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Abstract

This chapter is devoted to various interactions between the graph theory and mathe-
matical physics of disordered media, studying spectral properties of random quantum
Hamiltonians. We show how the notions, methods, and constructions of graph theory
can help one to solve difficult problems, and also highlight recent developments in
spectral theory of multiparticle random Hamiltonians which both benefit from graph-
theoretical methods and suggest original structures where new insights are required
from various areas of mathematical physics in a broad sense.

Keywords: isoperimetric estimates, Cheeger bound, Lifshitz tails, Anderson
localization, multiparticle localization, quantum graphs

1. Introduction

The proposed chapter focuses on the methods and applications of the graph theory in the area

of quantum transport on combinatorial and metric (often referenced to as “quantum”) graphs.

It is well known that perfectly periodic potentials in Euclidean spaces or on periodic lattices

create favorable conditions for nonlocalized solutions of Schrödinger and/or wave equations. In

quantum physics, this results in transport of quantum particles, for example, electrons or pho-

nons. However, after the seminal, Nobel prize winning work [1] published by PhilipW. Anderson

in 1958, it has been realized by physicists that the propagation of quantum particles in an

imperfect environment, modeled by a random or almost periodic electrostatic or magnetic

potential, can be significantly inhibited, to the point where mobile quantum particles, e.g.,

electrons, are localized: their wave functions decay exponentially away from some loci— their

respective localization centers. In many applications, the media where quantum particles

propagate are not periodic crystals, but have instead a structure of more or less complex

graphs formed by atoms, and therefore are treated as disordered media. The structural disor-

der can be complemented by a parametric one, e.g., in the context of weighted graphs where
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the canonical graph Laplacian ΔΓ on Γ is modulated by variable weights assigned to the edges.

In general terms of the spectral theory of unordered structures, this is an instance of the “off-

diagonal” disorder. Furthermore, it is important to analyze the spectral properties of the discrete

analogs of the Schrödinger operators �ΔΓ þ V on a graph Γ, where V is a fixed or random real-

valued function on Γ.

The recent wake of interest to the nanosystems andmolecular devices attracted many researchers

to such models, and numerous intriguing problems in this area still remain challenging andwide

open. It has been understood that the classical aspects of the graph theory, such as isoperimetric

estimates (particularly, the Cheeger bounds) and deep results of the spectral theory of graphs, are

of great importance to the localization/delocalization processes on graphs other than periodic

lattices embedded in a Euclidean space.

Furthermore, the most recent developments in the spectral theory of disordered quantum sys-

tems, initiated independently and simultaneously by physicists (cf., e.g., [2]) and mathematicians

(cf. [3–6], emphasized the role of interparticle interaction which had been consciously and explic-

itly neglected in the pioneering works due to the complexity of the analysis involved, although P.

W. Anderson himself was concerned about possible effects of interaction on the fundamental

properties of the quantum transport. Following the first mathematical works in this direction,

the notion of a multiparticle quantum graph has been recently introduced by Sabri [7].

Summarizing, the proposed chapter provides to the reader an overview of synthetic techniques

and results where the traditional problem of the combinatorial and spectral graph theory is

intertwined with complementary structures, ideas, and methods of functional analysis and

quantum mechanics, in response to the new challenges in modern technology.

2. Isoperimetric bounds, spectral gaps, and quantum localization

The integer lattices Zd, d ≥ 1, endowed with the usual graph structure constitute a very particular

class of connected graphs. The spectra and (generalized) eigenfunctions of their canonical graph

Laplacians are easy to find, due to the commutative group structure of these lattices. The lattice

Laplacian Δ
Z
d is the canonical Laplacian on Z

d endowed with the graph structure where the

edges are formed by the pairs ðx, yÞ with Euclidean distance jx� yj2 ¼ 1. It follows from the

Fourier analysis on the additive group Z
d that the spectral measure of Δ

Z
d is absolutely continu-

ous (with respect to the Lebesgue measure). The graph Laplacians ΔΓ are defined as nonpositive

operators, but in mathematical physics one considers �ΔΓ instead. The spectrum of �Δ
Z
d is

easily computed, knowing that its Fourier image is the operator of multiplication by the function

p ¼ ðp1,…, pdÞ↦
X

d

j¼1

ð1� cos pjÞ: ð1Þ

The generalized eigenfunctions are given by the respective Fourier harmonics (plane waves)

x↦ exp
�

iðp, xÞ
�

, where ðp, xÞ ¼ p1x1 þ…þ pdxd. In physics, one often works with finite
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cubes, where the eigenfunctions of the respective Laplacian are combinations of plane waves.

Particular questions concerning the Laplacians relative to such finite graphs depend upon

specific intended applications. A number of situations give rise to the quantitative analysis of

a few of the lowest eigenvalues of ð�ΔΓÞ, numbered in increasing order. In particular,

the spectral gap and the analytic form of the eigenfunctions with eigenvalues λ0 and λ1,

known explicitly for the rectangles, are more difficult to analyze for general graphs. One

possible question is about the size of the gap λ1 � λ0: it features a power-law decay as the

size L of the cube ½1,L�d grows, but what can one say about the spectral gap for less regular

graphs? Furthermore, it is readily seen that the eigenvalue λ1 is degenerate on the cube, and

has multiplicity equal to the dimension d: the respective eigenfunctions are the lowest-fre-

quency harmonics, related to the global geometry of the cube, but the situation for general

graphs is more complex.

Before going to the answers, provided by the graph theory for a large class of nonperiodic

graphs, we give some motivations coming from the spectral theory of random operators.

One remarkable phenomenon relative to disordered media was discovered in the 1960s by

physicist I.M. Lifshitz [8] and colorfully called in the physics and mathematics communities

“Lifshitz tails”: the eigenvalue distribution of the random operators HV ¼ �Δþ VðωÞ decays

extremely as the energy E approaches the lower edge of spectrum.

In this chapter, we always assume the random potential to take i.i.d. (independent and identi-

cally distributed) values. In addition, we assume the common probability distribution of these

random values to admit a bounded probability density.

We shall use the following notions and notations. Given a potential V : Z
d ! R, we consider

the discrete Schrödinger operator HV ¼ �Δþ V, where Δ is the graph Laplacian on the integer

lattice Z
d. Further, for each integer L ≥ 1 and a lattice point x denoted by BðL, xÞ the cube

centered at x of side length 2L, and let HL be the Schrödinger operator �ΔBðL,0Þ þ V in the cube

BðL, 0Þ; here, �ΔBðL,0Þ is the canonical graph Laplacian in BðL, 0Þ with the graph structure

inherited from the integer lattice, where the edges are given by the pairs of nearest neighbours

in the Euclidean distance. Next, denote by λk the eigenvalues of HL numbered in increasing

order, and introduce the finite-volume eigenvalue counting function

NðE, LÞ ¼
1

jBðL, 0Þ
cardfk : λk ≤Eg, E∈R: ð2Þ

Definition 1. The limiting eigenvalue distribution function NðEÞ of the operator HV is the limit

NðEÞ :¼ limL!∞NðE, LÞ, ð3Þ

whenever it exists. Otherwise, we say that the limiting distribution function does not exist.

In the case where a fixed potential V : Z
d ! R is replaced by a sample VðωÞ of a random field

on the lattice, the operator HV ¼ HVðωÞ also becomes random.
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In physical terminology, widely used also in mathematical physics of disordered media, NðEÞ

is usually called the integrated density of states (IDS). The existence of the above limit is not

obvious and, generally speaking, the limit may not exist. However, the existence of NðEÞ for

any energy can be established by the methods of ergodic theory in a particular, but very rich

and useful for physical applications class of ergodic operators (including all i.i.d. potentials), as

well as for the periodic and almost-periodic potentials. In fact, the latter classes can be incorpo-

rated into the general scheme of ergodic operators; cf., e.g., the monographs [9, 10]. Moreover,

the IDS for ergodic potentials is nonrandom; in physical terminology, IDS is a “self-averag-

ing” quantity. Simply put, spatial average coincides with the ensemble average for ergodic

operators.

Whenever the potential V of the Schrödinger operator HV ¼ �Δþ V is lower bounded, e.g.,

nonnegative, HV , and its spectrum SpecðHVÞ have the same property, since�Δ is nonnegative.

Therefore, E0 :¼ inf SpecðHVÞ > �∞. In physics, E0 is called the ground state energy. A

number of important quantities and phenomena are related to the ground state energy and

also to the behavior of the IDS as the energy E approaches E0. Lifshitz [8] discovered that for a

large class of Hamiltonians with random potential energy, including random Schrödinger

operators HV ¼ �Δþ VðωÞ on a lattice, the IDS decays very fast as E ↓E0: for some C1, C > 0

NðEÞ � C1exp �CðE� E0Þ
�d
2

� �

: ð4Þ

Lifshitz tails have numerous important ramifications in theoretical and experimental physics.

