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Abstract

Nanotechnology has facilitated the applications of a class of nanomaterials called superpar-
amagnetic iron oxide nanoparticles (SPIONs) in cancer theranostics. This is a newdiscipline
in biomedicine that combines therapy and diagnosis in one platform. The multifunctional
SPIONs,whichare capable ofdetecting,visualizing, anddestroying theneoplastic cellswith
fewer side effects than the conventional therapies, are reviewed in this chapter for
theranostic applications. The chapter summarizes thedesignparameters suchas size, shape,
coating, and target ligand functionalization of SPIONs, which enhance their ability to
diagnose and treat cancer. The review discusses the methods of synthesizing SPIONs, their
structural, morphological, andmagnetic properties that are important for theranostics. The
applications of SPIONs for drug delivery,magnetic resonance imaging, andmagnetic hyper-
thermia therapy (MHT) are included. The results of our recent MHT study on Gd-doped
SPIONas a possible theranostic agent are highlighted.We have also discussed the challenges
and outlook on the future research for theranostics in clinical settings.

Keywords: theranostics, Fe3O4 nanoparticles, MRI contrast agent, drug delivery,
magnetic hyperthermia

1. Introduction

Nanomaterials, with the size of at least one dimension ranging from a few nanometers to about

a hundred nanometers, having unique properties compared to their respective bulk materials,

are of intense research interest because of their applications in various fields of science and

technology. One of the major applications, among many of their potential applications, is in

biomedicine as platform for effective diagnosis and therapy [1–3]. The multifunctionality of

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



these nanoparticles has recently led the biomedicine research in a new direction called

“Theranostics” which is the integration of diagnostic imaging and therapeutic function into a

single platform [4, 5]. Theranostic agents allow the combination of diagnosis, treatment, and

follow-up of a disease and hence are expected to contribute to personalized medicine. Among

many nanomaterials, magnetic nanoparticles (MNPs) have the potential to deliver imaging

and therapeutic agents to a specific region in the body with an external magnetic field manip-

ulation. This requires large magnetization for the MNP so that they could respond to exter-

nally applied magnetic fields at physiological temperatures. Superparamagnetic iron oxide

nanoparticles (SPIONs), such as Fe3O4 and γ-Fe2O3 nanoparticles, exhibit relatively higher

saturation magnetization with no magnetic hysteresis (zero remanence and coercivity) and

fulfill other major requirements such as low toxicity, biocompatibility, and surface functiona-

lization capabilities for theranostic applications. A number of SPIONs have undergone clinical

trials and several formulations have been approved for clinical imaging and therapeutic

applications [6]. A few examples are Lumiren for bowel imaging, Ferridex IV for liver and

spleen imaging, Combidex for lymph node metastases imaging, and Ferumoxytol for iron

deficiency therapy.

Furthermore, SPIONs can be multipurposely used for diagnosis such as magnetic resonance

imaging (MRI) and for therapeutic functions such as targeted delivery of therapeutic agents,

anticancerdrugs, siRNA,and formagnetichyperthermia (MHT) for cancer treatments. Thismakes

SPION an ideal vehicle in the development of theranostic nanomedicine [7–9]. An example of

strategy for usingmagnetic nanoparticles as a potential theranostic agent is illustrated in Figure 1.

In this chapter, we discuss the detailed background on magnetic properties of SPIONs and

their synthesis methods and surface modification for cancer diagnosis and therapy. In addi-

tion, various applications of SPION ranging from MRI contrast agent to therapeutic-targeted

drug delivery and MHTare discussed. We have also highlighted the results of our recent study

on Gd-doped SPION as a possible theranostic agent. The remainder of the chapter focuses on

the challenges and outlook on the future research for theranostics in clinical settings.

Figure 1. Schematic illustration of the therapeutic strategy using MNP. Functionalized MNPs accumulate in the tumor

tissues via the drug delivery system. MNP can be used as a tool for cancer diagnosis by MRI or for magneto-impedance

sensor. Hyperthermia can then be induced by alternating magnetic field exposure.
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2. Magnetic properties of SPION

2.1. Background

MNPs have been studied for over 50 years now due to their potential application in many

areas including biomedical sciences. As for the types of MNP, the major focus has been on iron

oxide (Fe3O4), gold-coated iron oxide (Au-Fe3O4), metallic iron (Fe), and Fe-Co and Fe-Pt

nanoparticles. In most cases, the particle size ranges from 1 to 100 nm exhibiting high surface-

to-volume ratio. As a result, they offer higher surface area for interaction with foreign objects

compared to larger particles. Many review articles have been written that focus on sensing,

drug delivery, and hyperthermia properties of these nanoparticles [10–13]. The physical, chem-

ical, and magnetic properties of MNP largely depend on synthesis method and their surface

modification, and much progress has been made in this direction to MNP of varying sizes,

shapes, composition, and core-shell designs [14–23].

