
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 6

Modified Electrodes for Determining Trace Metal Ions

Pipat Chooto

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68193

Abstract

Due to all the advantages of low cost, speed, and simplicity, electrochemistry has always 
represented a perfect choice to be selected in quantitative analysis particularly in the case 
of metal ions but with the drawback of specificity and sensitivity. With the arrival of nano-
materials, the problem of sensitivity and limit of detection has been overcome and a great 
variety of applications of electrochemistry especially in trace analysis are highlighted. 
Layers of materials can be arranged and manipulated to make the methods more spe-
cific to targeting analytes The opportunity is there for both older and newer methods to 
be beneficial in a large number of applications with superb analytical performance. This 
knowledge of modified electrodes can inspire newer and greater innovative applications 
of electrochemistry with the promising extension to other areas under current interests.

Keywords: modified electrodes, ASV, nanomaterials, metal ion analysis

1. Introduction

A number of techniques have been employed for the determination of trace metal ions includ-

ing atomic absorption spectrometry (AAS), inductively coupled plasma-mass spectrometry 
(ICP-MS), inductively coupled plasma-optical emission spectrometry (ICP-OES), and electro-

chemical techniques. Spectroscopic techniques are very expensive and need preconcentration 
as well as extraction that are time-consuming with danger of losses and contamination [1]. 
Electroanalytical techniques, particularly anodic stripping voltammetry (ASV), can be consid-

ered as the most powerful techniques due to their excellent detection limits, high sensitivity, 

capacity for multielement determination, high speed, simplicity, and relatively low cost [2] 

not to mention their innovative opportunities. It is important to be noted right at the very first 
here that voltammetry is not the only technique to be used for modified electrodes but other 
electrochemical techniques can be applied as well, especially potentiometry.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The selection of a proper electrode material is crucial in voltammetry. For the past six decades, 
mercury has been the most commonly used electrode material in various configurations for 
electrochemical determination of trace metal ions. Despite advantages of formation of amal-
gam and high overvoltage for gases among others, there have been numerous attempts to 
replace well-known toxic mercury with some other nontoxic or less-toxic electrode material 

[3]. Nowadays, numerous new electrode materials and methods have been developed, espe-

cially those concerning electrode modifications in particular with nanomaterials.

2. Background of modified electrodes

In general especially in the past, an electrode can be any electroconducting materials that 

were started by metals such as platinum or gold. Later, glassy carbon has been used with a 
number of advantages in particular ease to use and wide potential range. After that, carbon 
paste has been applied due to the fact that it is easy to prepare. Various substances have been 
mixed to attract the analytes especially metal ions to be collected at electrode surface and 
increase the sensitivity. With an introduction of nanomaterials and conducting polymers, for 
example, the surface areas for preconcentrating metal ions have been dramatically increased, 

making the method perfect for trace metal analysis in accordance with simplicity and low cost 

of electrochemical methods. Consequently, at present, there are a great number of research 
articles involving the development of new methods using a variety of modified electrodes to 
be applied with various areas as well as samples. To make this chapter simple but specific, 
the use of enzymes in the form of biosensors is not mentioned here. Those who are interested 
can obtain those specific stories in detail in a large number of available references [4]. We also 
have to say that modified electrodes can be used with a great variety of analytes, but metal 
ions are under the focus here. However, for the sake of abundant available applications and 
promising characteristics in adapting to metal ion analysis, the determinations of other ana-

lytes will be concisely included.

3. Types of substrate electrodes

Due to the fact that there are vast types of available and investigated substrates, the most 

recent and the most popular are discussed here. Other less frequently used electrodes such as 
carbon fiber or carbon cloth are not included. The readers are recommended to further study 
corresponding articles for more details.

3.1. Glassy carbon electrode (GCE)

Glassy carbon electrodes (GCEs) are prepared by means of a carefully controlled heat-
ing program of premodeled polymeric resin body in an inert atmosphere [5]. Unlike many 
 nongraphitizing carbons, it is impermeable to gases and also resistant to acid attack. The struc-

ture of glassy carbon consists of graphite planes randomly organized in a complex  topology. 
Glassy carbon possesses isotropic properties and does not require a particular orientation in 

the  electrode device. The properties of carbonaceous materials significantly depend on the 
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manufacturing processes involved. Surface treatment is usually employed to create its active 
and reproducible surface to enhance analytical performances. Another way is to include certain 
additional activation steps such as electrochemical, chemical, vacuum heat, or laser treatment.