They also result in a nonperturbative onset of the Anderson localization on lattices for any,

arbitrarily small amplitude of the random potential VðωÞ. Away from the spectral edge, the

proofs of localization require a sufficiently large amplitude of VðωÞ; moreover, it is widely

believed that in dimension d ≥ 3, in the models where the random potential gVðωÞ has a

sufficiently small amplitude jgj, there are intervals I of energy where the corresponding general-

ized eigenfunctions (“extended quantum states”) are not square-summable, and the spectral

measure has in I a nontrivial absolutely continuous component. In simpler terms, there is a

nontrivial quantum transport in some energy zones.

A substantial progress has been achieved in the direction of proofs of localization near the

spectral edge (or edges). For a long time, most of the efforts have been made in the analysis of

lattice Hamiltonians HV ¼ �Δþ VðωÞ. Recently, it has been shown in Ref. [11] that a number

of results obtained on the integer lattices can be extended to much more general graphs of

polynomial (or, more generally, subexponential) growth. The key point is the availability of

lower bounds on the spectral gap in terms of the Cheeger’s constant of the graph.

Consider a lattice cube B ¼ BðL, 0Þ with the graph structure inherited from the lattice, and the

random lattice Schrödinger operator HB,VðωÞ ¼ �ΔB þ VðωÞ on it. The starting point of the

localization analysis of this finite-volume Hamiltonian is the estimate of the probability to have

some eigenvalues of HB,VðωÞ in a small interval IE ¼ ½E0,E0 þ E� near the spectral edge E0. This

is closely related to the Lifshitz tails. One needs a finite-volume analog of the limiting Lifshitz

asymptotics, but for the localization analysis, one can settle for a sufficiently strong, albeit not

necessarily sharp, upper bound on the probability
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P
�

∃Ej ∈ Spec
�

HB,VðωÞ
�

: Ej ∈ IE

�

: ð5Þ

Now recall Temple’s inequality [12].

Proposition 1. Let A be a self-adjoint operator in a finite-dimensional Hilbert space H, and

E0 ¼ inf SpecðAÞ be a simple eigenvalue. If a vector ψ with unit norm satisfies 〈ψ, Aψ〉 < E1 :¼ inf

SpecðAÞ\fE0g, then

E0 ≥ 〈ψ, Aψ〉 �
〈ψ, A2ψ〉 � ð〈ψ,Aψ〉Þ2

E1 � 〈ψ, Aψ〉
:

Now one can see the importance of the size of the lowest spectral gap, η ¼ E1 � E0. As was

mentioned above, η is easily calculated explicitly for the Laplacians in lattice rectangles, but of

course there is no universal formula for general finite graphs. The following result was

obtained in Ref. [11].

Proposition 2. Let be given a finite connected subgraph G of a locally finite countable connected graph

Γ satisfying the following condition: there exists some real constants d ≥ 1 and C > 0 such that any ball

BðL, xÞ⊂ Γ of radius L ≥ 1 has cardinality

jBðL, xÞj ≤CLd: ð6Þ

Then

E1ð�ΔGÞ ≥ cdjGj
�2, cd > 0:

Apart from the canonical negative Laplacian ð�ΔGÞ, it is often more convenient to work with

its modified variant LG defined by

ðLG f ÞðxÞ ¼ ðnGðxÞÞ
�1=2 ððnGðxÞÞ

�1=2 f ðxÞ � ðnGðyÞÞ
�1=2f ðyÞÞ ð7Þ

where ðnGðxÞ and ðnGðyÞ are the coordination numbers of the vertices x and y, respectively:

nGðxÞ ¼ card
�

Bð1, xÞ\fxg
�

. The coordination numbers are nonzero, whenever the graph is

connected and has more than one vertex. Below we quote the bounds obtained for the modi-

fied Laplacian, but, up to some constants, they remain valid for the original Laplacian.

Definition 2. The Cheeger’s constant of a finite connected graph G is the following quantity:

hðGÞ :¼ minG¼W⊔Wc
j∂Wj

min½volðWÞ,volðWcÞ�
,

where the minimum is taken over all nontrivial partitions G ¼ W ⊔W c of the graph G into disjoint

subgraphs W and its complement Wc.

Denote by μkðGÞ, k ≥ 0, the eigenvalues of LG numbered, as their counterparts λkðGÞ, in increasing

order. Then one has the following results (cf. [13]).
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Proposition 3. Let be given a finite connected graph G of diameter DG :¼ diamG. Let μ1ðGÞ be

the first nonz ero eigenvalue of the modified graph Laplacian LG, and hðGÞ the Cheeger’s

constant of G. Then

min

�

hðGÞ
�2

2
,

1

DGvolðGÞ
,

2
�

volðGÞ
�2

2

6

4

3

7

5
≤μ1ðGÞ ≤ 2hðGÞ: ð8Þ

For a finite connected subgraph G⊂ Γ satisfying the growth condition in Eq. (7), one has

DG ≤ jGj � 1 and volðGÞ ≤CdjGj. Combined with the inequalities in Eqs. (7) and (9), this results

in the following lower bound for E1ðGÞ:

E1ðGÞ ≥ cdjGj
2: ð9Þ

The upper bound by 2hðGÞ is not quite explicit in general (this depends of course on the

specific problems at hand), but for finite connected subgraphs G⊂Γ one can prove that

limjGj!þ∞ μ1ðGÞ ¼ 0 (cf. [14]). Now we are ready to prove the following result.

Lemma 1. Let G be a finite connected subgraph of a graph Γ satisfying the growth condition in

Eq. (6), and 0 < η ≤ 1
6λ1ð�ΔGÞ. Let V be a nonnegative real function on G, and set

VηðxÞ :¼ min½VðxÞ, 2η�, HG ¼ �ΔG þ V: Then E0ðHGÞ ≥
1
2 jGj

�1
X

x∈G
VηðxÞ:

Proof. Consider the normalized eigenfunctions of ΔG with the eigenvalue E0, viz. ψ0 ¼ jGj�1=21G.

Next, introduce an auxiliary operator K ¼ �ΔG þ Vη. By nonnegativity of the functions Vη ≤V,

we have the inequalities (in the sense of the associated quadratic forms)

�ΔG ≤K ≤ � ΔG þ V ¼ HG ð10Þ

so that by the min-max principle, we have E0ðHGÞ ≥E0ðKÞ and E1ðHGÞ ≥E1ðKÞ ≥E1ð�ΔGÞ. Since

E0 ¼ 0, it follows that ΔGψ0 ¼ 0, and therefore,

〈ψ0, Kψ0〉 ¼ 〈ψ0, � ΔGψ0〉 þ 〈ψ0, Vηψ0〉 ¼ 〈ψ0, Vηψ0〉

¼ jGj�1
X

x∈G

VηðxÞ ≤ 2η ≤
1

3
λ1ð�ΔGÞ ≤

1

3
λ1ðKÞ

ð11Þ

Thus, we have Temple’s inequality to ψ0, K and E1ðKÞ. Note first that by ΔGψ0 ¼ 0, one has

〈ψ0, K
2ψ0〉 ¼ 〈ψ0, ðΔGÞ

2ψ0〉 þ 〈ΔGψ0, Vηψ0〉þ 〈Vηψ0,ΔGψ0〉 þ 〈ΔGψ0, ðVηÞ
2ψ0〉

¼ 〈ΔGψ0, ðVηÞ
2ψ0〉:

Now apply Temple’s inequality, taking account of the above identity:
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E0ðHGÞ ≥E0ðKÞ ≥ 〈ψ0, Kψ0〉 �
〈ψ0, ðVηÞ

2ψ0〉

E1ðKÞ � 〈ψ0, Kψ0〉

≥ jGj�1
X

x∈G

VηðxÞ �
1

1�
1

3

� �

E1ðKÞ

jGj�1
X

x∈G

�

VηðxÞ
�2

≥ jGj�1
X

x∈G

VηðxÞ � jGj�1
X

x∈G

VηðxÞ

1

3
E1ðKÞ

2

3
E1ðKÞ

≥
1

2
jGj�1

X

x∈G

VηðxÞ: □

Lemma 2. Consider a nonnegative i.i.d. random field Vðx,ωÞ on a locally finite graph Γ

satisfying the growth condition in Eq. (7), with the common marginal probability distribution

function FðtÞ :¼ P{Vðx,ωÞ ≤ t}, and assume the following:

1. There exist arbitrarily large L∈N such that any ball BðL, xÞ⊂Γ can be partitioned into

connected graphs Gi with L
δ
12 ≤ jGij ≤L

1=12, for some δ∈ ð0, 1Þ.

