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Abstract

Alzheimer’s disease (AD) is the most common type of dementia characterized by mas-
sive neuronal loss. Pathological hallmarks of the disease are overproduction of β-amyloid 
(Aβ) and hyperphosphorylation of tau protein accumulated into senile plaques (SPs) 
and neurofibrillary tangles (NFTs), respectively. SPs with cortical tau pathology are also 
hallmark of pathological ageing (PA). Recently, an extensive overlap has been shown 
between Aβ levels and profiles in PA and AD brains, suggesting that PA could be a pro-
dromal AD phase. Presenilins are major components of the γ-secretase complex involved 
in Aβ production. Furthermore, presenilins interact with players of numerous signal-
ling pathways important in the PA and AD. Integration of various modern research 
approaches would reinforce the role of presenilins signalling network in brain pathology. 
These approaches include high-throughput (epi)genetic and transcriptomic analyses, 
large-scale microscopic imaging studies, immunoaffinity purification or mass spectrom-
etry. Comprehensive integration of these methods is necessary to update the definition 
of the role of presenilins in AD and PA. Hereby, we summarize the available data on 
presenilins’ functions and interactions. We believe that the systematization of the existing 
knowledge will stimulate further research and will help reveal the molecular nooks and 
crannies in Alzheimer’s disease and in pathological ageing.
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1. Introduction

Major clinical hallmarks of Alzheimer’s disease (AD) are memory loss and cognitive impair-

ment. Pathologically, AD is manifested by overproduction of toxic intracellular β-amyloid (Aβ) 
oligomers, deposited into extracellular senile plaques (SPs), and by hyperphosphorylation of 
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tau protein deposited into neurofibrillary tangles (NFTs). Aβ is processed by the γ-secretase 
complex, where the most important component is presenilin [1]. There are two major types of 
AD: early-onset AD (EOAD), often linked with familial AD (FAD), and late-onset AD (LOAD), 
linked with sporadic AD (SAD). Familial EOAD represents 5–10% of all cases of AD and is 
associated with mutations in PSEN1 encoding presenilin (PS1), PSEN2 encoding presenilin 2 

(PS2), and APP encoding amyloid β protein precursor (APP) [2, 3]. Overall, presenilins and 
APP mutations directly cause a production of toxic assemblies of oligomerized Aβ, followed by 
a formation of senile plaques [4]. Toxic Aβ forms induce apoptosis, oxidative stress, unfolded 
protein stress response, inflammation, or disturbances in calcium signalling, of which many 
are present in pathological ageing or in Alzheimer’s disease.

Normal ageing results from natural maturational processes, whereas pathological ageing is 
related to non-normative factors such as disease or trauma to the brain. Ageing disproportion-

ately affects frontal lobes [5]. Substantial overlap between ageing and neurodegeneration was 
demonstrated in several brain autopsy studies of aged people with no record of neurologi-
cal diseases. These reports showed the presence of amyloid plaques, neurofibrillary tangles, 
Lewy bodies, inclusions of TAR DNA-binding protein 43 (TDP-43), synaptic dystrophy, and 
loss of neurons in most of ageing brains [6, 7]. However, unlike AD, pathological ageing usu-

ally lacks cognitive impairment despite similar senile plaque [8]. It was found that oxida-

tive stress, commonly accompanying both ageing and AD, causes pathogenic conformational 
change of PS1 in neurons in vitro, which was followed by an increased ratio of Aβ42/40. It was 
further concluded that this conformational shift and deregulation of PS1 precedes Aβ deposi-
tion in pathological ageing [9]. These data demonstrated a direct connection between prese-

nilins and PA. Presenilins contribute to brain pathology not only by deposition of toxic Aβ. 
Both PS1 and PS2 have been found to be involved in the regulation of apoptosis in neurons 
induced by trophic withdrawal or Aβ and via Jun Kinase pathway, respectively [10]. What is 

more, the role of presenilins in the progression of AD and PA is underlined by their numerous 
functions in the adult cerebral cortex functions, including maintenance of synaptic plasticity, 
long-term memory, and neuronal survival, which are critical for normal ageing, healthy brain, 
and cognitive ability [11].

Summarizing, presenilin functions can be controlled at different cellular levels, that is, (1) 
gene architecture, together with the influence of damaging genetic variants, in PSEN1 and 

PSEN2, (2) gene expression, together with corresponding regulatory protein networks, (3) 
protein structure with its enzymatic activity, controlled by the assembly of the γ-secretase 
complex with accompanying partners and by post-translational modifications (phosphory-

lation and ubiquitination), (4) quantity, quality and availability of numerous substrates of 
presenilins and finally (5) by the interaction with molecular partners involved in numer-

ous biological processes. Hereby, we highlighted that presenilins can determine different 
physiological and pathological processes by the interplay with diverse signal transduction 
pathways and by processing of various substrates. Generally, presenilins form a signalling 
network, which is critical for both AD and PA. Therefore, we present below molecular play-

ers that might affect biological functions of presenilins forming together so-called presenilin 
interactome.

