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Abstract

The electrocaloric effect describes a reversible temperature change in dielectric materials
submitted to an applied electric field. Adiabatic polarization raises their temperature,
and adiabatic depolarization lowers it, analogous to temperature changes that occur
when a gas is compressed or expanded. For refrigerator application, the reverse Brayton
cycle is currently the most promising for practical implementation. The electrocaloric
effect provides a large material efficiency. However, existing refrigerator prototypes lack
from the absence of efficient heat switches for thermal linkage to the load and the heat
sink. Cooling power densities of a few W/cm2 and temperature spans in the order of 20
K (in regeneration systems) are achievable at a cycle time of 100 ms.

Keywords: electrocaloric effect, thermodynamic cycles, coefficient of performance,
refrigeration devices

1. Introduction

For almost 150 years, refrigeration applications were solved by means of vapour compression.

While the most efficient fluids for this approach are based on chlorofluorocarbons, hydrochlor-

ofluorocarbons and hydrofluorocarbons, they come with the severe drawback of contributing

to global warming and ozone depletion. Therefore, in 1987, the Montreal Protocol issued a ban

on these chemicals providing regulations for phasing them out. Promising natural alternative

substances are impractical due to their toxicity (ammonia) or—in particular—their flammabil-

ity (propane) [1].

Vapour compression refrigerators (VCRs) are operated as reverse Rankine cycles. They use

a circulating liquid refrigerant as a medium. The refrigerant is: (i) adiabatically compressed,

(ii) condensed at constant pressure undergoing a phase transition (thereby rejecting heat to the

heat sink), (iii) adiabatically throttled in an expansion valve and (iv) evaporated at constant

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



pressure undergoing the reverse phase transition (thereby absorbing heat from the load). The

amount of transferred heat is determined by the latent heat of the first-order phase transition.

Similarly, in solid-state electrocaloric (EC) cooling, the adiabatic compression/expansion of the

refrigerant is analogous to adiabatic polarization/depolarization, while the isobaric processes

are replaced by isofield ones. Contrary to VCR, where the adiabatic expansion of the vapour is

thermodynamically irreversible, the EC and the magnetocaloric (MC) effects are thermody-

namically reversible processes that could reach the limit of the Carnot efficiency. This is

another aspect making them promising for future application.

Electric fields required for the EC refrigeration cycle can be supplied much easier and less

expensively than the high magnetic fields required for the MC refrigeration [2]. Other advan-

tages in comparison with MC cooling are higher power densities due to potentially higher

cycle frequencies, smaller mass of the device, compactness, potential cost reduction, indepen-

dence on risks of rare-earth materials supply, etc. [3]. Moreover, electrical energy for EC

cooling can be provided by stationary or mobile solar cells and by electric vehicle batteries.

This opens up completely new possibilities for an environment-friendly industrialization of

developing countries.

EC materials provide a solid-state cooling technology without polluting liquid refrigerants and

no or almost absent moving parts (pump and motion of a pumped heat transfer fluid).

Generally, EC material (refrigerant) converts the electrical input work

W ¼

ð
EdD, ð1Þ

into cooling or heating. Here, E is the electric field andD is the dielectric displacement. The latter

is a vector field describing the electrical effect of free and bound charges in materials. Compared

to VCR, the E plays the role of pressure and D plays the role of volume in vapour compression.

More detailed descriptions can be found in a number of recent reviews of the EC effect [2, 4, 5]

and its application in refrigerators [3, 6, 7], and a book on this topic [8].

2. Electrocaloric effect

An electric field E applied to a dielectric material induces a change in dielectric displacement

and, thus, a change in temperature and entropy in the material. The EC effect is a reversible

temperature change of a material that results from an adiabatic application of an electric field. It

was derived by Lord Kelvin based on the assumption of reversibility of the pyroelectric effect

from thermodynamics in 1878 [9]: If the preceding explanation of pyroelectricity be true, it must follow

that a pyroelectric crystal moved about in an electric field will experience cooling effects or heating effects

… in virtue of the wholly latent electric polarity of a seemingly neutral pyroelectric crystal (that is to say, a

crystal at the surface of which there is an electrification neutralizing for external space the force due to its

internal electric polarity), the same cooling and heating effects will be produced by moving it in an electric

field, as similar motions would produce in a similar crystal which, by having been heated in hot water,

dried at the high temperature, and cooled, is in a state of pyroelectric excitement.
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The first experimental investigations of the EC effect in Rochelle salt, KH2PO4, BaTiO3 and

SrTiO3 date back to 1930 [10], 1950 [11], 1952 [12] and 1956 [13], respectively. However, the EC

effect values reported since that time (at maximum 2.5 K in Pb0.99Nb0.02(Zr0.75Sn0.20Ti0.05)O3

ceramics [14]) were too small for practical use.

EC cooling has regained attention in 2006, when Mischenko et al. could show that large

electrical fields can be applied to antiferroelectric PbZr0.95Ti0.05O3 thin films [15]. They

observed that—close to the ferroelectric Curie temperature of 222�C—a field change from

77.6 to 29.5 V/μm induced an adiabatic temperature change of 12 K as it was determined from

the integrated pyroelectric effect. Recently, another group showed that a lead-free stack of 63

BaTiO3 thick films provides an EC temperature change of 7.1 K at an applied field of 80 V/

μm [16]. The thickness of the individual layers deposited by tape casting and electrically

contacted by inner Ni electrodes amounted to ca. 3 μm. In Ref. [17], commercially available

multilayer capacitors (MLCs) even of 200 ceramic layers (BaTiO3-based Y5V formulation) each

6.5 μm in thickness were used as a refrigerant [17]. Here, an EC temperature change of 0.5 K

was obtained at 30 V/μm. The MLC concept was developed by Herbert [18] and introduced in

the early 1980s by Murata Manufacturing Co. for the fabrication of base metal monolithic

capacitors [19]. MLCs are now in mass production (some 5 � 1011 pieces per year) by means

of sheeting green ceramic tapes and screen-printing technology [20]. However, they are not

optimized for EC applications. Commercial EC devices are still not available.