2. Fðtþ sÞ � FðtÞ ≤Csβ for some β∈ , C > 0 and all t∈R, s > 0;

3. infft∈R : FðtÞ > 0g ¼ 0

Then for any positive integer n, there exists a finite connected subgraph G⊂Γ with G ∨ ≥ n and

satisfying the following spectral bound:

P E0ðHGÞ ≤ jGj
�3

n o

≤ exp �
1

8
jGj

� �

ð12Þ

Proof. Using the Cheeger bound for the first nonzero eigenvalue, we have

E1ð�ΔGÞ ≥ cdjGj
�2, cd > 0: ð13Þ

Let ηG ¼ cd
6 jGj

�2, then 2ηG ≤
1
3E1ð�ΔGÞ, hence we can use η ¼ ηG and get

E0ðHGÞ ≥
1

2
jGj�1

X

x∈G

Vηðx,ωÞ: ð14Þ

The value ηG can be made arbitrarily small by taking the cardinality of the graph G large

enough, and by assumption on continuity of the probability distribution function FV , for ηG
sufficiently small we have FVðηGÞ ≤ 1=4. Recall that the values of the random potential Vðx,ωÞ

are i.i.d., and so are Vηðx,ωÞ, since they are functions of i.i.d. r.v., so the probability for the

sample mean of a large number of i.i.d. random variables to take a value away from the

expectation can be assessed with the help of the large deviations theory. Specifically, for any

n ≥ 1 and i.i.d. r.v. ξ1,…, ξn, for any η > 0 such that Pfξ1 ≤ 2ηg ≤ 1=4, one has
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P
1

n

Xn

i¼1
min½ξi, 2η� ≤ η

� �

≤ exp �
n

8

� �

ð15Þ

(see the details in Ref. [11]). Furthermore, we have jGj�3
≤

cd
6 jGj

�2 for jGj large enough. Now

the lower bound in Eq. (13) combined with Eq. (18) proves the claim:

P E0ðHGÞ ≤ jGj
�3

n o

≤P E0ðHGÞ ≤
cd
6
jGj�2

n o

¼ P E0ðHGÞ ≤ ηG
� 	

P
1

jGj

X

x∈G
min½Vðx,ωÞ, 2ηG� ≤ ηG

� �

≤ exp �
1

8
jGj

� �

: □

Theorem 1. Assume (W). There exist some δ > 0 and arbitrarily large balls BðL, xÞ such that

P E0

�

HBðL,xÞ

�

≤ L�1=4
n o

≤ exp
�1

16
Lδ=12

� �

: ð16Þ

Proof. Fix a vertex x∈ Γ. By assumption (i), there are arbitrarily large L such that the ball BðL, xÞ

can be partitioned into connected graphs Gi with L
δ
12 ≤ jGij ≤MðL, xÞ ≤ L1=12. The operator ð�ΔGÞ

admits the following lower bound in the sense of quadratic forms:

�ΔG ≥⊕
MðL,xÞ
i¼1 ð�ΔGi

Þ: ð17Þ

Since V is a multiplication operator, we also have

HG ≥⊕
MðL,xÞ
i¼1 HGi

: ð18Þ

Observe that by (i), L�1=4
≤ jGij

�3
≤L�δ=4. Owing to Lemma 1, we conclude that

P E0

�

HBðL,xÞ

�

≤L
�1
4

n o

≤P min
i

E0ðHGi
Þ ≤ L

�1
4

� �

≤MðL, xÞmax
i

P E0ðHGi
Þ ≤ jGij

�3
n o

≤CðdÞLd max
i

exp �
1

8
jGij

� �

≤CðdÞLd exp �
1

8
L

δ
12

� �

≤ exp �
1

16
Lδ=12

� �

,

provided that L is sufficiently large. □

Now we give an application of the above result, which was the main motivation in Ref. [11],

and explain how the bounds for the eigenvalues of the graph Laplacians give rise to the decay

of eigenfunctions. Due to the size limitations of the present chapter, we treat the Green’s

functions in finite cubes, but the decay of the latter is important in itself, for physical applica-

tions, and it is known to imply the decay of eigenfunctions (cf. [10]). The decay of the Green’s

functions is established by the so-called multiscale analysis (MSA), an inductive scaling
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algorithm which we will sketch now (details can be found in [9, 10]). First, fix some notations

and give some definitions. Given a ball B ¼ BðL, uÞ⊂Γ and the operator HB ¼ �ΔB þ V, we

denote by GBðEÞ its resolvent operator HB, and by GBðx, y, EÞ, x, y∈B, the matrix elements of

the resolvent (usually called Green functions) in the standard orthonormal delta-basis formed

by the single-site indicator functions 1x. Further, given a ball B⊂Λ inside a larger connected

subgraph Λ⊂Γ, the Green functions satisfy an inequality, often called Simon-Lieb inequality

(sli), easily following from the second resolvent identity: for any x∈B and y∈Λ\B, one has

jGΛðx, y, EÞj ≤
X

ðv,v0Þ∈ ∂B
jGBðx, v, EÞjjGΛðv

0

, y, EÞj ð19Þ

Since jBðL, uÞj ≤CdL
d, and the coordination numbers are uniformly bounded by Cd1

d ¼ Cd, we

have j∂Bj≤C2
dL

d, so the above GRI implies

jGΛðx, y, EÞj ≤C
2
dL

dmaxv∈ ∂�B jGBðu, v, EÞjmaxv0 ∈ ∂þB jGΛðv
0, y, EÞj ð20Þ

Here, x is an arbitrary point of B ¼ BðL, uÞ, but we will be mostly interested in the case where

x ¼ u, so the first maximum in the above RHS becomes a characteristic of the ball B.

A simple but important observation is that when q :¼ C2
dL

dmaxv∈∂�B jGBðu, v, EÞj < 1, we have

for the function f : x↦jGΛðx, y, EÞj a subharmonic-type inequality:

0 ≤ f ðxÞ ≤ qmaxv0 :dðx,v0 Þ¼Lþ1f ðv
0

Þ, 0 < q < 1: ð21Þ

As long as all points v0 at distance Lþ 1 from x are centers of L-balls with the same

“subharmonic” property, the GRI can be iterated. If n steps of iteration can be performed, and

kf k
∞
≤M for some M < ∞, then the value f ðxÞ admits a small upper bound by Mqn.

Definition 3. Given real numbers E and m > 0, a ball B ¼ BðL, xÞ is called ðE,mÞ-nonsingular

(ðE,mÞ-, NS, in short), if for all y∈∂�B

C2
dL

dmaxv∈∂�BjGBðu, v, EÞj ≤ exp
�

� aðm, LÞL
�

ð22Þ

with aðm, LÞ :¼ mð1þ L
�1
8 Þ. Otherwise, it is called ðE,mÞ-singular (ðE,mÞ-S).

The main result of Ref. [11] is the following

Theorem 2. There exist δ > 0, an interval I ¼ ½0, E��with E� > 0, and an integer L� such that for

all E∈ I and L ≥ L� one has

PfBðL, xÞisðE,mÞ � Sg ≤ e�Lδ :

We shall need a positive number β∈ ð0, 1Þ; t suffices to set β ¼ 1=2, which will be assumed

below, but for clarity, sometimes the parameter β will be used in its symbolic form.

We denote by SpðHB,VÞ the spectrum of the operator HB,V.
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Definition 4. Given an operator HB,V ¼ �ΔB þ V in a ball B ¼ BðL, xÞ, this ball is called

E-nonresonant (E-NR, in short), if dist
�

SpðHB,VÞ
�

, E ≥ e�Lβ , and E-resonant (E-R), otherwise.

Clearly, if a ball is E-NR, the resolvent is well-defined at the energy E, and the modulus of all

the respective Green functions are upper bounded by eL
β

, since the finite-dimensional operator

HB,V is self-adjoint. Probabilistic bounds on dist
�

SpðHB,VÞ
�

, E for random operators are tradi-

tionally called Wegner bounds, due to the original work by Wegner [15] who established the

first general bound of that kind.

Lemma 3 (Wegner estimate). Assume that the random potential of the operator HB,VðωÞ ¼ �ΔB

þVðωÞ is i.i.d. and the commonmarginal probability distribution of Vðx,ωÞ admits a probability

density bounded by some CW < ∞. Then for any s∈ ½0, 1�

Pfdist
�

SpðHB,VÞ
�

, EÞ ≤ sg ≤CW jBjs: ð23Þ

Definition 5. Given an operator HB,V ¼ �ΔB þ V in a ball B ¼ BðLkþ1, xÞ, this ball is called

ðE,mÞ-bad if it contains at least two nonoverlapping ðE,mÞ-S balls of radius Lk, and ðE,mÞ-

good, otherwise.

Lemma 4. If a ball BðLkþ1, xÞ is E-NR and ðE,mÞ-good, then it is ðE,mÞ-NS.