Senescence - Physiology or Pathology96



2. Presenilin genetic structure and transcriptional regulation network

Presenilins 1 and 2 are encoded by homologous genes PSEN1 and PSEN2, located at chromo-

somes 14q24.3 and 1q42.1, respectively [12, 13]. The genomic sizes of PSEN1 and PSEN2 are 

largely different, and it is 70 kb for PSEN1 and 24 kb for PSEN2. PSEN1 contains 13 exons and 
three first exons are located in the 5′ untranslated region (5′UTR) [14]. The first two exons and 
exon 9 of PSEN1 could be alternatively spliced, causing structural changes to the protein [15]. 

PSEN2 contains 12 exons and two first are located in the 5′ UTR [16]. The alternatively spliced 
products in PSEN2 include in-frame omissions of exon 8 and simultaneous omissions of 
exons 3 and 4 [17]. Moreover, it has been found that splicing of exon 5 in PSEN2 occurred 

under hypoxic stress conditions [18]. The transcription of PSEN1 depends on two promoters 
producing two mRNA transcripts of 2.7 and 7.5 kb, with different 5´ UTRs [15]. PSEN2 is also 

transcribed into two different transcripts of 2.4 and 2.8 kb [16].

Transcriptional regulation of presenilins might have an implication in AD and PA pathogenesis. 
Promoters of PSENs lack a TATA box but contain transcriptionally active GC. PSEN1 promoter 

contains GC boxes corresponding to Sp1-like transcriptional factor, and the most active region is 
located between −22 and −6 bp. Transcriptional co-activator p300 with histone acetyl-transferase 
(HAT) activates PSEN1 transcription. In particular in neuronal system, enhanced transcription 
of PSEN1 was observed upon stimulation by N-methyl-D-aspartate (NMDA) or brain-derived 
neurotrophic factor (BDNF), under control of cAMP-responsive element binding (CREB). PSEN1 

expression and risk of AD and premature PA are also influenced by PSEN1 promoter polymor-

phisms, found at −22C/T and −48C/T positions. Another suppressor of presenilin 1 is p53 protein 
that recruits other proteins to occupy PSEN1 promoter [19]. Relatively little is known on the tran-

scriptional regulation of PSEN2, where the promoter is located in a CpG island and is regulated 
by early growth response gene-1 (Egr-1) transcription factor, involved in learning and memory 
processes [20]. In addition, PSEN2 promoter has been found to be regulated by nerve growth fac-

tor (NGF), with an NGF-responsive element localized between −403 and +13 [19]. Interestingly, 
parkin protein, known to be associated with Parkinson’s disease, was found to act as a transcrip-

tional factor modulating trans-activation of PSEN1 and PSEN2 promoters via RING1-IBR-RING2 
domain and to influence γ-secretase activity [21]. The expression of both PSEN1 and PSEN2 was 
also described to be under thigh control of inflammatory cytokines, including tumour necrosis 
factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1 β, IL-10 or TGF-β1 [22]. Generally, tran-

scriptional regulation of presenilins is based on the complex signalling cascades controlling pro-

moter’s activation and requires a large variety of transcriptional factors. The dense network of 
signalling pathways related to the regulation of the promoters of PSEN1 and PSEN2 indicates 

numerous cellular processes that may contribute to the incidence and progression of AD and PA.

3. Presenilin structure and expression patterns

Structurally, PS1 and PS2 are integral membrane proteins of 467 and 448 amino acids, respec-

tively [14, 15]. The homology between PS1 and PS2 is about 67%, with the highest similarity 
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in transmembrane domains (TMDs). PS1 and PS2 comprise nine TM, among them TM1-6 
are located at N′-terminal and TM7-9 at the C′-terminal. The catalytic centre with aspartate 
residues is located at the cytoplasmic side of TM6 and TM7, forming large hydrophilic loop 
(HL) [14]. Presenilins are activated by endoproteolysis yielding N′-terminal and C′-terminal 
portions. Endoproteolytical cleavage of PS1 occurs at HL, with the predominant cleavage site 
between amino acids 291 and 292, generating 28 kDa N′-terminal and 17 kDa C′-terminal frag-

ments [23]. Similarly, PS2 is endoproteolytically cleaved into 35 kDa N′-terminal and 20 kDa 
C′-terminal fragment [24]. The most common mutations of presenilins occur in gene portion 
encoding C′-terminal, containing proline, alanine and leucin residues, and are usually loss of 
function for presenilins [25]. Due to protein structure complexity, presenilins interact with 
different partners, which will be described in detail in Section 6.