Carbon electrodes offer a useful and environmentally friendly alternative to substitute mer-

cury electrodes with a narrow cathodic range or noble metal surfaces with limitations in terms 

of reproducibility, formation of oxide layers during voltammetric procedures and relatively 

low cost [6]. It becomes one of the most commonly used substrates due to its wide potential 
window with low background and its chemical stability. Electrode modification can then be 
applied to improve its performance in terms of sensitivity, selectivity, and reproducibility.

3.2. Boron-doped diamond (BDD)

Boron-doped diamond (BDD) electrodes have also currently attracted much interest to be 
applied in a variety of areas due to their superior properties, including extreme robustness 

with a low level of background interference, less adsorption of polar molecules, and attrac-

tively wider potential window in aqueous media [7, 8]. It has been used to quantify manganese 
in tea [9] as well as lead in tap water [10] and river sediment. Anodic stripping voltammetry 
BDD has been proved to possess outstanding features [11] to determine silver [12] and simul-

taneous detection of lead and copper [13].

3.3. Fluorine-doped tin oxide (FTO)

Fluorine-doped tin oxide (FTO) has been applied continuously as a substrate with outstanding 
features of simplicity in layer-by-layer (LbL) fabrication and its compatibility with extensive 
building blocks including dyes, biomolecules, nanomaterials, and polymers [14]. In spite of the 
fact that it has been reported to be successfully applied in the analysis of biosubstances particu-

larly DNA, it is also mentioned here in light of making its promising way to metal ion analysis.

3.4. Screen-printed electrode (SPE)

There are numerous possibilities to choose from for screen-printed electrode (SPE). The most 
popular material is still carbon. SPE has advantages of small size, low cost, simplicity as well 
as smaller amount of sample and waste. The problem of lower sensitivity can be solved by 
electrode modification, which also highlights its applications in a larger number of areas [15].

3.5. Carbon paste electrode (CPE)

Carbon paste is still widely used throughout the development of modified electrodes 
with certain reasons including superb quality of carbon as an electrode, low cost, and its 

 simplicity [16]. With clever design, additional benefits can be reached including stability, 
reproducibility, and fast response time. This material has been found to be useful for the 
determination of both compounds and metal ions.

3.6. Silica

Silica, in particular mesoporous silica, has been increasingly used in modified electrode with 
features of inertness, high surface area, moderate cost, availability, and compatibility of being 
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anchored by various materials. It has been reported to be useful in the analysis of both bio-

molecules and metal ions [17].

4. Types of modified electrodes

A number of materials have been investigated to be used in preconcentrating metal ions as 
well as other substances and make electrochemistry unique and highlighted in the worlds of 

analytical chemistry and beyond. Thanks to the developments and arrivals of nanomaterials, 
the most widely used especially at the very beginning is metal nanoparticles such as silver 

or gold to increase the surface areas and in turn the sites for metal ions to deposit. Both con-

ducting and nonconducting polymers have been used for a long time in modifying electrode 

surface to have more capabilities in supporting metal ions. Mesoporous silica with the advan-

tage of surface areas as well has been used in the determinations of a number of metal ions. 
Another example of a neutral substance with greater surface areas in collecting metal ions is 
chitosan, a substance from shrimp. Currently, it is certain that the opportunity is there that a 
large number of substances are under investigations or even await the discovery. Finally, the 
combinations of a variety of materials have also been proved to be useful in further receiving 

the metals ions to a greater extent. The electrodes modified by aforementioned materials are 
then applied in stripping voltammetry, parameters are optimized, and then the methods are 

used with real samples. Normally, the results are compared with standard methods or the 
standard materials are used for verification. A number of spectroscopic and electrochemi-
cal methods can also be used to provide additional details of the analysis. At present, a very 
large number of research articles focus on the applications of modified electrodes in many 
areas especially in the analysis of a great variety of substances, in particular, metal ions. Also, 
a number of materials have been investigated in the form of layers and sublayers as well as 

specific pores as a specific substrate for particular analytes, hence, the new term of “molecular 
imprinted,” which makes the method extremely specific.

The following materials that have been used in electrode modifications are not arranged with 
the criteria of the time of development. Rather, it is presented in the order of simplicity.

4.1. Unmodified electrode

With a superb characteristic of specific electrode such as screen-printed carbon electrode, 
metal ion can still be determined at trace level by in a very normal way [18].