Sketch of the proof. The claim is easily obtained by iterating the Simon-Lieb inequality (SLI) and

using the hypothesis of ðE,mÞ-goodness; the latter guarantees that in the course of iterated

applications of the GRI, one can stumble on an ðE,mÞ-S ball of size Lk at most once. There may

be no singular ball inside BðLkþ1, xÞ, then the subharmonic-type inequalities easily provide an

exponential decay from the center to the boundary of the ball. Furthermore, if there is one

singular Lk ball, one can approach it from the center and from the boundary, using the SLI on

the first or on the second spatial argument of the Green function. The “wasted” distance is of

order or OðLkÞ, so an elementary calculation provides the desired decay bound of the Green’s

functions. Technical details can be found in Ref. [16], but it is worth emphasizing the crucial

role of the “nonresonance” hypothesis: as was explained, an iterated use of the subharmonic-

type inequality in Eq. (21) only gives the upper bound f ðxÞ ≤ qnkf k
∞
, which is absolutely useless

without an explicit control of the sup-norm of the function f , and in our case, one has the

functions f : x↦jGΛðx, y, EÞj.

Theorem 2 can be derived from the following inductive statement.

Theorem 3. Introduce the following notations: for each k ≥ 0, let

Pk ¼ supx∈ Γ PfBðLk, xÞisðE,mÞ � Sg, ð24Þ

Qk ¼ sup
x∈ Γ

P{BðLk,xÞ is E� R}: ð25Þ

Assume that P0, Q0 ≤ e
�Lδ with 0 < δ < β ¼ 1=2, and
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ðYL0Þ
δ
≥ 4ln

�

2Cdð2YL0Þ
d
�

, ð26Þ

Then for all k ≥ 0 one has Pk ≤ e
�Lk

δ

.

Sketch of the proof. We proceed by induction, starting with the hypothesis P0 ≤ e
�Lk

δ
. Assume the

required bound holds for some k ≥ 0, then we have to prove it for the balls of size Lkþ1. By

Lemma 4, if a ball BðLkþ1, xÞ is ðE,mÞ-S, then either it is E-R, or it is not ðE,mÞ-good, i.e.,

contains at least two disjoint balls BðLk, u
0Þ, BðLk, u

00Þ which are ðE,mÞ-S. The number of

possible pairs ðu
0
, u

00
Þ inside BðLkþ1, xÞ is bounded by 1

2C
2
dL

2
kþ1, and the probability for each pair

BðLk, u
0
Þ, BðLk, u

00Þ to be ðE,mÞ-S is bounded inductively by Pk ≤ e
�Lk

δ
. Thus, the probability of

existence of at least one such pair is upper-bounded by

1

2
C2
dL

2
kþ1P

2
k ≤

1

2
C2
dL

2
kþ1e

�2Lδk :

Further, the probability for the ball BðLkþ1, xÞ to be E-R is upper-bounded with the help of the

Wegner estimate from Lemma 111, without induction:

Qkþ1 ≤CWC2
dL

d
kþ1e

�L
β

kþ1 , where β ¼
1

2
> δ:

Therefore,

Pkþ1 ≤
1

2
C2
dL

2
kþ1e

�2Lδk þ CWC2
dL

d
kþ1e

�L
β

kþ1 ð27Þ

Now the claim follows by a straightforward, albeit somewhat cumbersome calculation, mak-

ing use of the assumed geometrical condition in Eq. (29). The details can be found in Ref. [16].

Theorem 3 shows that if on some scale L0 the Green functions in the balls of radius L0 decay—

with a sufficiently high probability—exponentially fast from the center to the boundary of the

ball, then the same phenomenon is reproduced, with ever higher probability, on any scale

Lk ! þ∞. Such a decay is akin to that of a wave function of a quantum particle in a classically

prohibited space where the energy of the particle is below the potential “barrier,” so there is a

powerful mechanism, originally discovered by P. W. Anderson in 1958, which reproduces the

local tendency of a quantum particle to localization in the disordered environment on any

scale. The main problem concerns the mechanisms creating such a tendency for localization.

This is where we turn to the spectral analysis in the balls BðL0, xÞ and seek estimates for the first

nonzero eigenvalue of the graph Laplacian in BðL0, xÞ.

Indeed, if we restrict our analysis to the interval of small positive energies (assuming the

potential is nonnegative; otherwise we can make a spectral shift), then it is clear that for all

energies E below the spectrum of the operator GB,Vðx, y, EÞ must decay exponentially with

respect to the distance jx� yj, due to the above-mentioned “under-the-barrier” decay well-

known from the elementary exercises in quantum mechanics. Mathematically, there is actually

a more general result, the Combes-Thomas estimate [17] which applies not only to the values E

Spectra and Quantum Transport on Graphs
http://dx.doi.org/10.5772/intechopen.68480

145



strictly below the spectrum of HB,V , but all E in the resolvent set, i.e., simply away from the

spectrum. Specifically, fix an operator HB,V relative to a ball BðL, uÞ, and let E∈R satisfy

dist
�

E, SpðHB,VÞ ≥ η
�

. There exist universal constants C,C
0

> 0 such that for all x, y∈BðL, uÞ it

holds that

jGB,Vðx, y, EÞj ≤
C

0

η
expð�Cηjx� yjÞ: ð28Þ

Now all the pieces of the puzzle find their place:

• Using the isoperimetric spectral estimates combined with the Temple inequality, we can

find a sufficiently small energy interval ½E, E� þ η�, with E�, η > 0, such that in large balls

BðL0, uÞ a random potential takes a very low average value with a very small probability,

so that it is highly unlikely for HB,VðωÞ to have its lowest eigenvalue below E� þ η.

• Restrict the energy interval to I� :¼ ½E, E��; then for all E∈ I� we have dist
�

E, SpðHB,VÞ ≥ η
�

,

so the Combes-Thomas estimate in Eq. (31) applies and guarantees a fast decay of the

Green functions from the center to the boundary of the ball BðL, Þ. Notice that we can have

η lower bounded by a fractional power of L. Indeed, Eq. (19) allows us to take η ¼ L�1=4,

and the probability for such a bound to hold is at least 1� e�δ=12, in notations of Eq. (19).

• We thus have, in a tiny interval of energies close to the bottom of the spectrum, the

starting hypothesis of the scale induction fulfilled. Now the roll the induction and prove

exponential decay with high probability at any scale Lk, k ≥ 0.

Once again, it is to be stressed that it is a graph-theoretic spectral estimate that makes this story

possible, and the presented phenomena take place for a rich class of graphs, much larger than

just periodic lattices. This general estimate is a far-going replacement for the elementary

consequences of the Fourier analysis on Zd.

Summarizing, the problem of computing exact asymptotics, or at least sharp upper/lower bounds on the

limiting distribution function of the eigenvalues for the operators HB,VðωÞ on various classes of graphs

is of course much more general and important than one particular application to the Anderson localiza-

tion presented above. This if often a difficult problem, and the wealth of knowledge and intuition

accumulated in the spectral graph theory would be very welcome to this area of mathematical physics.

3. Symmetric powers of graphs and spectra of fermionic systems

3.1. Motivation and preliminaries

Now we turn to another problem of spectral analysis of quantum Hamiltonians of disordered

systems. The presentation will be less technical, and the main message is that the graph theory

provides here both an adequate language and technical tools allowing one to treat efficiently

difficult problems arising in the recently developed multiparticle localization theory; some of

these problems are still open and challenging.
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In quantummechanics, stationary states of a system of several quantum particles are described

by the eigenfunctions of their respective Hamiltonians acting in subspaces of either symmetric

or antisymmetric functions ΨðxÞ, x ¼ ðx1,…, xNÞ, where N ≥ 1 is the number of particles, and

each argument xj runs through the single-particle configuration space. The particles described

by antisymmetric functions are called fermions, and those described by symmetric functions

are called bosons. Physically speaking, the particles evolve in the three-dimensional space, but

in the framework of the so-called tight-binding approximation, they can be restricted to a

periodic lattice or, more generally, a locally finite graph embedded in the Euclidean space. In

this section, we assume the latter and work with N-particle systems on a graph Γ. In fact, even

the case where Γ ¼ Z
d is of interest for us, since we are going now to show how a typical

construction of the graph theory, the symmetric power of a graph, can be instrumental for

solving a formal yet thorny technical problem encountered in the multiparticle Anderson

localization theory.

The quantum particles are physically indistinguishable, so any accurate mathematical model

has to reflect this fact. In some situations including the localization analysis of randomly

disordered media, it is more convenient to represent the Hilbert space of symmetric or anti-

symmetric functions on Γ as the space of functions on the set of configurations of N indistin-

guishable particles, instead of a subspace of (þ/�)-symmetric functions defined directly on Γ.

While the two approaches are mathematically equivalent, the latter one has an important

technical advantage that can be explained as follows.