Presenilins are ubiquitously expressed, with some tissue-specific differences. Generally, 
PSEN1 transcript is expressed at higher levels than PSEN2. The expression pattern of PSEN1 

and PSEN2 in the brain is similar and present in different brain cells, such as cortical neurons, 
hippocampal neurons, granule cells or neurons of amygdala [26], and different types of glial 
cells [27]. In neurons, presenilins are expressed in the cell body and dendrites [28] and are 

localized in several subcellular compartments, that is, rough endoplasmic reticulum, Golgi 
complex, mitochondria, and at plasma membrane [29]. Moreover, presenilins were found to 
be expressed in several non-nervous cells and tissues, including lymphoblasts, fibroblasts, 
liver, spleen, and kidney [15].

4. Presenilin biological functions

Presenilins are aspartyl proteases and constitute a subunit of γ-secretase complex involved in 
the processing of APP and producing various Aβ peptides (described in Section 5). Besides that, 
presenilins are involved in numerous biological processes, playing various molecular func-

tions in distinct subcellular compartments. Presenilins reprocess more than 90 substrates [30]. 

Presenilin substrates are involved in various signalling pathways, and several examples are 
provided in subsequent text.

Receptor tyrosine-protein kinase erbB-4 (ErbB4) processing by presenilins leads to enhanced 

spine formation through activation of Rac signalling [31]. Furthermore, presenilin-dependent 
cleavage of ErbB4 interplay is crucial for signal transduction during cells maturation [32]. 

Importantly, ErbB4 is involved in EGF/neuregulin signalling crucial for cell proliferation, dif-
ferentiation, apoptosis, oligodendrocyte maturation, angiogenesis, synapse formation, LTP, 
and nerves myelination [33]. Another presenilin substrate of great biological importance 

is E-cadherin, which misprocessing affects transcriptionally regulated genes downstream 
of E-cadherin, involved in cell adhesion [34]. Next to that, glutamate receptor proteolysis 
performed by γ-secretase complex was found to be crucial for synaptic transmission [35]. 

Furthermore, VEGF receptor proteolysis and phosphorylation controlled by presenilins were 
reported to be important for angiogenesis, what could have further consequences in damages 
of brain areas by interfering with oxygen and energy supply [36]. Presenilin substrates selection 
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is also a way of modulation of cell signalling and processing of presenilins’ substrates regulated 
by the γ-secretase substrate-recruiting factors (γSSRFs) [37]. This establishes a complex signal-
ling network of the process important in brain, thus in PA and AD.

Summarizing, presenilin biological functions and resultant interactome are not merely attrib-

uted to the γ-secretase activity and APP processing. Diversity of presenilin substrates is 
reflected by numerous biological implications including postsynaptic Ca2+ signalling, synap-

togenesis, neurites outgrowth, lipid metabolism, cell adhesion, axon guidance, cell growth, 
regulation of dendritic spines, angiogenesis, LTP or glutamate synaptic transmission [30 

(Tables 1 and 2), 38, 39]. In this regard, the amyloid cascade is complemented with the above-
listed processes disturbed in AD. Similarly, pathological ageing is manifested by a loss of 
protein homeostasis, DNA damage, lysosomal dysfunction, epigenetic changes, immune 
deregulation, or disturbed calcium homeostasis [6]. Altogether, AD and PA might result from 
presenilin-dependent processes or presenilins’ interactomes.

5. Presenilin substrate APP and production of toxic β-amyloid peptides

Aβ peptides are generated from amyloid β-precursor protein (APP) by enzymatic digestion 
involving the activity of α-, β- and γ-secretases. Amyloidogenic cleavage of APP is started by 
β-secretase, which generates a 100-kDa-soluble N-terminal fragment and membrane-bound 
12-kDa C-terminal fragment (C99), which is further cleaved by γ-secretase, yielding the APP 
intracellular domain (AICD) and 40, 42, up to 56 amino acids Aβ peptides. C99 cleavage by 
γ-secretase is inaccurate and results in numerous different Aβ species, but those ending at 
position 40 (Aβ1-40) are the most abundant and considered as physiological (~80–90%), fol-
lowed by less abundant but toxic 42 (Aβ1–42, ~5–10%). The second cleavage, which takes 
place within the hydrophobic transmembrane domain (TMD) and is regulated by intramem-

brane proteolysis (RIP), has been attributed to the γ-secretase complex with presenilins, as 
the catalytic component. The γ-secretase is a membrane-bound protease complex consisting 
of four components: nicastrin, anterior pharynx-defective 1 (APH-1) and presenilin enhancer 
2 (PEN-2) and presenilin (1 or 2) forming aspartyl protease subunit and activity centre of the 
complex [40, 41].