EC devices are driven by an electric field strength. That means that a voltage has to be applied.

In this case, the independent thermodynamic parameters are temperature Tand electric field E.

According to the second law of thermodynamics, an infinitesimal amount of heat dQ trans-

ferred into the system by an entropy change dS is then given by

dQ ¼ TdS ¼ T
∂SðE,TÞ

∂T

� �

E

dT þ
∂SðE,TÞ

∂E

� �

T

dE

� �

, ð2Þ

where S is the entropy per unit volume. Following the definition of volumetric specific heat at

constant E, cE, the first term in parentheses can be replaced by

∂SðE,TÞ

∂T

� �

E

¼
cEðE, TÞ

T
: ð3Þ

The value of cE(E,T) is usually represented by the zero-field value in the temperature range of

interest c ¼ cðTÞ. With regard to Maxwell´s equations, entropy S and dielectric displacement D

are coupled [21]

∂S

∂E

� �

T

¼
∂D

∂T

� �

E

¼ πE, ð4Þ

where πE is the pyroelectric coefficient at constant electric field. Considering now a ferroelec-

tric material exhibiting below TC a remnant polarization Pr and an induced polarization εε0E,

and a dielectric displacement of
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DðT, EÞ ¼ ε0εðT, EÞEþ PrðTÞ, ð5Þ

Eq. (2) takes the form:

dQ ¼ cEdT þ T
∂PrðTÞ

∂T
þ ε0E

∂εðT,EÞ

∂T

� �

E

dE: ð6Þ

Thus, the EC temperature change is given by two terms [22]:

ΔTEC ¼ �
T

cE

ðE2

E1

∂PrðTÞ

∂T
þ ε0E

∂εðT,EÞ

∂T

� �

E

dE: ð7Þ

In the ferroelectric phase, below TC, the contributions of spontaneous and induced polarization

partially compensate each other, because in this temperature region the temperature coeffi-

cients behave oppositely: ∂ε/∂T > 0 and ∂Pr/∂T < 0. In SrTiO3 ceramics below the temperature of

maximum dielectric permittivity, in antiferroelectrics with 〈Pr〉 = 0, and in some relaxors with

∂Pr/∂T > 0, a negative electrocaloric effect can be obtained below TC, that is, the sample is

cooled during adiabatic electric field application.

Figure 1 compares the ΔTEC values of BaTiO3 above TC (Pr!0) calculated from Eq. (7) [23] with

available experimental data [12, 16, 24, 25]. Well-known examples of EC materials driven above

the temperature of maximum dielectric permittivity are polyvinylidene fluoride terpolymers and

irradiated copolymers, both exhibiting relaxor behaviour. Here, assuming a dielectric permittivity

Figure 1. ΔTEC of BaTiO3 [23] (solid line) and PVDF-based relaxor polymers (dashed line) as a function of E calculated for

Pr = 0 following Eq. (7) in comparison to ΔTEC determined along the coexistence curve of the ferroelectric-paraelectric

phase transition [27]. Experimental data of single crystal (sc), polycrystalline (pc) BaTiO3, and PVDF-based polymers were

taken from Refs. [12, 16, 24, 25, 28], respectively.
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independent on electric field, our calculations revealed that suitable for application ΔTEC values

appears only at large electric fields. This is a problem since rapidly rising electric fields favour

electrical breakdown of polymers. Moreover, the field dependence of ΔTEC is very different to

BaTiO3, but similar to relaxor PLZT in Ref. [26].

In the presence of a first-order phase transition induced by an electric field EPT < E2, an

additional entropy ΔSPT change occurs at the phase transition temperature TPT which is

originated from the latent heat L

ΔSPT ¼
L

TPT
: ð8Þ

Along the coexistence curve between two phases of the considered constituent, E is no longer

an independent parameter. Therefore, it should be substituted by D. The slope of the coexis-

tence curve on the E-T diagram is then given by the Clapeyron equation [29]

dEPT

dT
¼

ΔSPT
ΔT

¼
L

TΔD
: ð9Þ

In the case of ferroelectrics, where dielectric displacement D approximately equals the polari-

zation P, this yields a ΔTEC of [4]

ΔTEC,PT ¼
T

cp
�
dEPT

dT
� ΔP, ð10Þ

where ΔP is the jump of polarization at the phase transition, and cP is the volumetric-specific

heat at constant P. Table 1 lists the Clausius-Clapeyron contribution to the EC effect of some

typical ferroelectrics.

The EC effect of a first-order phase transition increases along the coexistence curve up to the

tricritical point. With further increase of the applied field, it decreases it again [27]. Thus, the

Clausius-Clapeyron contribution is substantial only for bulk ceramic-based EC devices driven

at moderate electric fields.