The important magnetic parameters relevant to theranostic applications are saturation magne-

tization (Ms), remanent magnetization (Mr), coercivity (Hc), Curie temperature (Tc), magnetic

anisotropy energy density (K), and blocking temperature (Tb). These parameters are influenced

by the material, size, shape, composition, and core-shell (functionalization) of the nanoparticles.

Ms is the maximum value of magnetization of the material that can be achieved under the

influence of an external magnetic field, Mr is the remanent magnetization in the material after

removing the external magnetic field, Hc is the strength of the reverse magnetic field needed to

bring the remanent magnetization to zero, and K is the material property signifying the

tendency of the magnetization to orient along a certain axis of the particle. As the volume (V)

of the particles decreases, the magnetic anisotropy energy (KV) of the nanoparticle also

decreases. If the particle size is reduced below a certain critical size, it becomes a single

magnetic domain creating a giant spin called “superspin” leading to a large magnetic moment

(~10,000 Bohr magneton) on each particle. The behavior of a collection of such noninteracting

particles under an external magnetic field is determined by a competition between the mag-

netic anisotropy energy barrier (ΔE) and the thermal energy (kBT) for magnetic moment

reversal. Above a characteristic temperature called the blocking temperature, TB, their behav-

ior is very similar to that of a paramagnetic material and described as “superparamagnetism.”

The underlying physics of superparamagnetism is founded on the activation law for the

relaxation time τ of the net magnetization of the particle given by τ = το exp (ΔE/kBT), where

το is of the order of 10
�9
–10�12 s [24].

2.2. Effect of size, shape, and composition

Magnetic properties of materials, such as susceptibility, coercivity, and saturation magnetiza-

tion, depend on the structure, size, shape, and composition, and can be altered to manipulate

the magnetic properties. Particle size plays an important role in many magnetic biomaterial

applications such as magnetic hyperthermia and drug delivery, where the size used lies in the

nanometer regime. The MNPs often contain a layer of disordered spins on the surface of the

particle leading to reduction in their Ms compared to the corresponding bulk material. A

relation between the Ms and the size of the nanoparticle is given by [25]
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Ms ¼ Msb

r� d

r

� �3

ð1Þ

where r is the radius of the nanoparticle, d is the layer thickness of the disordered spins, and

Msb is the saturation of the bulk material. Recent studies have shown that the functionalization

of MNP can reduce the thickness of the surface-disordered spin layer [26].

Although the effect of shape of MNP on their magnetic properties is not extensively studied, a

few investigations have been reported in the literature on ferrite nanocubes, maghemite

nanorods, NiFe wires, cobalt nanodiscs, tetrapods, and Au-MnO nanoflowers showing a

strong dependence of Ms on the shapes of the nanoparticles [27–36]. Higher Ms values have

been observed for the cubic MNP compared to the spherical MNP of the same size [37]. Also,

cubic Fe3O4 nanoparticles have been found to exhibit higher TB compared to spherical Fe3O4

nanoparticles [38], and the amount of disordered spins to be less (4%) in the former and more

(8%) in the latter [39].

Magnetic properties of widely usedmagnetite (Fe3O4) with its spinel structure of [Fe3+]A[Fe
3+Fe2+]BO4

can be changed if other magnetic atoms such as Ni, Co, Mn, and so on are substituted at the

tetrahedral A or octahedral B sites of the spinel structure. This flexibility of creating mixed

ferrites is useful in tuning the magnetic properties for hyperthermia applications. There have

been numerous studies investigating the interdependence of magnetic properties and the

composition. The method of preparation, concentration and nature of dopants, and

postsynthesis processes have shown to profoundly affect the magnetic properties. A study [40]

compared the magnetization among the four spinels of FeFe2O4, MnFe2O4, CoFe2O4, and

NiFe2O4 for the same size of 12 nm and found the highest magnetization for MnFe2O4. In

another study with Y3Fe5-xAlxO12 for x varying between 0 and 2, the Curie temperature

changed from 40 to 280�C [41]. With increasing Al, Fe3+ cations occupied the tetrahedral sites

and some of the octahedral sites of Fe2+ were replaced by nonmagnetic Al3+ cations, which

reduced the magnitude of Ms. The Tc value reached the room temperature for x value between

1.5 and 1.8. The variation in composition affects not only the magnitude of Ms but also the

coercivity. The tailoring of ferromagnetic to paramagnetic phase transition temperature is

particularly very useful in hyperthermia application to turn off undesirable heating beyond

the required temperature.