Consider for simplicity of a two-particle fermionic system in a finite subgraph G⊂½0, L�⊂Zwith

the graph structure inherited from Z. The wave functions of the two-particle systems are thus

antisymmetric functions ΨðxÞ ¼ Ψðx1, x2Þ of two variables x1, x2 ∈G. We assume the

Hamitlonian of this system to ba a discrete Schrödinger operator of the form

Definition 6. Let be given a random potential VðωÞ on a subgraph G of the lattice Z, and a nonrandom

function r↦Uð2ÞðrÞ of an integer argument. A two-particle discrete Schrödinger operator on G is the

operator of the form

HðωÞ ¼ EH0 þ Vðx,ωÞ þUðxÞ, ð29Þ

where:

• H0 ¼ �Δ
ð1Þ
G � Δ

ð1Þ
G (the kinetic energy operator) is the sum of two replicas Δ

ðjÞ
G of the graph

Laplacian on G, acting on a functionΨðx1, x2Þ as a function of the variable xj, j ¼ 1, 2;

• Vðx,ωÞ is the operator of multiplication by the random function ðx1, x2Þ↦Vðx1,ωÞ þ Vðx2,ωÞ;

and

• UðxÞ is the operator of the interaction energy of the two particles at hand, acting as the operator of

multiplication by the nonrandom function ðx1, x2Þ↦Uð2Þðjx1 � x2jÞ.

The factor E > 0 measures the amplitude of the kinetic energy operators and reflects the

mobility of the particles. In this section, it is instructive to think of E as a small number, so that

the potential energy is in a certain sense dominant. Vðx,ωÞ is the operator of random potential
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energy induced by the disordered media (modeled here by a finite linear chain) acting as

operator of multiplication by the real-valued function

ðx1, x2,ωÞ↦
XN

j¼1

Vðxj,ωÞ, N ¼ 2,

and Vðx,ωÞ are i.i.d. random variables on G (local potentials produced, e.g., by heavy ions).

The function Uð2ÞðrÞ is called the two-body interaction potential.

For the sake of notational clarity, here and below we use boldface notations for various objects

related to multiparticle objects.

The onset of Anderson localization manifests itself by a fast (usually exponential) decay of the

eigenstates Ψk of the Hamiltonian HðωÞ away from some vertex, depending upon the quantum

number $j$ (usually referred to as the localization center of the respective eigenstate Ψk. The

quantum transport, on the other hand, may take place due to the tunneling between distant

vertices x, y∈G� G with very close local energies. The latter notion can be ambiguous when the

kinetic energy is nonnegligent, but pictorially, under the assumptionwemade above that E is small,

the local energy at a vertex x is essentially given by Vðx,ωÞ þUðxÞ, thus depends directly upon x.

Now recall that the modulus of an asymmetric function Ψðx1, x2Þ is symmetric, thus jΨðxÞj

necessarily takes identical values at vertices x ¼ ðx1, x2Þ and Sx ¼ ðx2, x1Þ in the space of ordered

configurations of distinguishable particles. The symmetric vertices x and Sx can be located at

arbitrarily large distances from each other in the original two-particle configuration space

given by the Cartesian product G�G. As a result, one has, formally, consider the possibility of

“tunneling” between x and Sx, although there is no physical particle transfer process between

these two configurations: from the consistent quantum mechanical point of view, the latter are

simply identical! We come therefore to realize that the mathematical model based on the

Cartesian square of the “physical,” single-particle configuration space G generates some for-

mal problems which actually have no physical raison d'être, yet they have to be addressed

explicitly to rule out some unwanted phenomena. In particular, this renders substantially more

complicated the rigorous localization analysis.

However, the above-mentioned difficulty disappears as soon as one replaces the Hilbert space

of antisymmetric functions Ψðx1, x2Þ on G�G by an isomorphic Hilbert space of functions Φ

on the set of configurations of indistinguishable pairs of vertices from the basic graph G. The

required construction is well-known in the graph theory: we need a symmetric power Gð2Þ of

the graph G. Due to the mathematical complexity of the rigorous multiparticle Anderson

localization theory, we can only sketch its general strategy in this chapter, but the main tool,

which proves very valuable here, deserves a more detailed discussion. As was said in the

introductory part, the main goal of this section is to attract the readers’ attention to some

interesting and useful relations between the mathematical physics of disordered media and

the notions, tools, and deep results of the graph theory.
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3.2. Construction of a symmetric power of a graph

3.2.1. An example in one dimension

Before we turn to general constructions of symmetric powers of locally finite graphs, it seems

instructive to consider first a particular case where the underlying, basic graph G is linear, i.e.,

isomorphic to a subgraph of the one-dimensional lattice Z. The existence of a complete linear

order makes possible a particularly simple variant of the symmetric square Gð2Þ (indeed, of any

symmetric power GðNÞ, N > 1).

Consider the triangular subset of lattice square QðLÞ :¼ G� G ¼ ½½0, L�� � ½½0, L�� (here G ¼ ½½0, L��

stands for the integer interval ½0, L�∩Z):

Gð2Þ ¼ ðx1, x2Þ∈ ½½0, L�� � ½½0, L�� : x1 < x2f g

(here (2) reflects the number of “particles”). An example is presented in Figure 1. Any anti-

symmetric function Ψ on QðLÞ vanishes at any point of the form ðx, xÞ, and its modulus takes

identical values on ðx1, x2Þ∈Gð2Þ and on the symmetric point ðx2, x1Þ. It follows that

Figure 1. Example of a symmetric square. Here the base graph G is a subgraph of Z, and it can be implemented as a

subgraph of the Cartesian square Z2, owing to the one-dimensional topology of Z.

Spectra and Quantum Transport on Graphs
http://dx.doi.org/10.5772/intechopen.68480

149



kΨk22,QðLÞ :¼
X

x∈QðLÞ

jΨðxÞj2 ¼ 2
X

x∈Að2Þ

jΨðxÞj2 ð30Þ

This provides a natural isomorphism between the Hilbert spaces of complex functions on QðLÞ

and on Gð2Þ
: Clearly, the same idea works in the N-particle case, where we can define

GðNÞ ¼ fðx1,…, xNÞ∈ ½½0, L��N : x1 < x2… < xNg,

except that in the latter case, the factor of 2 ¼ 2! in Eq. (23) is to be replaced by N!.

Such a simple, transparent geometrical construction is no longer available for general graphs,

but an isomorphism similar to that from Eq. (23) can be established for the symmetric powers

of graphs. Below we give a variant with a distinctive flavor of quantum mechanics.

3.2.2. General construction

The vertex set. Let be given a connected, locally finite countable graph with the vertex set G and

an edge set E, and an integer N ≥ 2. Consider the integer-valued functions n : x↦nðxÞ∈ f0, 1g

on G such that
X

x∈G
nðxÞ ¼ N. The physical meaning of the value nðxÞ is the number of

particles at the vertex x, so it is usually called the occupation number of the site x∈G. Due to

the indistinguishable nature of the particles, only the numbers of particles at each site are

physically observable (measurable in experiments). Furthermore, since we are modeling now

fermions, the respective wave functions, by their antisymmetry, must vanish on any configu-

ration of N particles among which at least two occupy the same position. This was precisely

the reason we excluded the “diagonal” from Gð2Þ above. Nowwe achieve the same effect by the

requirement nðxÞ∈ f0, 1g. The bottom line is that a configuration of N particles admissible for

modeling fermions is completely determined by a function n; for all intents and purposes, each

n is a (fermionic) configuration.

Hence, we constructed an appropriate vertex set GðNÞ of the graph that would generalise Gð2Þ

for an general underlying graph G. Specifically, there is a projection

Π
ðNÞ

: x ¼ ðx1,…, xNÞ↦nx, where supp nx ¼ fx1,…, xNg: ð31Þ

The points of the support of a function nx will be called the particles of the configuration nx.

Restricted on the set of N-tuples of pairwise distinct vertices x1,…, xN , the projection ΠðNÞ is

exactly N!-fold: the pre-image
�

Π
ðNÞ

��1

ðnÞ has cardinality N!.

The edge set. Using again a terminology inspired by physics, we say that two configurations

n
0,n0 0 form an (unordered) edge if and only if n0 0 is obtained by moving exactly one particle of

n
0 to a position unoccupied by other particles from n

0.

Mathematically, we require that
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X

x∈G
jn0ðxÞ � n

00ðxÞj ¼ 2; ð32Þ

It is not difficult to see that the two definitions are equivalent. Indeed, each term in the above sum

equals 0 or 1, since 0 ≤n0ðxÞ,n00ðxÞ ≤ 1, and such a term vanishes when either n0ðxÞ ¼ n
00ðxÞ ¼ 0,

i.e., x is unoccupied by either configuration, or n0ðxÞ ¼ n
00ðxÞ ¼ 1, i.e., both configurations have a

particle at x. Removing particles from the support of n0 to produce new configuration n
0 0, we have

to place them outside the support. Therefore,

each point x with n
0ðxÞ ¼ 1 and n

00ðxÞ ¼ 0 (i.e., occupied by n
0 but unoccupied by n

0 0) contrib-

utes by a two unit term to the sum: first, n0ðxÞ � n
00ðxÞ ¼ 1, and second, for the position y to

which we move the particle from x we have n
0ðxÞ � n

00ðxÞ ¼ �1. If we move more than one

particle from n
0, the sum in Eq. (25) will be at least 4. We conclude that the second definition in

Eq. (25) is equivalent to the first one.