As mentioned above, PA patients are characterized by the presence of amyloid deposits. 
However, PA is manifested by fewer-cored plaques and there is little or no neuritic pathol-
ogy or neurofibrillary tangles in the cortex. Moreover, the species of Aβ peptides in PA dif-
fers from AD brains. It has been demonstrated that Aβ1–40 levels were 20-fold higher in 
AD brains compared to PA brains, whereas Aβ1–42 levels were only twofold higher [42]. 

Overall, several studies suggested quantitative and qualitative differences in the amyloid 
deposits between PA and AD brains [43]. It can be concluded that a wide spectrum of harm-

ful effects of Aβ species, peptides, oligomers or plaques coincides with the disturbed prese-

nilin signalling. These data demonstrate both common and different mechanisms of AD and 
PA, with the contribution presenilin, whose functions influence qualitative and quantitative 
status of amyloid.
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6. Presenilin interactome: implementation in AD and PA

Numerous studies have been conducted in order to identify proteins interacting with PS1 and 
PS2. Majority of these studies have focused on the key signalling cascades specific for AD, as 
well as for PA, that is, oxidative stress, generation of free radicals or inflammatory processes. 
The best studied presenilin partners are components of γ-secretase complex (nicastrin, APH-1 
and PEN-2), presenilin substrates (APP, Notch) and proteins involved in a regulation of cell 
death, calcium homeostasis and cell adhesion. It should be stressed that the knowledge on full 
PS interactome is crucial for more detailed definition of the pathomechanisms of AD and PA, 
and further studies are needed to complement this image.

6.1. The γ-secretase complex partners

Direct partners of presenilins are the components of the γ-secretase complex, namely nicas-

trin, APH-1 and PEN-2 [44]. Nicastrin associates with the complex comprising PS1-C′ termi-
nal and APH-1 [45]. Nicastrin is required for the assembly of presenilin complexes to mediate 
Notch signalling and for processing and trafficking of β-amyloid precursor protein and thus 
plays a role in amyloid plaque formation [46]. Proper signalling between presenilin and nica-

strin is important not only for processing of APP and accumulation of Aβ peptides but also 
for synaptic plasticity [47]. The next component of γ-secretase complex is PEN-2, a membrane 
protein with two predicted transmembrane domains, both N′ and C′ terminals are in extra-

cellular space and with hydrophilic cytosolic loop [48]. PEN-2 binds to the fourth transmem-

brane domain of PS and helps to stabilize the γ-secretase complex after PS endoproteolysis 
[49]. Together with APH-1, PEN-2 is indispensable for Notch signalling [50], exhibiting thus 
similar properties like nicastrin. Importantly, mutations in TM4 reduced PS1-PEN-2 interac-

tion which was further accompanied by an increased Aβ42 production and disrupted the 
endoplasmic reticulum calcium homeostasis [51]. The final component of γ-secretase complex 
is APH-1, a protein composed of seven transmembranes with N-terminus and large loops at 
cytosolic side [52]. APH-1 contains a conserved GXXXG motif that may be involved in inter-

actions with other subunits of the complex [53]. APH-1 together with nicastrin forms a stable 
complex that constitutes a scaffold prior to the generation of the full presenilin complex [54]. 

APH-1 directly interacts with both immature and mature forms of the presenilins and nicas-

trin and this is indispensable for γ-secretase activity [55]. According to that described above, 
presenilin biological functions are regulated by complex assembly.

6.2. Mitochondrial interactome of presenilins

The γ-secretase complex was found in mitochondria [56]. Since Aβ is not a substrate for mito-

chondrial γ-secretase complex, its mitochondrial implication may be related to cell death sig-

nalling, switching between necrosis and apoptosis depending on ATP levels [56]. Moreover, 
PS2 was found to modulate ER-mitochondria juxtaposition and interactions, and that was 
enhanced in the case of PS2 mutations [57]. In detail, the components of γ-secretase complex 
were found in mitochondria-associated ER membranes (MAMs) with lipid raft-like domain [58].  

Mutations in presenilin 1 were found to impair the IP3 receptor- and voltage-dependent calcium 
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transport, as well as Ca2+-dependent mitochondrial proteins transport, and this was followed by 
a mitochondrial dysfunction, reduced patients’ motor coordination and Aβ aggregation with 
ultimate dementia [59]. Presenilin 1 was found to interact with mitochondrial intramembrane 
cleaving protease, called presenilin-associated rhomboid-like protein (PARL), which could pro-

mote changes in mitochondrial morphology [60]. Next to mitochondrial membrane residing 
proteins, presenilins interact with immunophilin FKBP38 forming macromolecular complexes, 
which promoted anti-apoptotic protein Bcl-2 sequestration into endoplasmic reticulum and 
Golgi apparatus compartments [61]. Importantly, AD-linked presenilin mutants enhanced the 
pro-apoptotic activity by reducing levels of mitochondrial Bcl-2 [62]. In the light of above, pre-

senilins and other elements of the γ-secretase complex located in mitochondria establish a novel 
type of cellular signalling and interacting network.