4.2. Graphene

Graphene is an allotrope of carbon in the form of a two-dimensional, atomic-scale and hex-

agonal lattice in which one atom forms each vertex. It is composed of a single layer of sp2 
carbon in two dimensions. It is the basic structural element of other allotropes, including 
graphite, charcoal, carbon nanotubes (CNTs), and fullerenes. Graphene has a great variety of 
unusual beneficial properties including strength, heat and electricity conductivity, transpar-

ency, magnetic properties, and low cost [19].
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4.3. Graphene oxide

Graphene can be prepared in a modified way to obtain different and beneficial properties 
in new forms including thermally reduced graphene, partially reduced graphene, or even 

electrochemically reduced graphene (ErGO). Normally, this is the arrangement of oxygen in 
the structure, hence the name graphene oxide that is really helpful in collecting metal ions 

and providing better selectivity, resolution, as well as precision. With the addition of other 
substance that can form the bond via conjugation with graphene, electrocatalization as well 

as electroluminescence (ECL) can be facilitated. This modified graphene derivatives can be 
use satisfactorily in both waste water treatment via adsorption [20] as well as analysis in only 

one step [21] in addition to the development of new batteries [21, 22] and improvement of 

antibacterial properties [23].

4.4. Metals

Metal and metal alloys can also be used in the analysis of different species such as nitrite but 
the applications for metal ions are focused here. Moreover, as a typical case,only metal that 
can satisfactorily substitute mercury namely bismuth is emphasized.

In 2000, a new type of electrode called bismuth film electrode (BiFE) consisting of a thin film 
of bismuth deposited on a carbon substrate has been proposed as an alternative to mercury 

electrodes in ASV [24]. The main advantage of electrochemical properties of bismuth film elec-

trodes in comparison with mercury film electrodes (MFEs) is that Bi is more environmentally 
friendly with less toxicity in addition to simple preparation, high sensitivity, well-defined and 
separated stripping signals, and insensitivity to dissolved oxygen (which is an essential prop-

erty for on-site monitoring). The superior stripping performances of bismuth-based electrodes 
derive from their ability to form “fused” alloys with other metals similar to mercury [24].

There are three common ways to generate a bismuth film including (i) by preplating it from 
an acidic solution which is called an ex situ preparation, (ii) by codeposition with the analyte 
which is commonly known as an in situ setup and (iii) by electrode modification of a film, 
such as Bi

2
O

3
(s) or BiF

3
, to generate the Bi(s) coating [25]. Ex situ plating was found to be 

easier to manage because the conditions can be different from analytical or stripping condi-
tions, and there are no interferents in depositing; however, it is more susceptible to the change 

of electrode surface during electrode transfer and more steps make the method take longer 

time. Another advantage of ex situ methods is that the electrode can be regenerated at any 
time. Also, the potential can be better controlled due to the fact that, for in situ preparation, 
the stripping of bismuth needs to be performed at the potential more positive than bismuth 

oxidation and after that bismuth is replated [26].

4.5. Metal complexes

A number of metal complexes have been immobilized on the substrate to attract or react 
with other substances. Due to the fact that it already contains metals, this type of modifica-

tion substance is normally used for the determination of organic and inorganic compounds 

especially via electrocatalysis [27]. Cobalt phthalocyanin has been widely and continuously 
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investigated and applied for the analysis of ascorbic, diethyl stilbestol, and acetaminophen 

[28]. Manganese porphyrins have been extensively investigated [29]. As a matter of fact, por-

phyrins themselves can accommodate metal ions really well and, with the increase of surface 

areas, should be able to be used in the analysis of metal ions [30].

4.6. Metal nanoparticles

There was a wonderful review for metal nanoparticles for the determination of arsenic, chro-

mium, lead, cadmium, and antimony [31]. Mixing metal nanoparticles with a wide range of 
compounds can allow the analytical performances of the methodology to be greatly improved 

in various aspects especially sensitivity due to larger amount of analytes collected.

4.7. Metal compound nanoparticles

Due to the fact that there are a great variety of metal compound nanoparticles that have 

been used in metal ion analysis especially recently [32], only modified magnetic iron oxide 
nanoparticles (M-MIONPs) for mercury determination are mentioned here as an example.

It is well known that mercury in the lowest levels of concentrations is dangerous for human 

health due to its bioaccumulation in body and toxicity. Modified magnetic iron oxide 
nanoparticles (M-MIONPs) with 2-mercaptobenzothiazole (MBT) was found to be able to 
absorb mercury (II) ion satisfactorily from polluted surface water with advantages of speed, 
cost-effectiveness, simplicity, capability, ease of preparation, and safety [33]. Modification by 
2-mercaptobanzothiazole could increase absorption percentage up to 98.6% compared with 
43.47% for magnetic iron oxide nanoparticles (MIONPs) alone. Salt concentrations and pH 
were found to have no profound effect on mercury ion accumulation with high loading capac-

ity of 590 μg/g. This proves that the capability of metal compound nanoparticles in attracting 
analytes can be greatly improved by combining them with additional compounds.

