individu-
alized basis. The probable success of the stealth RBC transfusion can be further enhanced 
by serologically selecting (or even better MMA testing) the best possible matches from the 
donor RBC inventory so as to minimize the risks of additional complications. Once the sero-
logical or MMA testing of the donor blood unit has been done, the unit can be PEGylated 
as described then tested against the individual’s alloantibodies via the MMA prior to trans-
fusion into the recipient. However, the identification of the donor unit(s), PEGylation and 
MMA testing does require 48–96 h lead time. Hence, identification of potential patients 
should be done as early as possible to assure the availability to source appropriate polymer 
stock, prepare the PEGylation device and identify and test possible donor units. Concurrent 
with the evaluation of the potential clinical value of the stealth RBC, the physician/transfu-
sion service must also receive institutional and governmental approval for their use.

5. Institutional and governmental approval for patient use

Prior to the actual clinical use of the stealth RBC in a seriously ill patient, compassionate use 
approval must be obtained from both the hospital Research Ethics Board (REB; or equivalent) 
and the appropriate governmental agencies (e.g., in Canada, Health Canada). This is likely to 
be a physician-driven process done in conjunction with the hospital's transfusion service and/
or blood provider. Key to these requests is the need to clearly cite the lack of, or very limited 
availability, of suitable donor RBC. Once institutional approval has been obtained, the hospital 
REB would likely lead the interaction with the appropriate governmental agency (e.g., Health 
Canada) regarding an Investigative New Drug (IND) submission. For compassionate use in a 
single patient who would be likely to die in the absence of a transfusion, a formal IND submis-
sion may or may not be necessary. These steps will, obviously, change from country to country.

One question likely to be raised by the REB is whether the proposed mPEG-dosing is safe. The 
answer to this important question is, at least in part, addressed by recent Phase I–III clinical trials 
of PEGylated human haemoglobin (PEG-Hb; Sangart, San Diego, CA, USA) [69–73]. These clini-
cal trials have infused humans, at the highest dosing schedule, with up to 8.33 ml/kg of PEG-Hb. 
At this dosing, the typical male volunteers (180 lbs/81.8 kg) received 680 ml of the PEG-Hb solu-
tion as a single dose, an infusion of ~25 g of PEG. Importantly, no adverse effects were noted 
in any of the human volunteers receiving this dose. Furthermore, in animal studies (e.g., rats), 
PEG-Hb was safely infused at a single adjusted dose exposure of to 46 g of PEG-Hb [74].

6. Conclusion

Grafting of immunologically ‘inert’ polymers to the membrane of allogeneic RBC can effec-
tively camouflage non-ABO antigens from immune recognition. These immunocamouflaged 
(i.e., stealth) RBCs may be an effective tool in both preventing and treating alloimmuniza-
tion in the chronically transfused patient; the transfusion of individual patients with rare 
blood phenotypes; for emergency situation or geographic locations (e.g., China) where 
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RhD-negative blood is unavailable. Importantly, several characteristics of the immuno-
camouflaged RBC may also make them highly suitable in patients/diseases characterized 
by RBC-mediated vaso-occlusive events (e.g., sickle cell) consequent to the polymer-medi-
ated reduction in low-shear viscosity. For the hospital or clinic, the immunocamouflaged 
RBCs are inexpensively and easily manufactured using commonly available equipment and 
existing blood bags. Moreover, the potential clinical utility of the stealth RBC can be evalu-
ated for the individual patient using the clinically validated monocyte-monolayer assay in 
which antigen-mismatched RBCs are PEGylated and then opsonized with the patient’s own 
alloantibody.
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