6.3. Hif-1α interaction

Hypoxia-inducible factor 1α (Hif-1α), which upregulates γ-secretase activity, was recently 
identified as PSs partner [63]. Hif-1α is related to ubiquitin-mediated proteolysis, induction 
of angiogenesis, inflammation or increase of vascular tone. Villa et al. [63] showed that Hif-1α 
acts as a subunit of γ-secretase activity, which is distinct from its canonical role as a tran-

scription factor. Moreover, hypoxia-induced cell invasion and metastasis were improved by 
either γ-secretase inhibitors or a dominant-negative Notch coactivator, indicating essential 
role of γ-secretase/Notch signalling [63]. These data provided the molecular mechanism for 
an increased incidence of AD and PA following cerebral ischaemic injuries and strokes [64]. In 
addition, cells lacking presenilin 1 were characterized by an impaired induction of HIF-1α in 
response to hypoxia. Furthermore, presenilin 1 and HIF-1α physical interaction may protect 
HIF-1α from degradation through proteasome. Additionally, M146V Psen1 mutation impaired 
metabolic induction of HIF-1α [65]. These data suggest that PS1 regulates the induction of 
HIF-1α.

6.4. Presenilin interactome of tetraspanin-enriched microdomains (TEMs)

Tetraspanin-enriched microdomains (TEMs) consist of proteins and lipids crucial for coordina-

tion of many biological processes, including cell adhesion, proteolysis, cell motility or sorting  
to exosomes [66]. A series of proteins transiently interacting with the γ-secretase complex were 
found in TEM network. Moreover, the disruption of TEM inhibited Aβ production [67]. The 
study of Wakabayashi and co-workers showed an interaction of γ-secretase complex with tet-
raspanin proteins, that is, CD81, Upk1b and CD9 and cell surface immunoglobulin superfam-

ily proteins EWI-2 and EWI-F [67]. Another research evidenced that the association of TEM 
with γ-secretase complex is needed for an enhancement of its proteolytic activity [68]. These 
data also confirmed a localization of γ-secretase in the raft-like domains [69]. All the above 

studies revealed that the integrity of tetraspanin microdomains is crucial for presenilins and 

γ-secretase signalling. In addition to TEM, presenilin complex and its interactive network 
were shown to be located predominantly in a specialized sub-compartment of ER, spatially 
and biochemically connected to mitochondria, called mitochondria-associated ER membranes 
(MAMs). MAM is a lipid raft-like structure, enriched in anionic phospholipids, cholesterol 
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and sphingomyelin. MAM is involved in cholesterol and phospholipid metabolism, calcium 
homeostasis and in mitochondrial function and dynamics. MAM function was altered and  
ER–mitochondrial connectivity is significantly increased in AD. The authors of these find-

ings proposed the “MAM-AD hypothesis” with a central role of ER–mitochondrial-presenilin 
network in AD pathogenesis [70]. Schon and Area-Gomez [71] reported a large list of genes 

encoded in MAM, including genes involved in the regulation of apoptosis process, mainte-

nance of calcium signalling, inflammatory response (formation of inflammasomes) or protein 
ubiquitination. In addition, they discovered that a MAM function in cholesteryl ester and phos-

pholipid synthesis was overactive in AD. According to Schon and Area-Gomez [71], MAM is 
an unexplored research area, and its importance is vastly underestimated in brain pathology, 
both AD and PA.

6.5. Recent findings on presenilin interactome

The large list of molecular partners of presenilins supports their extended significance in 
AD and PA. Testing whole presenilin interactome, instead of selected signalling pathway, 
is highly recommended due to the fact that any brain pathologies are extremely complex 
diseases, where causative and susceptibility genes are highly interconnected [72]. Novel 
PSEN-related genes were discovered through high-throughput immunoaffinity (co-IP and 
pull-down) studies [73, 74]. Novel findings on PS1 partners involved ST13, GCDH, ECSIT and 
CDC37 proteins, and novel PS2 partners were PDCD4, DYNC1H1 and ECSIT. These interac-

tions together with the already known might provide a novel and holistic insight into the 
molecular pathways interconnection underlying various brain pathologies. Soler-López and 
co-workers also indicated and confirmed a physical connection between apolipoprotein E 
(APOE) and PS1 [73, 74]. Direct evidence on APOE and PS1 binding provided a novel insight 
into the pathogenic role of APOE as a regulator of PS1 in APP cleavage. Furthermore, Soler-
López et al. also confirmed an interaction between PS1 and PS2, previously suggested to 
cooperate as part of the γ-secretase complex in APP cleavage [73, 74]. The direct binding of 
APP with both PS1 and PS2, confirmed by co-IP, had been previously suggested [75]. These 
results provided a fresh perspective on the possible functions of presenilin in the process of 

brain degeneration in AD or PA.