4.8. Organic compounds

Organic compounds that can be used normally or after polymerization are provided in the 
topic of polymers. All kinds of organic compounds that can attract metal ions can be used 
well in metal ion determination. The stronger bond obtained from the compounds, the better 
they can be applied in accumulating metal ions. Ketones and quinones form another group 
of interest with specific interaction with certain metal ions [34]. Additionally, all organic com-

pounds can be made nanostructured by mounting in a multilayer form on substrate electrode. 
A few popular compounds are exemplified as follows.

4.8.1. Crown ether

Crown ether is a macrocyclic compound with a pore of specific size to accommodate metal 
ions. With derivation, its selectivity can be greatly increased. This characteristic combined 
with different potential of stripping makes the methodology suitable for simultaneous deter-

mination of metal ions which can face or cause interferences in other techniques [35].

Strategies can also be designed to let the compounds to form self-assembled monolayers 
(SAM) on metal electrodes or to be immobilized on other monolayers [36, 37].
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4.8.2. Schiff bases

Schiff bases are defined as the substances that contain the C═N moiety. With their specific 
capability in forming complexes with metal ions, Schiff bases can help increase the quantity 
of analytes on the electrode surface. Typical examples are potentiometric determination of 
Co(II) [38] and cyclic voltammetric analysis of Al(III) [39].

4.9. Polymers

Two cases of 2-mercaptobenzothiazole and diazonium are stated here for the vision about the 
applications with the use of materials in this group that can be in both monomeric and polymeric 

forms. Moreover, certain polymers can also be used for the purpose of molecular imprint [40].

4.9.1. 2-mercaptobenzothiazole

2-mercaptobenzothiazole (MBT) has been found in both monomer and polymer forms with 
the capabilities of collecting metal ions. Modification of nano-TiO

2
 modified with 2-mercapto-

benzothiazole (MBT) was found to be capable of collecting metal ions including Cd(II), Cu(II), 
and Pb(II) followed by elution with nitric acid and analysis by flame AAS [41]. Adsorption 
process as well as analytical conditions was optimized to obtain the dynamic range in ng/ml 

of 0–25.0 for Cd, 0.2–20.0 for Cu and 3.0–70.0 for Pb. The method was applied to the deter-

mination of Cd(II), Cu(II), and Pb(II) in water and ore samples. Obviously, this can also be 
applied to the analysis by electrochemistry without any need for elution. As a matter of fact, 
this is the topic under investigations of our group at present.

Poly(2-mercaptobenzothiazole) (PMBT) modified glassy carbon electrode has been fabricated 
and employed for the determination of specific organic compounds namely dopamine (DA), 
uric acid (UA), and nitrite (NO

2
−) in pH 6 phosphate buffer [42]. PMBT was found to catalyze 

oxidation of the compounds and shift the potentials to more negative which in turn resulted 

in well-defined and well-separated differential pulse (DP) peaks and made them possible 
to be simultaneously analyzed. SEM also revealed that continuous PMBT was formed with 
nano-scaled particles of 15–25 nm diameters. With optimized conditions, dynamic linear 
range in μmol/l was found to be 0.8–45 for DA, 0–165 for UA, and 60–1000 for NO

2
− with 

excellent linearity and submicromolar detection limits. Moreover, using standard addition, 
the methodology could be applied well with the real samples of urine and serum. Once again, 
due to the fact that the compound can react with metal ions well, this could shed some lights 

on simultaneous analysis of metal ions as well.

4.9.2. Diazonium

The modification through the electrochemical or chemical reduction of aromatic diazonium 
derivatives has been extensively investigated on a variety of carbon substrate  including glassy 

carbon [43, 44], graphite [45], graphene [46], and carbon nanotube [47]. It has been proved to 
immobilize a great variety of functional groups onto carbon materials with simplicity and ver-

satility to be used in metal analysis in a number of areas. Another advantage is long-term sta-

bility both in air and organic solvents. The high stability of the diazonium-modified electrodes 
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and the versatility of the diazonium modification method are particularly attractive for strip-