Considering the entropy change ΔS ¼ Sð0, TÞ � SðE, TÞ for a system of N dipolar entities, each

having Ω discrete equilibrium orientations, a physical upper bound on the EC effect was

derived in Ref. [35]:

ΔTEC,max ¼
T � lnΩ

3ε0 � c � CCW
P2
s , ð11Þ

where CCW is the Curie-Weiss constant and Ps the polarization at saturation when all dipoles

are aligned along the field. Values of Ps might be obtained from hysteresis loops in the

saturation regime. Values of CCW can be derived from the asymptotic behaviour of the linear

dielectric susceptibility in a Curie-Weiss-plot ε∝C=ðT � T0Þ with T0 < TC. T0 is the Curie-Weiss

temperature, i.e. the temperature of the appearance of a metastable paraelectric phase in the

ferroelectric one. The upper limit ΔTEC,max of lead-based relaxors estimated in this manner

Electrocaloric Cooling
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amounts to about 10 K. The EC temperature of a first- or second-order phase transition

deduced from the specific heat curves yields:

ΔTEC ¼

ðT2

T1

cpðTÞ

c
ph
p ðTÞ

� 1

" #

dT, ð12Þ

where cp
ph is the portion of volumetric-specific heat at constant pressure p due to lattice vibra-

tions. For a second-order phase transition in PZT thin films, ΔTEC amounts to 4.0–5.3 K at 665 K

[36]. A phase-transition independent upper bound of the EC effect was proposed in Ref. [37]

based on the fact that only a certain energy density might be stored in a dielectric—equivalent to

a limit in electrostatic pressure. Electrical breakdown of metal oxide dielectrics is fixed by the

arising local electric field and the chemical bond strength leading to Emax∝ε
�1=2, with Emax the

dielectric strength of the EC material [38]. According to Eq. (7), this results for Pr!0 in:

ΔTEC,max < �
ε0T

2c
�

1

εð0, TÞ

∂εð0, TÞ

∂T
� εð0, TÞE2

max: ð13Þ

For a relaxor ferroelectrics exhibiting a huge temperature dependence of dielectric permittivity
1

εð0,TÞ
∂εð0,TÞ

∂T ≈ 10�2K�1 [39], we estimate an ultimate EC temperature change of ΔTEC,max ≈ 50K.

Composition TPT,
�C ΔTEC,PT,

�C Ref.

PbTiO3 493 10 [4]

KNbO3 435 6 [4]

PbZrO3 230 13 [4]

Pb(Zr0.95Ti0.05)O3 230 12 [4]

Pb0.99Nb0.02(Zr0.75Sn0.20Ti0.05)O3 163 3.0 [4]

[111] 0.705PbMg1/3Nb2/3O3-0.295PbTiO3 127 0.55 [4]

BaTiO3 120 1.5 [4]

P(VDF-TrFE)68/32 ~105 ~12 [30] (Suppl.)

P(VDF-TrFE)65/45 81 9.5 [8], p.112

P(VDF-TrFE)55/45 ~65 ~41 [30] (Suppl.)

0.87PbMg1/3Nb2/3O3-0.13PbTiO3 18 0.2 [31]

0.9PbMg1/3Nb2/3O3-0.1PbTiO3 5 0.8 [32, 33]

PbSc0.5Ta0.5O3 2 1.6 [4]

0.95PbMg1/3Nb2/3O3-0.05PbTiO3 �28 0.13 [33, 34]

[111] PbMg1/3Nb2/3O3 �55 0.33 [34]

NH4H2PO4 �123 8.2 [4]

KH2PO4 �153 0.7 [4]

1Calculated using Eq. (12).

Table 1. EC temperature change corresponding to the latent heat calculated using Eqs. (9) or (10) from experimental

values.
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Our estimation explains the high values of the EC effect previously obtained in relaxor lead-

lanthanum zirconate-titanate thin films [26].

3. Thermodynamic cycles

3.1. Carnot cycle

An EC refrigerator working under the Carnot cycle will reach the highest efficiency possible.

The Carnot cycle describes a reversible change of an ideal gas, which allows to convert a given

amount of thermal energy into work, or, conversely, to provide cooling using a given amount

of work. It consists of four steps of operation: two adiabatic and two isothermal ones. During

the adiabatic steps, no heat is transferred while the refrigerant absorbs heat from the load at its

minimum temperature and expels heat to the heat sink at its maximum temperature in the

isothermal steps.

The EC Carnot cycle is demonstrated in Figure 2. The cycle starts from point 1 where the electric

field on the EC material is E1. In steps 1–2, the electric field is increased adiabatically to E3. Here,

the entropy of the EC material stays constant, and therefore, the temperature increases. At point

2, the EC material starts to experience an isothermal process. The electric field will be increased

until it reaches its maximum value E4 at point 3. In order to conserve isothermal conditions, heat

should be simultaneously rejected to the heat sink. In the adiabatic steps 3–4, the electric field is

decreased to E2 while the temperature of the EC material decreases until reaching point 4. In the

second isothermal steps 4–1, the electric field decreases to E1 while heat should be absorbed from

the load. Thus, the Carnot cycle requires a minimum of four different electric fields. Since the

heat rejected to the heat sink amounts to Q ¼ T1ΔS, the cooling power depends significantly on

the chosen working point (cf. cycles 1-2-3-4 and 5-6-7-8).

Figure 2. Reverse Carnot cycle for EC refrigeration.

Electrocaloric Cooling
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The implementation of the Carnot cycle into a practical refrigeration system is challenging, since

the isothermal steps and the transition from an adiabatic process to an isothermal one are not

easy to realize. In the two isothermal steps, the refrigerant is in thermal contact with the load or

the heat sink, respectively. Here, the rate of electrical field change is limited by the relatively large

thermal relaxation time of the thermal interfaces (heat switch or heat transfer agent) of the

system. This significantly lowers cycle time. Moreover, the maximum temperature span Tspan =

Tl � Ts of the whole refrigerator will be less than the ΔTEC of the ECmaterial. On the one hand, a

small temperature span provides large cycle efficiency (cf. Eq. (14)). The temperature span Tl� Ts

might be increased by means of a cascaded structure of m units where the unit n ejects heat to

unit n + 1, while this unit absorbs heat from unit n (1 < n <m) covering the desired Tl � Ts. Such a

cascade system does not require large ΔTEC. However, in order to reach high efficiency, the heat

ejected from the previous step should be completely absorbed by the following step. In general,

since the EC-induced entropy change is not a constant, and the specific heat of the EC material

also changes with temperature, this requirement is hard to meet. Consequently, the performance

of the cascaded refrigerator is further reduced.