Furthermore, the interaction of presenilin with ECSIT components (evolutionarily conserved 
signalling intermediates in Toll pathway) could constitute a molecular link between oxidative 
stress, inflammation and mitochondrial dysfunction in AD. Supporting the idea of the implica-

tion of presenilins’ interactome in oxidative stress response, another component of redox signal-
ling, glutaryl-CoA dehydrogenase (GCDH), also interacts with PS. Moreover, the association of 
ECSIT with APOE was shown to bind Aβ in its oxidized form Ref. [76]. Another novel example of 
presenilin interaction partners is the member of the tumour necrosis factor receptor-associated 

factor (TRAF) family. More precisely, presenilin full-length holo-proteins were suggested to 
be novel substrates of TRAF6-mediated Lysine-63-linked ubiquitination. Furthermore, TRAF6 
induced PS1 gene transcription in a JNK-dependent manner. Notably, TRAF6-mediated ubiqui-
tination of presenilin did not affect γ-secretase enzyme activity, but likely regulated presenilin 
function in calcium signalling. TRAF6 deficiency coincided with reduced PS1 ubiquitination, 
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protein levels and Ca2+ leakage from ER, suggesting that ubiquitination may be an important 
regulatory post-translational modification of presenilin function [77]. On the other hand, TRAF6 
is involved in nerve growth factor (NGF)-dependent phosphorylation, ubiquitination and asso-

ciation of tropomyosin receptor kinase A (TrkA) with p75NTR, thereby promoting cell survival 
and differentiation. Under pathological conditions in AD or PA, pro-NGF stimulation can lead 
to nitrosylation of TrkA, thereby impairing its ubiquitination and downstream signalling which 
results in apoptosis [78]. In addition, presenilin ubiquitination was shown to be controlled by 
ubiquilin 1. In detail, ubiquilin 1 promoted the formation of PS1-positive aggregosomes [79, 80]. 

Furthermore, PS1 ubiquitination was found to demand Cdc4 component of the SCF ubiquitin 
E2-E3 ligase complex (Skp1-Cdc53/CUL1-F-box protein) and formation of this complex was 
followed by an increase in Aβ production [81]. Overall, the above-described scientific reports 
present a large spectrum and different aspects of presenilin interactome, important for brain 
functions thus implemented in brain pathological ageing or degeneration.

6.6. Presenilins and synaptic transmission

One of the most important pathologies of brain degeneration or pathological ageing is dis-

turbed synaptic transmission. It is believed that the impairment of synaptic function accounts 
for pathological ageing or degeneration independently on SP deposition. Recently, presenilins 
were proposed to participate in neurotransmitter release in the γ-secretase function-independent 
manner. It was reported that presenilins are essential for regulating neurotransmitter release 
like glutamate, and its inhibition is mediated by a depletion of ER Ca2+ storage and a block 

of intracellular Ca2+ release [82]. Importantly, PS1 knockout and PS1-M146V neurons did not 
exhibit synaptic strengths. On the other hand, synaptic activity was found to modulate PS1 
activity and Aβ40/42 ratio via altering PS1 conformation [83]. Additionally, it has recently 
been demonstrated that the interaction of PS1 with synaptic vesicle-associated protein, syn-

aptotagmin 1 (Syt1), implicated novel synaptic functions of PS1, and both proteins modulated 
each other’s functions in neurons via direct activity-triggered interaction, and the PS1-Syt1 com-

plexes were crucial for exocytosis at the synapses and safeguarding of PS1 conformation [84]. 

Overall, mounting evidence points to a role of presenilins in synaptic transmission. It is clear 
that the interplay between presenilins and synaptic activity could originate from presenilins 
γ-secretase activity.

6.7. Other aspects of interactomes of presenilins 1 and 2

PS1 and PS2 can exhibit distinct from γ-secretase activities [85]. For instance, it has been 
demonstrated that autophagy and lysosomal proteolysis required presenilin 1 [86], as well 
as presenilin 2 through a γ-secretase-independent mechanism [87]. Further detailed analy-

ses revealed novel interactions of the γ-secretase core complex with a molecular machinery 
targeting synaptic vesicles to cellular membranes, and with the H+-transporting lysosomal 

ATPase macrocomplex [88]. Importantly, lysosomal dysfunction is also associated with many 
age-related pathologies like Parkinson’s and Alzheimer’s disease, as well as with a decline in 
lifespan. Conversely, targeting lysosomal functional capacity is emerging as a means to pro-

mote longevity [89]. Another example of γ-secretase-independent interaction is the catenin/
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cadherin network that was almost exclusively found associated with PS1. In detail, catenin α2, 
catenin β1 and plakophilin 4, as well as the cadherins 2 and 11, were repeatedly and strongly 
enriched in the PS1-specific sample [90]. On the other hand, an intramembrane protease, sig-

nal peptide peptidase (SPP), predominantly co-purified with PS2-containing γ-secretase com-

plexes and was observed to influence Aβ production [90]. Another interesting interaction was 
found between PS2 and DREAM protein [91]. The Ca2+-binding protein DREAM regulates 

gene transcription and activity of potassium channels in neurons. DREAM interaction with 
PS2 might have implication in the regulation of the Ca2+ content in endoplasmic reticulum. 