This completes the construction of the N-th symmetric power ðGðNÞ, EðNÞÞ of the graph ðG, EÞ.

3.2.3. Hilbert space isomorphism: antisymmetric functions versus symmetric power

Now the isomorphism between of the Hilbert space of square-summable complex antisymmetric

functions on the Cartesian power GN and the Hilbert space of all square-summable complex

functions on GðNÞ is defined in a natural fashion. Recall that we introduced the projection Π
ðNÞ,

such that
�

Π
ðNÞ

��1

ðnxÞ consists of allN! permutations of the vertices x1,…, xN from the support

of nx. Any function Φ: GðNÞ ! C generates a symmetric function Ψ ¼ Φ∘Π
ðNÞ, and each sym-

metric function Ψ : GN ! C can be obtained in this way, as Φ∘Π
ðNÞ. The modulus of any

antisymmetric function Ψ on the Cartesian power GN takes identical values on all elements of
�

Π
ðNÞ

��1

ðnxÞ. Thus, withΨΦ :¼ Φ∘Π
ðNÞ,

X

x∈GN jΨΦðxÞj2 ¼ N!

X

n
x∈GðNÞ

jΦðxÞj2: ð33Þ

Now the required isomorphism is defined by kΨΦk2 ¼
ffiffiffiffiffiffi

N!
p

kΦk2.

It might appear that the described isomorphism is just an interesting formal trick, but there is

much more to it than a mere mathematical curiosity. As one illustration, we consider now a

problem of spectral analysis for multiparticle random Hamiltonians HðωÞ above.

3.2.4. An application: KAM-type analysis of two-particle fermionic random Hamiltonians

The goal of this subsection is merely to illustrate the key role of the isomorphism between the

subspace of antisymmetric square-summable functions ofN > 1 variables in a graph G and the

space of all square-summable functions on the symmetric power GðNÞ. The mathematical

problem where it is used is quite complex, so we will only sketch the main setting and focus

on the role of the symmetric powers.
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It is to be emphasized that the spectral analysis of N-particle quantum Hamiltonians in

presence of a random potential field, generated by a disordered media, accurately taking into

account a nontrivial interaction between the particles, is a relatively new direction both in

theoretical physics and in rigorous mathematical physics. This is an actively developing and

challenging area of research. While physicists have finally obtained convincing theoretical

results on the stability of localization under the Coulomb interaction, the progress in rigorous

mathematical physics is still relatively modest, compared to theoretical physics. The best

insight achieved in the last 10 years concerns the systems of a fixed number N of particles in a

large sample of a disordered media. For the purposes of this chapter, we always restrict the

analysis to discrete systems on graphs.

As was said in the introductory section, we can only sketch rather complex mathematical

constructions involved and illustrate the main mechanisms of stability of localization under

interaction. For simplicity, suppose that we have a system of N ¼ 2 particles in a large but

finite connected graph G on which an i.i.d. random (potential) field x↦Vðx,ωÞ is defined. One

can consider various marginal probability distributions, i.e., identical probability distributions

of the random variables Vðx,ωÞ, x∈G. Two models popular in theoretical physics of disor-

dered media suit perfectly our needs here: a standard Gaussian distribution Nð0, 1Þ with zero

mean and unit variance, and the uniform distribution on the interval ½0, 1�.

Consider first the simplest (yet mathematically nontrivial) case of zero amplitude of interac-

tion. Then the variables in the HamiltonianHðωÞ can be separated, since in this case one has an

algebraic representation HðωÞ ¼ H
ð1ÞðωÞ⊗ Iþ I⊗Hð2ÞðωÞwhere I is the identity operator, and

therefore, the eigenvectors of the operator HðωÞ can be chosen in the tensor product form,

Ψi, jðωÞ ¼ ψiðωÞ⊗ψjðωÞ, where ψiðωÞ,ψjðωÞ are eigenvectors of the single-particle Hamilto-

nians Hð1ÞðωÞ and Hð2ÞðωÞ, respectively. The latter are identical replicas acting on their respec-

tive variables x1 and x2. The eigenvalues are the sums Ei, jðωÞ ¼ E
ð1Þ
i ðωÞ þ E

ð2Þ
j ðωÞ, with

H
ð1,2ÞðωÞψiðωÞ ¼ E

ð1,2Þ
i ðωÞψiðωÞ.

The main reason why the electron-electron interaction was consciously neglected even in

theoretical physics, is that it is relatively weak as compared to the potential energy of interac-

tion with the ions surrounding the mobile electrons, so we also assume the amplitude of the

interaction potential to be small.

Another important assumption can simplify the spectral analysis, at least in an informal

treatment of the problem: small amplitude of the factor E in front of the kinetic energy operator

H0; in physical terms, this corresponds to a low mobility of the particles at hand which,

naturally, should favor “localization” of a given particle. Mathematically, already for N ¼ 1

(isolated particles), with E ¼ 0 we get a multiplication operator which has the orthonormal

eigenbasis composed of the “discrete delta-functions” φx ¼ 1{x}, x∈G. Similarly, for N ≥ 2 and

E ¼ 0 we have a perator of multiplication by the total potential energy which also has a

complete eigenbasis composed of “localized” eigenfunctions.

If we had constructed an eigenbasis of the multiplication operator in the representation on the

Cartesian square G2, then we would have obtained the two-site supported eigenfunctions:
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1
ffiffiffi

2
p 1fxg ⊗ 1fyg �

1
ffiffiffi

2
p 1fyg ⊗ 1fxg

while the representation on the symmetric square Gð2Þ gives rise to single-site eigenfunctions

1fxg ⊗ 1fyg, where x 6¼ y. Naïvely, starting with the “ultralocalized” eigenfunctions 1fxg ⊗ 1fyg,

one may attempt to use the first-order perturbation theory. The well-known formulae of the

rigorous perturbation theory for the eigenvectors reveal two problems:

• “small denominators,” i.e., pairs of very close or equal eigenvalues; and

• large dimension of the spectral problem, which may also give rise to degenerate eigen-

values or at least to some pairs of close eigenvalues.

Indeed, the eigenvalue associated to the unperturbed eigenfunctions of the potential energy

operatorΦx,y ¼ 1fxg ⊗ 1fyg is given by

E0
x,y ¼ Vðx,ωÞ þ Vðy,ωÞ þUðjx� yjÞ ð34Þ

Fix now the random field model with uniform marginal distribution, and let the interaction be

uniformly bounded, then the above eigenvalues all belong to some fixed, bounded interval,

regardless of the dimension D ¼ G ∨ ðjGj � 1Þ of the Hilbert space, growing with the cardinal-

ity of G. The larger is G ∨ , the closer the D eigenvalues must get, counted with multiplicity and

restricted to a fixed interval of R. In the Gaussian model, a similar phenomenon is encoun-

tered, with high probability, since large values of the Gaussian random potential Vðx,ωÞ are
taken with small probability.

A conclusion we can draw from this elementary analysis is that one cannot expect the pertur-

bation theory for nondegenerate spectra, or for the finite-dimensional operators with bounded

multiplicity, to work efficiently in the model with a large graph G.

Several approaches have been developed in spectral theory of single-particle random Hamil-

tonians in the last three decades. Technically, they are based on different mechanisms, and

even a brief presentation of these approaches would require an entire book. Interested readers

may familiarize themselves with the basic techniques in the monographs [9, 10]. Recently,

there has been a wake of growing interest to the technique going back to the celebrated KAM

(Kolmogorov-Arnold-Moser) theory originally developed for the analysis of stability of invari-

ant tori in some nonlinear dynamical systems

Recently, Imbrie [18] adapted the KAM techniques to the spectral analysis of random lattice

Hamiltonians, in any dimension, and to one-dimensional random spin chains.

In essence, the “linear” version of the KAM method is an inductive, iterated use of the first-

order perturbation theory with an accurate account of the higher-order terms represented by

an infinite number of diagrams. At each step of the induction, one obtains an orthogonal basis

for the considered (random) operator HðωÞ that is an approximate eigenbasis for the latter, but

with better and better accuracy. The error terms on the k-th step of induction feature a typical

Newtonian decay rate like e�qk , where q∈ ð1, 2Þ, which is not surprising since KAM technique
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is based on one or another form of Newton’s method. Once a new, more accurate eigenbasis of

order k is constructed by perturbing its predecessor of order ðk� 1Þ, the matric elements of

HðωÞ are computed in this (orthonormal) basis, and the process is repeated. KAM type con-

structions are usually quite complex and cumbersome. One has first to describe in detail the

entire set of properties to be assumed on the step k� 1 ≥ 0 and then reproduced on the next

induction step k.