The coefficient of performance COP is defined as the ratio between the useful heating or

cooling provided to work required. Considering an ideal Carnot cycle, the corresponding

COPC can be written as

COPC ¼
Ts

Tl � Ts

, ð14Þ

where Ts and Tl indicate the temperature of heat sink and load, respectively. COPC establishes

an upper bound for the COP. Since the EC effect is a thermodynamically reversible process, EC

refrigerators could reach the limit of the Carnot efficiency. The relative efficiency of a refriger-

ator with respect to an ideal Carnot cycle is defined as

Φ ¼
COP

COPC

, ð15Þ

where Φ is determined by the EC material hysteresis, the heat losses of the heat transfer

processes through heat switches or a regenerator, the thermal resistance of the heat switches,

the regenerator efficiency (the ratio of actual heat exchange in the regenerator to an ideal one),

the heat flow from the environment to the load, the deviation of the isothermal steps from the

ideal case, Joule heating at the contacts, etc. The total efficiency is then the product of separate

efficiency coefficients. The current state-of-the-art commercial vapour compression cycle has a

COP of about 3.6 [7].

3.2. Alternative refrigeration cycles

Similar to MC cooling, also alternative refrigeration cycles might be employed for EC refrigera-

tion. The Stirling and Ericsson cycles were considered in Ref. [40]. The Stirling refrigeration cycle

consists of two isothermal and two isopolarization steps, while the Ericsson refrigeration cycle

consists of two isothermal and two isofield steps. The heat is released and absorbed in the two

Refrigeration26



isothermal steps. In the Stirling cycle, polarization would change during heating and cooling due

to a strong temperature dependence of the dielectric permittivity of polar dielectrics. Therefore,

this cycle is not suitable for EC refrigeration from an experimental point of view. The Ericsson

cycle is more readily applicable than other thermodynamic cycles such as the Stirling cycle. An

isofield condition is easily realized keeping the EC material connected to the voltage source. The

Ericsson cycle requires heat regeneration, i.e. the heat rejected from the hot refrigerant is inter-

mittently stored in a thermal transfer medium, before it is transferred to the cool refrigerant. The

efficiency of the regenerator is significantly affected by the heat transfer conditions (heat transfer

surface, heat transfer coefficient, boundary layers, heat conduction, fluid viscosity, etc.). Gener-

ally, the coefficient of performance of a ferroelectric Ericsson refrigeration cycle is smaller than

that of a Carnot cycle for the same temperature range [40].

The Olsen cycles was proposed for application in pyroelectric energy harvesting [41]. There-

fore, it will not be considered in this work. It replaces adiabatic polarization and depolariza-

tion of a ferroelectric by corresponding isothermal steps.

A gas refrigeration cycle where a gas is compressed and expanded, but does not change phase,

is called Bell-Coleman cycle. It consists of two adiabatic (compression and expansion) and two

isobaric processes (heat addition and heat rejection). This cycle corresponds also to the reverse

Brayton cycle widely used for subcooling in the liquid nitrogen industry. For EC refrigerators,

even the reverse Brayton cycle is predominantly chosen [42–44]. It includes the following steps

(Figure 3):

1. Adiabatic polarization by increasing the electric field to a value E2, the EC material

experiences EC heating (+ΔTEC).

Figure 3. Reverse Brayton cycle for EC refrigeration.
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2. Heat rejection: heat rejection to a heat sink under a constant electric field E2.

3. Adiabatic depolarization by decreasing the electric field to a value E1, e.g. zero, the

material experiences EC cooling by (�ΔTEC).

4. Heat absorption from a load under the constant electric field E1 returning to the initial

state.

The amount of heat transferred from the load to the heat sink per cycle and per unit volume is

given by

q ¼ cðE2Þ � ðT2 � T3Þ, ð16Þ

where c(E2) is the volumetric-specific heat at E = E2. The cooling power is then 〈 _q〉 ¼ q=τc with

τc the cycle time. The difference between the Brayton and Ericsson cycles is that the Brayton

cycle uses adiabatic steps instead of using isothermal ones. Compared to the Carnot cycle, the

mean temperature during heat rejection to the heat sink will be less than T2, whereas the mean

temperature during heat absorption from the load is higher than T4. For an ideal gas and a

specific heat independent on temperature, the relative refrigerator efficiency amounts to

Φ ≈ 1=4 [45]. Ferroelectrics themselves exhibit a strong temperature dependence of the

volumetric-specific heat, particularly in the vicinity of the ferroelectric-paraelectric phase tran-

sition. The relative refrigerator efficiency then comes out as

Φ ¼ cðE2ÞðT3 � T2Þ
cðE1ÞðT4 � T1Þ � cðE2ÞðT3 � T2Þ

: ð17Þ

This means that it is determined by the ratio cðE1Þ=cðE2Þ > 1. Consequently, it leads to

Φ < 0:25. Here, Φ is also largely affected also by the ratio of Tspan to ΔTEC, i.e.

ðT2 þ T3Þ=2 � ΔTEC, which are functions of the EC material, the EC element design and the

thermal interfaces. However, this estimation does not account for the losses described in detail

below. With regard to losses, Φ is limited to a value of approximately 10–15%, which is

comparable to thermoelectric energy converters. Efficiencies of Φ ≥ 0:5 have been reported in

literature for a micro-EC cooling module comprising a micro-electromechanical heat

switch [46], a chip scale EC oscillatory refrigerator (ECOR) [28] and a EC refrigerator with

intrinsic regenerator [47]. It seems that such a Φ value originates from unreasonably large

values of COP > 8.