The transient co-expression of DREAM and presenilin 2 potentiated the decrease of endoplas-

mic reticulum Ca2+ observed in presenilin-overexpressing cells. This could be due to a direct 
effect of DREAM on presenilin 2 as the two proteins interacted in a Ca2+-independent fashion. 

Finally, an example of an interaction unique to PS2 is the DRAL protein. DRAL is an LIM-only 
protein containing four LIM domains and an N-terminal half LIM domain. The PS2-DRAL 
interaction was confirmed using yeast two-hybrid and immunoaffinity studies, suggesting 
that DRAL functioned as an adaptor protein that links PS2 to an intracellular signalling [92]. 

This paragraph outlines the differences between PS1 and PS2, and cautions against correct 
attributing of a given interactome with disease phenotype.

7. Pathological ageing and Alzheimer’s disease in the omic era

The above-presented insight on the presenilins’ interactome provides important information 
about the background of pathological ageing and neurodegeneration. Nevertheless, the pro-

tein interactome is still only a small fragment recognized by the systemic biology. Thus, there 
is a need to integrate interactome data with other high-throughput data. The importance of 
integration of different parts of biological systems is stressed by the fact of becoming an ageing 
society. Undoubtedly, the ageing is one of the major risk factors for various diseases, rang-

ing from cancer, cardiovascular diseases, type 2 diabetes (T2D) and ending with Alzheimer’s 
disease. This creates a long list of ageing-related diseases (ARDs). In this regard, a recognition 
of the whole functional network linking ageing and ARD becomes one of the key tasks of 
current medical science. In the era of omics research, publicly available domains allow com-

parison of genomics, transcriptomics, proteomics, metabolomics, miRomics, epigenomics, reg-

ulomics (regulatory genomics), microbiomics, and lipidomics with particular diseasome [93].  

These criteria are met by the ‘GeroNet’ research model, an approach that is targeting the rela-

tionship between ageing and hundreds of ARD [94]. These studies indicated several subnet-
works associated with ageing, including ‘response to reduced oxygen levels’ or ‘cell cycle 
checkpoints’. Importantly, the GeroNet model has helped to identify several genes that may 
play a key role combining pathological ageing and Alzheimer’s disease, including the top 
five most significant STAT3, P53, FOS, BCL2 and NFKB1. The next example of integration 
of several omics research is analysis of the genes associated with longevity and ageing, col-
lected in Ageing Gene/Interventions database (http://www.kaeberleinlab.org/ageid) and in 
GenAge database, which can be useful for the research on different interactome networks in 
AD or PA. Another recent omic approach was presented in the studies on inflammaging with 

Senescence - Physiology or Pathology104



propagation of pro- and anti-inflammatory mediators in a dynamic manner from cell to cell 
and from organ to organ, supplemented by glycomics data [95]. Additionally, other wide-
genomic studies revealed longevity and age-related functional biological networks, under-

lining the importance of neuronal development, autophagy and other processes associated 
with Alzheimer’s diseases [96]. Furthermore, the integration of various systemic biology data 
has revealed common mechanisms associated with genomic instability and reduced capacity 
to DNA repair for both ageing and neurodegeneration. [97, 98]. Genomic instability is also 
influenced by a number of epigenetic changes that can be associated with both ageing and 
AD. These epigenetic changes occur at different levels, for example, histone methylation pat-
tern, replacement of the canonical histones by rare variants of histones or regulated by an 
altered expression of non-coding RNA [99]. Indeed, there are studies confirming a decrease in 
genome-wide DNA methylation occurring in both ageing and AD patients [100]. Significantly, 
epigenetic regulation of the presenilins 1 and 2 was found to be pivotal in the development 
of the cerebral cortex of mice [101]. This epigenetic regulation of PS1 and PS2 was controlled 
by the acetylation and methylation of histone H3K9/14 and this was associated with further 
differential expression of PS1 and PS2, as well as their interacting protein partners. These data 
indicated that multiple levels of epigenetic regulation may be involved in controlling the for-