A synthetic method, employing some ideas of the KAMmethod and other, simpler techniques

elaborated in the spectral theory of single-particle random Hamiltonians, have been proposed

first to the noninteracting random systems [11], and later on to their N-particle counterparts.

The pivot of this method, like in the KAM approach, is an accurate quantitative control of the

“small denominators”—minimal distances between distinct random eigenvalues of random

Hamiltonians associated with finite but growing subgraphs of a countable graph. It would be

difficult to carry out such a program in the representation of distinguishable particles, i.e., on

the Cartesian power GN.

Now return to the semiquantitative analysis of a two-particle Hamiltonian. Restrict ourselves

to a case where the size of the underlying graph G, modeling the “physical” space where the

two quantum particles evolve, has a fixed size, and allow us to vary the parameter E in EH0 (the

mobility amplitude), and to take it as small as needed for an attempt to make one step of

application of the perturbation theory for nondegenerate spectra.

With both E and h small enough, the main contribution comes from the random potential, so

we have the eigenfunctions of the unperturbed operator Φx,yΦx,y ¼ 1fxg⊗ 1fyg with eigen-

values λx,y ¼ Vðx,ωÞ þ Vðy,ωÞ, and we have to assess the difference between two such eigen-

values, labeled by two pairs of sites ðx, yÞ, ðx0, y0Þ of the graph G:

λx,y � λx0 ,y0 ¼
�

Vðx,ωÞ þ Vðy,ωÞ
�

�
�

Vðx
0

,ωÞ þ Vðy
0

,ωÞ
�

:

Since the potential is random, there can be no uniform, deterministic lower bound on the

absolute value of the above difference: with positive probability, it can be smaller than any

δ > 0. The randomness, however, is a double-edged sword: while small values of the differ-

ence are certainly possible, they may, or might, be unlikely, so we have to determine, how

unlikely is to have jλx,y � λx0 ,y0 j < δ.

To begin with, notice that we have to deal with different eigenfunctions, hence with two

nonidentical pairs ðx, yÞ, ðx0, y0Þ. Thus, cardfx, yg ∩ fx, yg ≤ 1. Consider two cases.

I. cardfx, yg ∩ fx0, y0g ¼ 0.

In this case, the random variables λx,y ¼ Vðx,ωÞ þ Vðy,ωÞ and λx0,y0 ¼ Vðx0,ωÞ þ Vðy0,ωÞ have

no common terms, and therefore they are independent. Moreover, inside each pair we have

independence, so the probability distribution of each sum can be easily obtained by convolu-

tion. For simplicity, consider the case of standard Gaussian variables, then each eigenvalue is

also Gaussian with zero mean and variance 2. The difference λx,y � λx0,y0 is again a sum of two
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i.i.d. Gaussian variables λx,y and �ðλx0,y0Þ, hence it is Gaussian with zero mean and variance 4.

Recalling the explicit form of the Gaussian probability density with variance σ
2, which is

uniformly bounded by 1=
ffiffiffiffiffiffiffiffiffiffiffi

2πσ2
p

, we conclude that

Pfjλx,y � λx0 ,y0 j < δg ≤ δ

2
ffiffiffiffiffiffi

2π
p ð35Þ

II. cardfx, yg ∩ fx0, y0g ¼ 1.

Now the unordered pairs x, y and x
0
, y0 have exactly one common point; let it be x, so we have a

pair of eigenvalues λx,y and λx,y0 with y 6¼ y0 and the difference given by

λx,y � λx
0 ,y0 ¼

�

Vðx,ωÞ þ Vðy,ωÞ
�

�
�

Vðx,ωÞ þ Vðy0
,ωÞ

�

¼ Vðy,ωÞ þ
�

� Vðy0
,ωÞ

�

,

so it is again a sum of two independent random variables. Assuming as before the distribution

to be Gaussian with zero mean and unit variance, we see that λx,y � λx
0 ,y0 is centered Gaussian

with variance 2, so the analog of Eq. (32) is now

Pfjλx,y � λx0,y0 j < δg ≤ δ

2
ffiffiffiffi

π
p ð36Þ

The final conclusion is that for small δ > 0, the small differences between any two eigenvalues

corresponding to two distinct eigenfunctions on the symmetric square of the underlying graph

is small, viz., of order of OðδÞ. Therefore, for a finite graph of size jGj ¼ n, the probability to

have at least one pair of eigenvalues at distance smaller than δ is bounded by nðn�1Þδ
4
ffiffiffi

π
p ¼ Oðn2δÞ

(we used the weakest of the two estimates in Eqs. (32) and (33)).

This simple probabilistic analysis provides the logical basis for the KAM approach, where we

can rule out “small denominators” which cannot be tolerated in the analytic application of the

first-order perturbation formulae, at some initial scale. The rest of the procedure requires a

number of analytic efforts, but the crucial point, viz., the possibility to avoid degenerate

eigenvalues at the initial scale, is the direct consequence of the graph-theoretical construction

of a symmetric power of a graph G. Using a Cartesian power of G would at best significantly

complicate the entire procedure, and perhaps render it impractical. In any case, no replace-

ment for resorting to symmetric powers has been found so far in multiparticle localization

theory of fermionic systems on graphs.

4. Combinatorial and metric (quantum) graph

Our final topic also concerns the constructive relations and interactions between the graph theory,

in a broad sense, and the mathematical physics of the quantum world. However, the general

direction of these interactions will be reversed, for we are going to discuss a very recently

developed class of mathematical objects naturally emerged in the analysis of interacting quantum
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systems. We would like to attract the attention of experts in graph theory and related fields to the

new area, where a number of questions are not even properly formulated, and many interesting

phenomena are yet to be discovered.

First, recall the notion of a metric graph; due to a wake of interest to the so-called nanotubes,

one often refers to these mathematical objects as “quantum graphs.”

Metric graphs represent an important link between the discrete spaces and manifolds

endowed with a rich local structure of a Euclidean space. By definition, a metric graph

Q ¼ QΓ over a finite or countable unoriented combinatorial graph ðΓ, EÞ, with the vertex set Γ

and the edge set E, is a singular one-dimensional manifold constructed as follows. Associate

with each edge e ¼ ðι, τÞ∈E an open interval Ie, considered as a Riemannian manifold with the

Riemannian metric inherited from R. In some models, all the intervals have the same lengths,

so by a change of parameters one usually can assume they are replicas of ð0, 1Þ. In other

models, on the contrary, one allows variable length of these basic intervals. We will assume

the former and work with unit intervals. There is a canonical oriented graph associated with

the unoriented graph ðΓ, EÞ, with the same vertex set and two opposite edges for each edge in

E. In some auxiliary constructions, this morphism from the category of unoriented graphs to

that of oriented ones can be used, to avoid some ambiguities, but it will be not crucial to our

purposes, since we will work with a second-order differential operator (essentially the second

derivative operator), so the orientation will not be really important.

Each open interval Ie ffi ð0, 1Þ is canonically compactified by its natural embedding into ½0, 1�.

Taking an edge ðx, yÞ and fixing its orientation in one of the two possible ways, so that

ðx, yÞ ffi ðι, τÞ, we thus can identify its starting point ι with 0∈ ½0, 1� and the terminal point τ

with 1∈ ½0, 1�. Next, we define the differential operator L ¼ �d2=dt2 in the space of twice

differentiable functions on ð0, 1Þ; boundary conditions are discussed below. In other words,

L ¼ �Δ, where Δ is the Laplacian on the Riemannian manifold ð0, 1Þ. While d=dt requires a

local coordinate, hence a fixed orientation, L is not sensible to this choice.

Further, consider the disjoint unionQ
ð0Þ
Γ

of the basic (open) intervals Ie, finite or countable, with

the natural structure of the measure space induced by the Lebesgue measure on each interval

with the respective sigma-algebra of measurable subsets. In turn, this allows us to introduce

the Hilbert space of square-integrable functions on Q
ð0Þ
Γ
; this is not yet an object we had

needed, for there is no connections between the restrictions of a given function f on Q
ð0Þ
Γ

to

different, pairwise disjoint connected components thereof.

Now it is time to choose boundary conditions, having in mind the canonical embedding ofQ
ð0Þ
Γ

into the union QΓ of the compactified intervals Ie ffi ½0, 1�. In application to the “quantum”

graphs, traditionally one imposes the Kirchhoff conditions. Now, for formal reasons, fix some

orientation on each edge, hence, a local coordinate on each Ie ffi ½0, 1�. Then we can define the

one-sided first derivatives on each vertex, in the directions of all attached intervals Ie. Let De be

such a derivative along the local coordinate on Ie, and set ce ¼ 1 for outgoing edges and

ce ¼ �1 for the ingoing ones. The Kirchhoff conditions are as follows: a function f must be

continuous at each vertex and obey a conservation law
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X
e
ceDef ¼ 0: ð37Þ

Below we call the intervals Ie continuous edges.