Considering only heat losses caused by heat switches, the maximum relative efficiency of EC

refrigerators is given by [48]

Φswitch ¼
ffiffiffiffi

K
p

� 1
ffiffiffiffi

K
p

þ 1

 !2

, ð18Þ

where K = κon/κoff is the conductivity contrast of the heat switches and, κon and κoff are the

thermal conductivities of the heat switch in the on and off states, respectively. Thus, if K > 10,

then EC cooling exceeds the efficiency of thermoelectric cooling. For K > 100, it offers an
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efficiency comparable to magnetic cooling (about 70%) with much smaller and cheaper equip-

ment. With regard to the thermal conductivity of the EC element κEC [23], the thermal contrast is

K´ ¼ K �
κoff þ κEC

κon þ κEC
: ð19Þ

For applications, usually κEC ≈ κon ≫κoff holds.

To cyclically store and release energy to the refrigerant, cyclic operating EC systems require a

regenerator. In vapour compression refrigeration, the refrigerant is also the circulating fluid.

Similarly, an EC material is used as both the refrigerant and the regenerator. However, an

exchange fluid is needed to transport heat to and from the refrigerant since the refrigerant is a

solid. Such an active EC regenerator (AER) consists of a porous structure of an EC material and

voids or channels through which the heat transfer fluid can flow [42]. Regenerators are also a

source of heat loss [40].

4. Optimal EC materials and optimal operational parameters

4.1. EC figure of merit

One way to characterize the performance of devices is the derivation of appropriate figures of

merits FOM, that is, of appropriate combinations of physical properties affecting device effi-

ciency. The EC device performance is determined by (i) the performance of the refrigeration

cycle, (ii) the refrigeration capacity (RC) and (iii) the heat transfer efficiency. The different

design of EC refrigerators makes a general treatment difficult. Therefore, we will consider first

a FOM of cooling power based on materials performance instead of system performance. Our

FOM accounts only for the thermal resistance at the interfaces of the EC material. It does not

take into account the thermal mass of the heat switch or the heat transfer agent. Moreover, we

assume that the heat transfer does not limit device efficiency, i.e. in case of a heat switch the

thermal contrast becomes infinite: K!∞ (cf. Eq. (18)). We denote this model as an ideal EC

element.

In order to characterize the maximum potential of the refrigerant for each cooling technology,

an energy conversion efficiency originating from the material, COPmat, was derived in Ref. [7].

It does not include the system details such as limitations in the driving system efficiency (from

compressor, motor, etc.), system dynamics, regenerator effectiveness, heat or mass transfer and

component geometries. Therefore, it can be regarded as the maximum potential the material

has for the cooling technology. In the case of EC cooling, COPmat yields [7]:

COPmat,EC ¼
TsΔS� AEC

ðTl � TsÞΔSþ 2AEC
, ð20Þ

where AEC is a materials constant appearing for hysteresis and dielectric losses. In Eq. (20),

TsΔS represents the heat transferred from the load to the heat sink within one refrigeration

cycle and ðTl � TsÞΔS the work supplied by the EC material within this cycle. For AEC ! 0,
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Eq. (20) turns into Eq. (14) describing a thermodynamically reversible process. The COPmat of

EC materials (~0.35) is inferior to the ones of MC (~0.86) and elastocaloric materials (~0.65)

which both exhibit a much larger latent heat of the corresponding first-order phase transi-

tions [7]. Actually, EC refrigerators benefit much less from the large entropy change induced

by driving the material through the phase transition by means of applying of releasing rela-

tively small fields (cf. Table 1).

Eq. (20) includes a device-related parameter—the temperature span ðTl � TsÞ, a thermody-

namic parameter ΔS and a physical parameter AEC. For practical use, it would be extremely

helpful to implement a refrigerant materials criterion which characterizes the efficiency of the

physical cooling process and which is therefore independent on the performance of different

thermodynamic cycles. For this purpose, COPmat may be written as [7]

COPmat ¼ COPC �Φmat: ð21Þ

where Φmat is the dimensionless material efficiency:

Φmat ¼ 1�
εε0E

2 � tanδ

cΔTEC
, ð22Þ

where tanδ is the sum of dielectric and hysteresis losses during E cycling. The temperature

difference ΔT� ¼ ΔTEC � ðTl � TsÞ of the heat transfer steps was replaced by its maximum value

ΔTEC since we consider the maximum cooling power (cf. Eq. (26)). Then Φmat becomes indepen-

dent on cycle parameters, and it receives its minimum value. The second term on the right-hand

side of Eq. (22) represents the inverse of the EC efficiency, i.e. the ratio between the heat trans-

ferred from the load to the heat sink and the dissipated electrical energy, introduced in Ref. [49].

The RC is a measure of how much heat can be transferred between the load and the heat sink

in one ideal refrigeration cycle [50]:

RC ¼

ðT2

T1

ΔSdT ≈ΔS � δT ¼
cΔTEC

T
δT, ð23Þ

where δT is the full width at half maximum of the ΔS versus T curve. Estimations of δT for

different EC materials were given in Ref. [51]. Another physical estimate is the distribution

width of the local Curie temperatures considered in Refs. [22, 37].

Complete heat transfer from and to the surroundings requires a Fourier number Fo ¼

αt=d2 > 1, where α is the thermal diffusivity, t is the time and d is the thickness of the EC

material [46]. Since power is the subject of interest, we have to consider the Fourier number per

cycle time τc

Fo

τc
¼

α

d
2
¼

κ

cd
2
, ð24Þ

with κ is the thermal conductivity. The FOM of an ideal EC element proposed in Ref. [37],

combines the materials efficiency Φmat, the refrigeration capacity RC and the Fourier number

per cycle time:
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FOM ¼
1

1�Φmat
� RC �

Fo

τc
¼

κc � ΔT2
EC� � δT

εε0 � tanδ
�

1

T � E2d2
: ð25Þ

This FOM consists of a term describing the properties of the EC material and a term of

operational parameters applied to the material. It increases not only with the square of the EC

coefficient (Φ∝½ΔTEC=ΔE�
2), but also with increasing EC efficiency (Φ∝cΔTEC=εε0E

2tanδ),

increasing COP of the EC effect (Φ∝ΔTEC=T) (the latter two values were proposed separately

as EC figures of merit in Refs. [49, 52], respectively), and increasing heat transfer rate (Φ∝κ=d2).