ping analysis. Carbon modified by the reduction of aromatic diazonium derivatives was first 
used as an electrode for electrochemical stripping analysis of heavy metals [44]. Diazobenzoic 
acid was reduced on GCE to obtain benzoic acid modified GCE to simultaneously analyze 
Cd2+ and Pb2+. The sensitivity of stripping peaks for both metals was increased up to six times 
with satisfactory analytical performances including 0.5–50 μg/l linear range, submicrogram 
per liter detection limits, and superbly low relative standard deviation especially for Cd2+. The 
method was successfully used in determining the metals in sewage samples. The detection 
of Cd2+ by ASV on BDD electrode based on simple and selective electrochemical reduction of 
Cd2+ on diazonium-modified BDD electrode has been developed with analytical performance 
interference study as well as verification by analyzing standard material. The method was 
then applied to the analysis of Cd in tap water [43].

4.10. Chitosans (natural polymers)

Chitosan (CTS), poly-[1,4]-N-D-glucosamine, is one of the most abundant natural polymers. 
Its pKa is about 6.5; therefore, at lower pH solutions (>pKa), its primary amines are proton-

ated, making it a cationic polyelectrolyte that is soluble in aqueous solution. At higher pH 
(>pKa), these amines are deprotonated which, in turn, makes chitosan neutral and insoluble 
[48]. The reasons that chitosan can be applied well in the analysis of drug substances, envi-
ronment pollutants, industrial materials, and food compounds are that they can form the film 
well and attach strongly to the surfaces. They are also hydrophilic, compatible with biological 
substances, mechanical resistant, and capable to be further modified [49].

4.11. Clay

It has long been known that cationic metals can be strongly absorbed on clay materials with 

negative charge. A large number of scientists especially in the areas of environments have 
extensively studied the adsorption of metal ions on the clay particles. This characteristic also 
benefits the determination as well as elimination of metal ions [50, 51].

4.12. Mesoporous silica

Mesoporous materials are described as materials whose pore diameters lie in the range 

between 2 and 50 nm [52]. These materials are in focus due to the fact that they have abundant 
surface areas, they can absorb metal ion very fast, and their pore size as well as pore arrange-

ment can be well-controlled. Moreover, they can be chemically modified with other functional 
groups to be able to better attract large variety of metal ions for the purpose of simultaneous 
analysis and removal for various samples [53].

4.13. Charcoal

Due to the fact that different kinds of charcoal can specifically adsorb metal ions on their surface 
[54, 55], they should work well in collecting metal ions. The increase of both surface areas and 
specificity from modifications can facilitate better analytical performances. Even though there 
have not yet been recent reports about their applications in metal ion analysis, the  opportunity 
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is there to apply charcoals onto substrates as a new methodology to reach the objective of using 

readily obtained and low-cost materials in both analysis and removal of metal ions.

4.14. Carbon nanotube

Carbon nanotubes are tube-form materials with the diameter at nanometer level discovered by 

a Japanese scientist, Sumio Iijima, in 1991. They can be classified into single-walled (SWCNT) 
and multiwalled (MWCNT) with different properties especially in terms of metallic and mag-

netic behavior. They can be prepared by chemical vapor deposition (CVD), arc discharge, 
or laser vaporization. They can be applied in a large number of areas especially modified 
electrodes. Carbon nanotubes can be mounted either alone or mixed with other materials on 
any substrate electrode but preferably GCE. MWCNT is normally more satisfactory due to its 
advantages of highly ordered structure, light weight strength as well as thermal and electrical 

conductivity. In particular, the multi-walled have been extensively used in the determination 
of organic compounds [56] or metal ions either by electrochemistry [57] or spectroscopy [58, 

59]. Their advantages in analysis mainly derive from the capabilities to adsorb metal ions [60]. 
This property makes it suitable to be applied in the areas of energy [61]. Furthermore, with 
large surface areas of carbon nanotubes, a number of substances can be mounted on them 

either single layer or multilayer to increase the capability to preconcentrate metal ions before 

their determinations [62].

4.15. Mixed or multilayered modification

Mixed materials can be used to determine both organic and inorganic substances including 

metal ions with the only reason of selectivity improvement. Despite of the fact that there are 
increasing methods to determine compounds such as H

2
O

2
 or glycerol, the combination of 

modified materials has been proved to facilitate the determination of trace metals. The good 
example is the use of bismuth, polystyrene sulfonate (PSS), and carbon nanopowder (CnP) in 
the determination of cadmium and lead [63]. This group can be further researched with the 
keyword “nanocomposites” [23, 64].

4.16. Biomolecules

Certain biomolecules including DNA, peptides, algae, and cell among numerous others can 
be used to determine specific metal ions. However, the experimental procedures can be much 
more complicated and difficult. The readers are recommended to obtain more information 
from an available review [65].