mation of amyloid beta. Given epigenetic context, interestingly, dietary supplementation with 
B group vitamins restored methylation of promoters of presenilin 1, APP and BACE1 and 
slowed down the progression of AD [102]. In addition, this was associated with a decrease in 
oxidative stress and a delay in the accumulation of neurological symptoms in transgenic mice 
with beta amyloid pathology [102]. Generally, the methylation status of all the elements of pre-

senilins’ interactome may be suitable for future research on ageing and AD. Supplementing 
the above data, an important matter in the era of omics research is the use of appropriate 
computational and mathematical models. One example is weighted gene co-expression net-
work analysis method (WGCNA), which by the use of large omics data may predict gene-
gene, protein-protein, or gene-miRNA interaction nature [103]. In particular, the WGCNA 
method was used to organize gene expression data into a functionally significant structure, in 
order to indicate the modules of co-expressed genes and novel gene signatures associated with 
Alzheimer’s disease [104].

Overall, ADs or PAs are systemic diseases based on the interplay of several cellular networks. 
Thus, it should be noted that conducting the research only on individual protein factors, as the 
studies on presenilins and processing of APP, is only a part of the holistic homeostatic insight 
on these pathological states and such comprehensive approach is still missing in the discus-

sion. Due to wide-range nature of ageing and degeneration process, the conducted studies 
should be more non-deterministic, without a concrete causation and particular trigger (gene, 
protein pathway). The holistic approach should include the response to DNA repair with 
cell cycle and genome integrity checkpoints, proteostasis, unfolded protein response, protein-
folding chaperone networks, ER-associated degradation/ubiquitin proteasome system, endo-
lysosomal network, autophagy, inflammatory response and other stress-response networks. 
This can be accomplished by integration of various omics data and can be fulfilled when 
supported by latest methods and research approaches including next-generation sequencing, 
modern neuroimaging or high-throughput computational bioinformatic studies. Complexity 
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and multi-level nature of the network of genes, proteins, their interactomes and relationships 
with ageing-related disease processes present in both AD and PA have been reported in sev-

eral recent review papers [94, 98, 105–107]. This and other reviews underline the importance 
of the integration of different biological data provided for the process of brain degeneration, 
in both PA and AD, and other neurodegeneration disorders with dementia.

8. Challenges of the future

The aim of the future will be to develop an accurate map of omic data of the ageing pro-

cess. This is associated with the problem of collection of the samples for multiomics data 
from a human across lifespan. Second, the factors that can be a source of a noise in the omic 
data should be identified, including information on the ethnicity, personal immunological 
history or parameters of lifestyle (dietary habits, physical activity and microbiological sta-

tus). Comprehensive of integrative interactomics of (epi)gene-protein-pathways axis would 
demand more advanced and consolidated computational, mathematical and bioinformatic 
tools. These methods should integrate the data obtained with a use of various methodological 
approaches and engines, from different biological range and integrate the statistical power 
for all of them. Further aspects, which require to be consolidated or demand additional com-

putational approaches, are related to the source material (tissues and cells) used for omics 
analyses. These and other criteria must be met to be able to pinpoint the cause and prevent a 
decline in cognitive skills, so important in everyone’s life.

9. Summary

Neurodegeneration in AD or PA is a multiparametrical process. Thus, there is a need of not 
only for an establishment of the most complete genetic background but also to pinpoint the 

functional implications of this knowledge. Despite strong efforts of the recent research, based 
mostly on modern technologies, including GWAS and WES, it is still a largely unknown 
domain. It is very likely that expanding the interactomes PS1 and PS2 will help to emerge the 
complex biological processes accompanying processing of many substrates of presenilins. The 
broad spectrum of γ-secretase substrates and interacting proteins has invoked the analogy to 
γ-secretase ‘secretosome’ or ‘proteasome of the membrane’. The complexity of the interac-

tome of presenilin 1 is implicated in a number of molecular functions, manifested in different 
cell components and implicated in a variety of biological processes, crucial for Alzheimer’s 
disease and pathological ageing, and is depicted in a schematic presentation of this chap-

ter (Figure 1). Additionally, it is important to take into account environmental factors, for 
example, psychological circumstances might affect gene expression profile via epigenetical 
mechanisms, and thus presenilins interacting network, with further functional implications. 
In conclusion, the understanding of existing genetic mechanisms together with presenilin 
functions leading to brain degeneration in AD or PA is crucial for better understanding of 
molecular bases of these pathologies and facing them in the future.
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Figure 1. The interactome of presenilin 1 in Alzheimer’s disease and in pathological ageing. Presenilin 1 interactome was 
generated using Ingenuity Pathway Analysis software (www.ingenuity.com). Presenilin 1 interactome is implicated in 
a number of molecular functions, cell components and biological processes of presenilin 1, according to GeneCards®: 

The Human Gene Database. Presenilin 1 interaction network with its functional consequences are crucial both for 
Alzheimer’s disease and for pathological ageing brains.
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