The larger the FOM, the better the cooling performance will be. For an ideal refrigerant, FOM

becomes infinite: FOM ! ∞.

4.2. Best performing EC materials

The most studied and best performing EC materials are currently polyvinylidene fluoride

(-CH2-CF2-)n terpolymers (P(VDF-TrFE-CFE)) and irradiated copolymers (P(VDF-TrFE)) as

well as solid solutions of lead magnesium niobate and lead titanate ((1-x)PMN-xPT) [2].

Moreover, lead-free perovskite relaxors BaZrxTi1-xO3 (BZT) provide a ΔTEC value over a

broad temperature range sufficient for practical cooling applications [51]. Here, data are

available solely for comparably low electric fields (up to 14.5 MV/m). Recently, a large ΔTEC

of 45 K was obtained for Pb0.88La0.08Zr0.65Ti0.35O3 thin films on a Pt/TiO2/SiO2/Si substrate

at an electric field of 125 V/μm [26].

The general requirements to an EC refrigerant are:

• large and reversible polarization change,

• suitable temperature range of high EC response,

• slim or absent P-E hysteresis (coercive field Ec => 0),

• small specific heat and large thermal conductivity for fast heat transfer and

• large resistivity, i.e. small Joule heating.

Table 2 compares material characteristics [2, 5, 6, 8, 26, 51, 53], the materials efficiency Φmat,

Eq. (22), and the figure of merit, Eq. (25), of promising EC refrigerants. For comparison, a

thickness of 100 µm was chosen. To account for the field dependence of the dielectric permit-

tivity εwas estimated by averaging in the given electric field region. The values ofΦmat exceed

significantly the ones known for Brayton engines (0.6–0.8). The only exception is the MLC due

to its comparable low value of ΔTEC. MLCs are still not optimized for EC application. The

actual FOM depends on how much of the potential δT will be really used and on the field

dependence of ε. The latter problem is absent in ferroelectric polymers.

4.3. Cooling power of an ideal EC element

The cooling power of an ideal EC element is given by _q ¼ CECΔT=τc, where CEC is its heat

capacity and ΔT� ¼ ΔTEC � ðTl � TsÞ is the temperature difference of the heat transfer steps.

When the cycle time τc is associated by a constant factor m with the thermal time constant

τRC ¼ RthCEC of the EC element, the heat capacity cancels out. Consequently, _q is determined
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by the ratio of ΔT* to the total thermal resistance Rth of the device. Taking into account that

there are two heat transfer steps (heat absorption and heat rejection) with equal time constants

and equal heat fluxes within both steps, the average cooling power per cycle yields [44]

〈 _q〉 ≈
ΔT�½1� exp ð�mÞ�

2mRth
, ð26Þ

where R00
th ¼ A � Rth is the area-specific thermal resistance given in m2/KW. For thermal time

constants with m > 2 (two isothermal steps at least with a duration τRC), the EC material’s

temperature decays to almost the steady-state value. Here, the cooling power increases linearly

with frequency f. At smaller values of m, a temperature offset appears decreasing the effective

ΔT*. The maximum specific cooling power is obtained at a value of m ¼ ln2 ≈ 0:7 yielding

〈 _q〉max ¼
0:36ΔT�

X
i
R00

th, i

: ð27Þ

Table 3 compiles estimated specific cooling powers of hypothetical EC devices in dependence

on the dominating thermal resistance of possible heat-releasing parts.

4.4. Cooling power of the refrigeration system

An EC refrigerator, i.e. a heat pump, is able to transport thermal energy against a temperature

gradient from Tl to Ts where Tl > Ts. Here, the heat flows from the load to the EC layer and from

the EC layer to the heat sink. Both are controlled by thermal connections that have to be

opened and closed appropriately as the layer is heated or cooled. Heat is transferred from the

load or to the heat sink either

i. via controlled heat switches [58] as well as uncontrolled thermal rectifiers, or

ii. by pumping a gaseous or liquid heat transfer agents through the solid refrigerant [59].

The heat switch or the heat transfer (HT) agent acts as an additional cycle-average thermal

mass CHT of the system. Correspondingly, the cycle time τc � RthðCEC þ CHTÞ is increased.

Refrigerant T, K ΔTEC, K ΔE, V/µm c, MJ/m3K ε κ, W/mK δT, K tanδ Φmat FOM,

mW/cm3

P(VDF)-based

polymers

305 20 200 2.7 60 0.2 50 0.15 0.941 1.111

BaTiO3 400 1.5 1 4.2 5000 2.6 5 0.05 0.9996 13.875

BaTiO3 295 0.5 30 2.5 500 2.6 60 0.07 0.554 0.119

BaZr0.2Ti0.8O3 310 4.5 15 3.4 800 2.6 30 0.05 0.994 21.739

0.7PMN-0.3PT 420 2.5 10 2.8 6000 1.5 100 0.08 0.949 1.765

0.9PMN-0.1PT 350 5 90 3 1250 1.3 100 0.1 0.986 0.311

PLZT8/65/35 385 2.5 10 3 5000 2.3 80 0.1 0.991 1.320

PLZT8/65/35 318 40 120 3 1000 2.3 80 0.07 0.963 20.295

Table 2. Material characteristics, the materials efficiency Φmat and the figure of merit selected EC refrigerants.
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Usually, CHT > CEC, i.e. the cycle time is primarily determined by CHT. Thus, the response

times of the heat switches or the gas/liquid delivery systems limit significantly the cycle time of

EC refrigerators. The thermal time constants of releasable solid-solid, liquid-solid and solid-

liquid (hybrid)-solid contacts are 350, 135 and 75 ms, respectively [56]. In an AER, a secondary

heat transfer agent (gas or fluid) is used to transfer heat from the cold to the hot end of the

regenerator. The heat transfer agent pumped through the EC material substantially enhances

the heat flow and, thus, increases the specific cooling power as well as the device efficiency.