5. Roles of trace metal ions

Heavy metal contaminations have become one of the environmental issues of global concern 
due to the serious harm to human health. They have been main contribution for environ-

mental problems caused by their ecological toxicity in a number of areas worldwide. Heavy 
metals and their products have been extensively distributed in natural surroundings, and 

they continued their cycles in accumulating in living organisms before passing on to human. 
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Among those not easily removed from the environment are cadmium, mercury, copper, lead, 
silver, zinc, and arsenic [41]. Lead and cadmium are responsible for the damage of kidney 
and nervous as well as circulation systems [66]. Lead particularly has the greatest effects on 
children due to the fact that it causes irreversible neurological disorders. The limits of lead 
and cadmium in drinking water set in the USA are 0.015 and 0.005 mg/l respectively [67]. 
Therefore, control and accurate determination of trace metals in environment is of paramount 
importance.

6. Stripping techniques for metal ion determination

For voltammetry, stripping techniques are the most widely used in metal ion analysis [2, 

3] and normally the main objective of developing new ASV methodology for is to improve 
the analytical performances in determining trace metal ions including higher reproducibility, 

higher sensitivity, more convenience, better speed, lower cost, and environmentally friendlier 
conditions. The methods are optimized as well as standardized and then applied to the analy-

sis of a great variety of real samples. Their brief practical aspects are presented as follows.

7. Optimizations of stripping voltammetry

After the modified electrode of interest is fabricated and its characteristics such as wet-
tability are clearly defined, involving parameters are optimized such as electrolyte and 
electrolyte concentrations, pH and buffer to use, concentration of modifying agent and 
involving materials, deposition potential, deposition time, scan rate, and interferences. The 
optimized method is then applied with standards to obtain analytical performances fol-

lowed by methods validations. Finally, real samples can be analyzed in comparison with 
other standard methods.

8. Comparison of voltammetry with other methods

The comparison of voltammetry with normal electrode has been comprehensively discussed, 
especially for the speciation of arsenic [68]. Spectroscopic methods can provide the best limit 
of detection (LOD) but with high cost. With higher LOD, voltammetry is a better choice. Due 
to much greater sensitivity achieved by using modified electrodes, previous obstacles can be 
overcome and makes a large number of methods in the past applicable to real sample analysis 

by electrochemistry.

9. Study of metal ligand interaction and surface

Once practical approaches have been clearly proved to be applicable, the next important 
step is delving into involving interactions in order to lay the brick for future development of 

modifying materials as well as metal species to be determined. Methods such as X-ray crys-

tallography, cyclic voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), and 
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quantum calculations can be helpful in understanding collecting interaction and bond forma-

tion between metal ions and coordinating atoms [69, 70].

In addition, normally surface method such as Scanning Electron Microscopy (SEM) as well as 
Transmission Electron Microscopy (TEM) can be employed to follow the change of the surface 
during modifications and EIS has also proved to be helpful in checking the conductivity of 
electrode materials [71].

10. Comparison of analytical performances for individual analyte

To picture the figures of merit and analytical performances and to compare a wide range 
of modified electrodes, a number of investigations have been summarized in Tables 1–5). 
The decision has been made to arrange the research items with the criteria of individual 
analyte with a wide range of publication periods to suit specific areas of researchers and to 

Entry Modified 
electrode

Methods Ion/compound Linear range 

(mol/l)
LD (nmol/l) Ref

1 Fe
3
O

4
 NPs-CSa/

GCE
DPVj Bisphenol A 

(BPA)
0.05–30.0 8.0 [72]

2 CMK-3/
nano-CILPEb

LSVk Bisphenol A 
(BPA)

0.2–150 50.0 [73]

3 Fe
3
O

4
 

NPs-CBc/GCE
DPV Bisphenol A 

(BPA)
0.0001–50.0 0.031 [74]

4 Au NPs/
SGNFd/GCE

LSV Bisphenol A 
(BPA)

0.08–250.0 35.0 [75]

5 Au NPs-GRe/

GCE
DPV Bisphenol A 

(BPA)
0.0001–100 50.0 [76]

6 Fe
3
O

4
 NPs-

PANAMf /

GCE

AMPl Bisphenol A 
(BPA)

0.01–3.07 5.0 [77]

7 RGOg/CNTh/

Au NPs/SPEi

DPV Bisphenol A 
(BPA)