Now, using the standard methods of functional analysis, one can construct a self-adjoint extension

of the “Laplacian” L with Kirchhoff boundary conditions, and for any, say, bounded measurable

function V : QΓ ! R (a potential), define the Schrödinger operator HV as unbounded self-adjoint

operator in H ¼ L2ðQΓÞ, with the suitable domain.

One can perturb the above, rather idyllic picture in several ways. First, one can consider a

random potential VðωÞ, taking i.i.d. random values on each edge. Further, on can vary the

lengths le of the continuous edges, assuming that leðωÞ are i.i.d. random variables with a

common probability distribution. From the functional analytic point of view, treating

unbounded self-adjoint operators on metric graphs, in the framework of random operators,

is substantially more delicate a matter that the analysis of finite-difference operators on the

underlying discrete, combinatorial graphs. One may wonder, whether some properties of

the Hamiltonians on the underlying graph can be useful for the analysis of their continuous

siblings QΓ . The theory of boundary triples (cf. [19]) provides a powerful and valuable tool

of spectral analysis on continuous metric graphs, where an essential part of technical work

is carried out in a simpler framework of countable graphs with discrete Schrödinger

operators.

Now we turn to a further development in this direction made recently by Sabri [7] who

introduced the notion of multiparticle quantum graph. We consider the simplest nontrivial

case of N ¼ 2 quantum particles on a quantum graph QΓ . To be able to refer to existing results

and publications, we assume the particles distinguishable.

In the discussion of two-particle systems on a graph G in Section 3, the pair ðx1, x2Þ was

ranging in the Cartesian (and then symmetric) square of G, and the latter is, topologically, a

discrete space, thus essentially of the same nature as the factors in the product G�G. But now

that the configuration space QΓ for each particle is a continuous object, viz. a (singular) one-

dimensional Riemannian manifold, the situation changes radically: the configuration space for

the pair ðx1, x2Þ is locally a two-dimensional manifold; in the case of an N-tuple ðx1,…, xNÞ it

becomes N-dimensional. Many specifically 1D methods of spectral analysis are inapplicable in

dimension d ≥ 2.

Shortly after the publication of the first results on N-particle Anderson localization in periodic

lattices and in Euclidean spaces, Sabri [7] proposed an interesting extension of the new tech-

niques and results to the multiparticle systems on quantum graphs. His construction was

essentially motivated by a specific goal, but there are various contexts where the construction

itself may prove valuable.

For N ¼ 2, one has to start again with the building blocks of a 1D quantum graph QΓ over a

combinatorial graph Γ: the open finite intervals associated with each edge of Γ. Restricting the

positions xi of the two particles to their respective continuous edges identified with ½0, 1�, we

have the pair ðx1, x2Þ ranging in the unit square ½0, 1��½0, 1�. For brevity, call such basic squares
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cells. Each cell is delimited by four continuous edges inherited from the first and from the

second particle, and these four (continuous) edges are the loci of contact between the cells.

Clearly, this complicates the structure of what was the edge set in the underlying graph Γ, but

this is the natural replacement for the notion of the edge set; this is what defines the topology

and metric geometry of the new object, called by Sabri a two-particle (more generally, N-

particle) quantum graph Q
ð2Þ
Γ
.

Just like the Laplacian L defined on the quantum graph, we can define its two-particle coun-

terpart Lð2Þ : first, on the unit squares, and then proceed to self-adjoint extensions with one or

another kind of boundary conditions to be imposed on the 1D continuous edges of the

conventional, one-particle quantum graphs supporting each of the two particles. This inevita-

ble functional analytic work has been done by Sabri. And of course, once the natural Laplacian

Lð2Þ is defined as an unbounded self-adjoint operator with a suitable domain in the Hilbert

space of square-integrable functions on Q
ð2Þ
Γ
, one can also define the Schrödinger operators

H
ð2Þ
V

¼ �Lð2Þ þ V, e.g., for bounded measurable functions V. In Figure 2, we give an example of

three models based on the same graph structure: a combinatorial graph, a quantum graph, and

a two-dimensional domain surrounding the quantum graph in question.

The new construction raises a number of questions, of different nature. One of them concerns

the constructive relations between the spectral properties of a Schrödinger operatorH
ð2Þ
V

on the

continuous, locally two-dimensional (2D) manifold Q
ð2Þ
Γ
, and its analog on the Cartesian

square of the combinatorial graph Γ.

Another question, of functional analytic nature, raised by Sabri, concerns an explicit descrip-

tion of the self-adjoint extensions of the 2D Laplacian initially defined, say, on infinitely

differentiable functions with support inside an open cell ffi ð0,1Þ2. It appears that the corner

Figure 2. Example of (a) physical, thin two-dimensional area A; (b) corresponding metric graph QΓ : a mathematical

abstraction where the finite width of A is ignored; and (c) the combinatorial graph with the same vertices as QΓ .
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points make the explicit analysis difficult, although the existence of the desired extensions

poses no serious problem.

5. Conclusion

Mathematical modeling of physical phenomena had provided important motivations for

developing various fields of mathematical physics since several centuries; as to the quantum

physics, its development was from the beginning of the twentieth century parallel to the

development of the functional analysis in general and spectral theory of operators in particu-

lar. The remarkable discovery made by P. W. Anderson in 1958 brought to life a synthetic

approach to modeling disordered systems based on a fusion of analysis in a broad sense with

probability theory. The physical community came to realize that the models based on the

idealized picture of perfectly periodic crystals miss some crucial mechanisms responsible for

transport (e.g., electrical conductivity) or absence thereof under the Anderson localization. The

classical formulae for conductivity and many related phenomena, crucial for the development

of modern microelectronics and nanotechnologies, cannot ignore the localization/delocaliza-

tion problematics. While the most simple models may refer to the integer (and some other

periodic) lattices in a Euclidean space where classical Fourier analysis can use the method of

separation of variables, the situation can be significantly more complex in the case of quasi-

crystals, featuring both a local order and long-range disorder. Mathematically, such structures

are described as nonperiodic graphs where the Fourier analysis breaks down, and one needs

some efficient, constructive replacements. Furthermore, large and complex molecules studied

in organic chemistry and molecular biology also require a versatile toolbox not limited to a

commutative Fourier analysis. Also, the crystalline media in presence of structural (e.g.,

mechanical) defects are not stricto sensu periodic, so again one needs robust eigenvalue distri-

bution bounds not relying on the exactly periodic geometry of the media. In Section 2, we have

seen that the isoperimetric inequalities, appeared in the graph theory under the influence of its

diverse applications, provide indeed adequate tools for an asymptotic analysis of the limiting

eigenvalue distribution for discrete quantum Hamiltonians used in physics in the framework

of the so-called tight-binding approximation effective for the “low” energies. The term “low”

actually refers to the energies lost important to the quantum processes exploited in modern

microdevices (e.g., CPU having diameter of a few millimeters and width of order of a few

dozens of atomic layers), in biological tissues and technologically created organic substances.

In 2008, The Isaac Newton Institute for Mathematical Sciences in Cambridge, Great Britain, has

organized a semiannual program “Mathematics and Physics of Anderson Localization: 50 Years

Later” aiming to summarize the impact of Anderson’s theory on physical theories and appli-

cations as well as on the mathematical physics. The general conclusion many participants and

younger researchers could draw from numerous and diverse presentations was that the para-

digm of quantum localization/delocalization provides today both a language and a general

theoretic background for many specific directions of research; it is not an isolated pragmatic

physical model or abstract mathematical problem. The program in question also revealed to

the physics and mathematics communities the importance of the interparticle interaction
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which was briefly discussed in Section 3; the need for such theory was emphasized already by

Anderson in his early papers, but one had to wait almost half a century to see its emergence in

independent physical and rigorous mathematical works. Shortly after the program, the Ander-

son localization theory for interactive disordered systems has been applied (in mathematical

works) to the nanotubes modeled by quantum graphs. While the size limitations of the present

work do not allows us to present mathematical details of the new theory, there is no doubt that

many of its mathematical aspects are closely related to the methods of the graph theory.

Further reading, along with an extensive bibliography, can be found in the first monograph [4]

dedicated to localization phenomena in interactive systems. This new direction of mathemat-

ical physics still is at its early stage of development. The language and toolbox of the graph

theory proved to be very useful here, as we have seen in Section 3. On the other hand, new

structures discussed in Section 4, emerging from the analysis of multiparticle quantum graphs

open new problems and propose new types of models to the graph theory. This chapter was

written in the hope to bring closer the communities of researchers, particularly the younger

ones, working in functional analysis, graph theory in a broad sense, and in probability theory.
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