Here, the Biot number Bi ¼ d=ðκ � R00
th,bÞ, characterizing the ratio of the thermal resistances of

the EC material volume and the boundaries, will be small for thicknesses d below 100 μm.

Assuming a uniform heat flux across the interface, a height of a very long rectangular duct of

0.5 mm and a thermal conductivity of the heat transfer agent of 0.15 W/mK (silicon oil), the

corresponding heat transfer coefficient h ¼ 1=R00
th,b yields a value of h ≈ 1250 W/m2K. At Bi <

0.1, the temperature of the EC element during heat transfer remains nearly constant, enabling a

lumped system approximation [60]. The time constant amounts then to τi ¼ c � d=h. It is in the

order of the response time of piezoelectric valves for gas or liquid supply amounting to a few

milliseconds [61]. Table 4 compiles the time constants of hypothetical thermal interfaces and

the corresponding operational frequency limits. Note that oxide thermal rectifiers made of two

oxides with different thermal conductivities [62] possess a thermal contrast of K = 1.43 which is

still too low for EC applications.

Performance-limiting component R0 0
th, m

2/KW _q, W/cm2 Reference

Thermal switch, MEMS (poly-Si-Si3N4) 1.67 � 10�5 11 [54]

Thermal switch, Hg-droplet array 1.10 � 10�6 164 [55]

Solid-liquid hybrid thermal interface 1.3 � 10�5 13.9 [56]

Liquid-droplet -mediated interface 6.7–3.2 � 10�5 2.7–5.6 [56]

MLC, Ni-electrode 1.76 � 10�5 10 [17]

MLC, Ag-electrode 3.86 � 10�6 47 [17]

Liquid hexane flow (calc.) 1.4 � 10�4 ~1 [57]

10�3 (exp.) 0.36

ΔT* = 5 K, m = ln2.

Table 3. Specific cooling power of EC devices in dependence on the dominating thermal resistance.

Thermal switch τ, ms fmax, Hz

Al-Si solid-solid contact 3501 0.5

Liquid-droplet-mediated interface 1351 1.2

Solid-liquid hybrid thermal interface 751 2.2

Active EC regenerator ~102 17

1Ref. [56].
2Calculated for d = 5 µm.

Table 4. Time constants of thermal interfaces and the associated frequency limit of EC devices.
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Currently, the operational frequency of EC refrigerators is limited to about 10 Hz providing

cooling powers of a few W/cm2.

5. Device prototypes

EC refrigerator based on SrTiO3 was initially proposed for cryogenic application, particularly

in the 4–15 K temperature range [13, 63]. In a completely solid-state EC device, the electric field

and magnetothermal heat switches were cycled in a proper time sequence [63]. However, no

cooling power and device efficiency were reported.

For switching from a heat-conducting to a heat-insulating state near room temperature, EC

elements are placed between a pair of thermoelectric elements (Peltier elements), serving as

heat switch [58]. The first switch is in thermal contact with the heat sink and the second one

with the load. During the adiabatic steps, both heat switches are turned off. After the EC

material was adiabatically polarized (heated), the first heat switch is turned on, transferring

heat from the EC element to the heat sink. The second heat switch stays turned off. After

adiabatic depolarization (cooling), the second heat switch becomes active and heat is trans-

ferred from the load to the EC element. The first heat switch stays turned off. A device

prototype in this configuration using Peltier elements in the passive mode was characterized

in Ref. [64]. The thermal contact conductance of Peltier elements was about 1000 W/m2K,

i.e. they do not provide an advantage compared to laminar liquid flow of a heat transfer

agent [57].

For EC micro-refrigerators, heat switches were fabricated by micro-electromechanic systems

(MEMS) technology [43, 46, 65]. For fast heat exchange, laterally interdigitated electrodes were

considered in Ref. [46]. The weak point of such a design is the comparably high thermal

resistance at the interfaces to the load and the heat sink (cf. Table 3).

Liquid crystals were proposed as prospective heat switches [66, 67]. The operation of a thin

film EC refrigerator comprising such liquid crystal heat switches was theoretically investigated

in Ref. [48]. Although a thermal contrast of up to about 25 was reported for liquid crystals [68],

no devices were realized yet.

A fluid-based approach uses electrohydrodynamic (EHD) flows in thin films of dielectric

fluids [69]. In this case, the thermal contrast K = 4.7 	 1.1 yields a relative efficiency Φswitch =

0.18, which is still too low for practical application.

Table 5 compiles the parameters of EC refrigerators where the transport of thermal energy

from the cold to the hot side of the system is carried out by means of heat switches. The tables

illustrate that commercial multi-layer capacitors described above are an attractive EC compo-

nent in proof-of-concept refrigerator prototypes. MLCs are extremely reliable. They combine a

suitable thermal mass with an operating voltage in the order of 100 V as well as with the high

dielectric strength obtained in thin layers (typically <10 µm) [70]. MLCs can be stacked in series

to achieve a higher Tspan. Moreover, MLC arrays can be operated between a common heat

source and sink to increase cooling power.
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A compromise between low thermal interface resistance and a quick heat transfer is a regener-

ator system, i.e. a heat exchanger where the heat is intermittently stored in a thermal storage

medium. In the 1980s, EC cooling near 300 K was demonstrated at an operating frequency of

f = 0.4 Hz using a regenerator of helium or liquid pentane that flowed back and forth between

0.3-mm-thick PbSc0.5Ta0.5O3 plates [57, 59, 71]. The plates were rendered alternately hot and

cold by electrically cycling the phase transition. The cooling power was still low at about

7.7 kg/W. Prototypes with up to 750 plates were built. In order to maintain a high temperature

span in a wide temperature range, a cascade concept was realized exploiting the shift of the

temperature of maximum EC activity of ceramics tailored by different sintering temperatures.