0.00145–1.49 0.8 [78]

aCS: chitosan.
bCMK-3/nano-CILPE: ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode.
cCB: carbon black.
dSGNF: stacked graphene nanofibers.
eAu NPs-GR: gold nanoparticles dotted graphene.
fPANAM: poly(amidoamine).
gRGO: reduced graphene oxide.
hCNT: carbon nanotubes.
iSPE: screen-printed electrode.
jDPV: Differential Pulse Voltammetry
kLSV: Linear Scan Voltammetry
lAMP: Amperometry

Table 1. Analytical performances of various modified electrodes for BPA determination.
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Entry Modified 
electrode

Methods Ion/compound Linear range 

(μg/l)
LD (μg/l) Ref

1 CB-15-

crown-5a/

GCE

DPASVj Pb/Cd 10.9–
186.5/15.7–
191.1

3.3/4.7 [35]

2 BiOClb/

MWCNTc/GCE
SWASVk Pb/Cd 5–50/5–50 0.57/1.2 [79]

3 L-cysd/GRe-CS/
GCE

DPASV Pb/Cd 1.04–62.1/0.56–
67.2

0.12/0.45 [80]

4 MWCNT/
poly(PCV)f/

GCE

DPASV Pb/Cd 1.0–200.0/1.0–
300.0

0.4/0.2 [81]

5 Bi-D24C8g/

Nafion SPCE
SWASV Pb/Cd 0.5–60/0.5–60 0.11/0.27 [2]

6 Bi/poly(p-

ABSA)/
GCE

DPASV Pb/Cd 1.0–130/1.0–
110.0

0.8/0.63 [82]

7 Bi-xerogel/

Nafion/GCE
SWASV Pb/Cd 1.04–

20.72/0.56–
11.24

1.3/0.37 [83]

8 Bi/CNT/SPE SWASV Pb/Cd 2–100/2–100 0.2/0.8 [84]

9 Bi
2
O

3
/GCEh SWASV Pb/Cd 2–250/1–150 0.26/0.52 [85]

10 BiF
4
/CPEi SWASV Pb/Cd 20–100/20–100 9.8/1.2 [86]

aCB-15-crown-5, 4-carbox-ybenzo-15-crown-5.
bBioCl, bismuth-oxychloride.
cMWCNT, multi-walled carbon nanotube.
dL-cys, L-cysteine.
eGR, graphene.
fpoly(PCV), poly(pyrocatecholviolet).
gD24C8, dibenzo-24-crown-8.
hBi

2
O

3
/GCE, graphite-composite electrodes bulk-modified with Bi

2
O

3
.

iBiF
4
/CPE, ammonium tetrafluorobismuthate bulk-modified carbon paste electrode.

jDPASV: Differential Pulse Anodic Stripping Voltammetry.
kSWASV: Square Wave Anodic Stripping Voltammetry.

Table 2 Analytical performances of various modified electrodes for Pd and Cd simultaneous determination.

Entry Modified electrode Methods Ion/compound Linear range (μM) LD (μM) References

1 Hba microbelt/GCE CV H
2
O

2
10–230 0.61 [87]

2 HRPb/DNAc-Ag/GCE CV H
2
O

2
7.0–7.8 2 [88]

3 Cobalt oxide NPs/
GCE

CV H
2
O

2
1–1000 0.6 [89]

4 Cyt cd/Ag NPs/GCE CV H
2
O

2
8.5–130 9.8 [90]
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Entry Modified electrode Methods Ion/compound Linear range (μM) LD (μM) References

5 Mbe(Hb, HRP)/
SWCNT-CTABf/GCE

CVi H
2
O

2
24.2–1670 8.07 [91]

6 Hb/undoped 
nanocrystalline 

diamond/GCE

CV H
2
O

2
2–25 0.4 [92]

7 Hb/PAN-co-PAAg/

GCE
CV H

2
O

2
– 4.5 [93]

8 Hb/chitosan and 
nanoCaCO

3
/GCE

CV H
2
O

2
– 8.3 [94]

9 Hb/nano-gold/ITOh CV H
2
O

2
10–700 4.5 [95]

10 Hb/nano-Ag sol-gel/
GCE

CV H
2
O

2
1–250 0.1 [96]

11 Hb/nano-Ag-chitosan/
GCE

CV H
2
O

2
0.75–216 0.2 [97]

aHb: Hemoglobin.
bHRP: Horseradish peroxidase.
cDNA: Deoxyribonucleic acid.
dCyt c: Cytochrome c.
eMb: Myoglobin.
fSWCNT-CTAB: Single walled carbon nanotubes-cetylramethylammonium bromide.
gPAN-co-PAA: poly(acrylonitrile-co-acrylic acid).
hITO: Indium tin oxide.
iCV: Cyclic voltammetry.

Table 3. Analytical performances of various modified electrodes for H
22

 determination.

Entry Modified electrode Methods Ion/compound Linear range (nM) LD (nM) References

1 NNaHMDEb CSVf Iron – 0.08 [98]

2 DHNc/HMDE CSV Iron – 0.005 [99]

3 DHNd(mercury coated, 

gold, micro-wire electrode)
CSV Iron – 0.1 [100]

4 5-Br-PADAPdHDME DLSAVg Iron 0.25–100 – [101]

5 -(IL-rGO/AuNDse/Nafion/
GCE)

SWVh Iron 300–100,000 35 [102]

aNN: 1-nitroso-2-naphthol.
bDHN: 2,3-dihydroxynaphthalene.
cHDME: Hanging mercury drop electrode.
d5-Br-PADAP: 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol
eIL-rGO/Au NDs: ionic liquid-reduced graphene oxide supported gold nanodendrites.
fCSV: Cathodic stripping voltammetry.
gDLSAV: derivative linear sweep adsorption voltammetry
hSWV: Square wave voltammetry.

Table 4. Analytical performances of various modified electrodes for iron determination.
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shed light on their upcoming research. Even though the focus is on metal ions, bisphenol 
A and hydrogen peroxide have been used as a model for the applications of modified elec-

trodes in analyzing other compounds. Despite of the fact that two units of concentration 
are expressed, the advantage of modified electrodes in moving up to better sensitivity and 
specificity as well as their more useful and more innovative applications in the near future 
can be clearly seen.

11. Future trends

Electrochemistry has been used and studied for a long time, which lays great fundamen-

tals for the development of newer electrochemical techniques. Valuable previous discoveries 
await their improvements by using modified electrodes. Innovations are underway to analyze 
metal ions with greater analytical performances as well as to suit simultaneous determina-

tions. New compounds can be investigated and mixed or immobilized to increase the surface 
areas and serve species imprints which in turn require deeper investigations for the attractions 
and interactions between modified substrate and analytes. Modified electrodes should also 
work well with spectroscopic, separation, and other methods in a variety of ways. They have 
already been proved to facilitate reactions for energy research [111]. The new thing that has 
not been considered is the use of modified electrodes in organic synthesis to make it more spe-

cific [112]. Moreover, modified electrode has already found its ways in  spectroelectrochemical 

Entry Modified electrode Methods Ion/compound Linear range 

(μg/l)
LD (μg/l) References

1 HMDEa DPASV Se (IV) 1.2–75 – [103]

2 BiFEb DPASV Se (IV) 2.0–30 0.1 [104]

3 AuEc modified with poly 
3,3′-diaminobenzidine 
4HCl-Nafion

DPASV Se (IV) 0.4–158 0.06 [105]

4 Screen printed graphite 
electrode

DPASV Se (IV) 10–1000 4.9 [106]

5 Au NPs/BDD DPASV Se (IV) 10–100 – [107]

6 Poly(3,3′- diaminobenzidine) 
film/AuE

DPASV Se (IV) 7.9–79 0.78 [108]

7 Renewable silver annular 
band working electrode

DPASV Se (IV) 1.0–10 0.15 [109]

8 AuNPs/Ed(GCE) SWASV Se (IV) 15–55 0.12 [110]

aHDME: Hanging Mercury Drop Electrode.
bBiFE: Bismuth film electrode.
cAuE: Gold electrode.
dE: Electrochemically prepared.

Table 5. Analytical performances of various modified electrodes for Se determination.
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investigation [113]. Finally, new theoretical explanations can be adapted for better under-

standing and applications, which would be the stepping stones for more and greater inven-

tions in the future.

12. Conclusions

Modified electrodes have been proved to be effective in the determination of a number of met-
als ions. With the speed, simplicity, and sensitivity of stripping voltammetry, the methods can 
be successfully applied to their analysis at trace level. Mixtures of various compounds await 
the art to manifest them in increasing the sensitivity for monitoring the concentrations of 

important metal ions. Additionally, the discovery of new nanomaterials would give stripping 
voltammetry a bright future. Furthermore, new electrochemical techniques such as EIS would 
assist the applications of modern modified electrodes in a great variety of areas. It is hoped 
that this article fires up researchers as well as opens up new opportunities in initiating and 
conducting new electrochemical research to be universally applicable in vast areas.
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