A 10-fold cascade provided a temperature span of 10 K. The same operational principle can be

realized using micro-electromechanical systems technology [72]. Here, the heat transfer liquid

(Galden HT-70) is pumped back and forth by two diaphragm actuators, which are driven

electrostatically. A small-scale EC cooling device based on an active EC regenerator with

silicon oil or water as heat transfer fluids is described in Ref. [42].

The heat regeneration process is commonly used to increase the temperature span in cooling

devices. Experimentally obtained regeneration factors (ratio between the temperature span

established across the device and ΔTEC) are ca. 2 [71] and ca. 3.7 [42], respectively. Simulations

predict an improvement by a factor of 5–6 [71] and, by optimizing also the heat transfer agent,

up to a factor of 10 [42]. Thus, temperature spans of up to 20 K seem to be technically possible.

Regeneration can be realized also by heat exchange directly between EC elements that are

rotating in opposite directions with different applied fields. A corresponding rotary EC refriger-

ator is described in Ref. [47]. It consists of stacked EC rings where each EC ring is composed ofNs

(for example, Ns = 16) thermally separated EC elements. The EC rings rotate coaxially with the

same rotary speed, but the rotation directions are opposite between neighbouring rings. Every

Refrigerant Heat switch T, K E, MV/m ΔTEC,
�C f, Hz _q, W/cm2

Φ Ref.

SrTiO3 Magnetothermal 10 2 0.3 [63]

n/a Electrostatic MEMS-actuator 313 – 10 3–6 0.32 [46]

BaTiO3 (MLC) Electrostatic actuator with liquid

thermal interface

300 40 0.51 0.22 [43]

0.7PMN-0.3PT Passive Peltier element 348 1.2 2.01 0.42 0.0352 [64]

BaTiO3 (MLC) MEMS-shape Si with liquid

lubricant

300 27.7 0.51 0.33 0.036 0.462,3 [65]

n/a Liquid crystal 100 10 5.72 0.182,3 [48]

≤1502 ≤0.442,3

BaTiO3 (MLC) Hydrofluoroethers 298 ~50 0.61 0.25 0.142,3 [69]

1Experimental value.
2Our estimate.
3Calculated using Eq. (18).

Table 5. Characteristics of EC refrigerators comprising heat switches.
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two neighbouring EC rings are directly contacted to facilitate the heat exchange with each other.

Heat exchangers with high thermal conductivity are placed at the circumference at opposite

sides of the device to absorb or reject heat. Simulation results showed a cooling power density

of 37 W/cm3 for a Tspan of 20 K for a cooling device made of P(VDF-TrFE-CFE) terpolymer.

The electrocaloric oscillatory refrigeration device (ECOR) adapts a concept known from

thermoacoustic cooling [28, 73]. It consists of an EC element and a solid-state regenerator. The

length of the EC module is slightly shorter than that of the regenerator, so that the EC module

can move back and forth on the regenerator. Thereby, a temperature gradient is established

within both and heat is transported from one side to the other. The solid-state regenerator

Refrigerant Configuration T, K E, MV/m ΔTEC,
�C f, Hz _q, W/cm2

Φ Ref.

PST AER 1.5 0.9 4 0.05 [59]

31 1.51 5

260–280 6 3 0.36 [57]

280–300 1.5 0.9 0.42 [71]

P(VDF–TrFE–CFE)

59.2/33.6/7.2

Fluid-based micro-scale

refrigerator

300 150 16 10 3 0.31

50 10 0.173 [72]

50 20 2

0.9PMN-0.1PT Small scale AER 115 1.5 1.25 [42]

87 1.25

300 57 0.75

50 0.91 0.75

25 0.61

Ba(Zr,Ti)O3 (MLC) 20 0.541 0.02 0.0061 [73]

298 5 0.083

0.02

5

n/a EC refrigerator with internal

regenerator

323 150 14.6 1.25 ~4 0.57 [47]

P(VDF-TrFE)

68/32 (irrad.)

Chip scale EC oscillatory

refrigerator (ECOR)

50 0.5 [74]

80 2.21 0.5

100 0.5

308 100 1

100 3

150 0.5

160 211 10 5.4 0.5 [28]

1Experimental value.

Table 6. Characteristics of EC refrigerators using regeneration.
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might possess an anisotropic thermal conductivity highly reducing heat conduction losses. A

1 cm long device can provide a cooling density of 9 W/cm3. The weak point of this design is the

friction during the relative motion between EC element and regenerator.

Table 6 illustrates the characteristics of EC refrigerators using regeneration. Although the

cooling power of experimental prototypes is still very low, modelling based on experimental

results predicts cooling powers of a few W/cm2.

6. Conclusions

EC cooling is an environment-friendly caloric energy conversion technology. Cooling power

densities of a few W/cm2 and temperature spans in the order of 20 K (in regeneration systems)

are achievable at a cycle time of 100 ms. Currently, EC cooling does not represent an alternative

for the full replacement of vapour compression. It can be assumed that it will rather penetrate

niche markets in the future such as small, compact, local and all-solid-state refrigerators.

Although the reverse Brayton thermodynamic cycle is actually the most suitable for practical

implementation, further research on more efficient cycles is required. EC cooling processes

possess a large materials efficiency and are thermodynamically reversible. At present, the

bottleneck of EC refrigerators is the heat transfer process needed to absorb heat from the load

and reject it to the heat sink. Most attractive for applications are all-solid-state devices includ-

ing Peltier elements as thermal switches and active electrocaloric regenerators using a liquid

heat transfer agent.
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