3. SPION synthesis and surface modification

Over the past decades, many efficient synthesis methods have been developed to produce the

size/shape controlled, stable, biocompatible, and monodispersed iron oxide nanoparticles [42–45].

The most common methods include coprecipitation [46, 47], thermal decomposition [48], hydro-

thermal synthesis [49, 50], microemulsion [51], and sonochemical [52] synthesis. Thermal decom-

position technique involves decomposition of organo-metallic iron precursors in organic solvents

at higher temperatures. Although the method can produce high-quality monodisperse particles

because of separate nucleation and growth processes, it is a complicated synthesis method and
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produces hydrophobic nanoparticles that cannot be directly used for bio-applications without

laborious postsynthesis processes, which may result in aggregation and loss of magnetic

properties. The most commonly used technique is the coprecipitation method, which is a

cost-effective and a facile synthesis method. However, this method produces Fe3O4

nanoparticles with wide particle size distribution due to lack of control over hydrolysis reac-

tions of the iron precursors, and the nucleation and growth steps leading to particles with a

range of superparamagnetic-blocking temperature. The other common, recently developed,

method is the hydrothermal synthesis, which generates nanoparticles with excellent crystal-

linity with controllable size and shape in aqueous phase. The properties of the nanoparticles

can vary with the synthesis method due to the differences in cationic distribution and

vacancies, spin canting, or surface contribution.

In the design of magnetic nanoparticles for theranostic applications, surface modification plays

an important role in providing colloidal stability and biocompatibility. The stable colloidal

suspensions of surfactant-coated SPION are called “ferrofluids” which are magnetizable and

remain as liquids in the presence of magnetic fields and in biological media. Stabilization of the

ferrofluid occurs in the presence of one or both of the two repulsive forces (see Figure 2). The

electrostatic repulsion can be understood through the knowledge of the diffusion potential and

mainly depends on the ionic strength and the pH of the solution. The steric force is difficult to

predict or quantify and mostly depends on the weight and the density of the polymer used for

the coating.

In order to achieve biocompatibility, the coating should prevent any toxic ion leakage from

magnetic core into the biological environment as well as shielding the magnetic core from

oxidation and corrosion. When nanoparticles are injected into the body during in vivo appli-

cations, they are often recognized by reticuloendothelial system (RES) that eliminates any

foreign substance from blood stream [53]. In this process, nanoparticles are rapidly attacked

by the plasma proteins from RES and shuttled out of circulation to the liver, spleen, or kidney,

Figure 2. Electrostatic and steric repulsion between the particles.
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which are then cleared out from the body. Also, this RES accumulation often causes toxicity

issues as well. The specific surface coatings can prevent the adsorption of these proteins,

increasing the circulation time in blood, hence maximizing the possibility to reach target

tissues [54]. For instance, it is well known that coating of hydrophilic polymers, mainly

polyethylene glycol (PEG), on the nanoparticles reduces nonspecific binding of the proteins

resulting in stealth behavior. In addition to the stabilization and enhanced biocompatibility,

these protecting shells also provide a platform for further functionalization such as the addi-

tion of specific targeting ligands, dyes, or therapeutic agents.

Over the years, researchers have developed various surface modification strategies com-

posed of grafting of or coating with both organic and inorganic materials. Organic molecules

include small organic molecules, macromolecules or polymer and biological molecules. They

provide various highly reactive functional groups such as carboxyl groups, aldehyde

groups, and amino groups. Polymer-coating materials can be classified into synthetic and

natural, and some commonly used polymers are listed in Table 1 along with their advan-

tages.

The surface coating could affect the magnetic properties of SPION. Many studies have reported

the effect of the surfactants on the magnetic properties [55–60]. Yuan et al. [58] investigated the

effect of surfactant on magnetic properties using commercially available aqueous nanoparticle

suspensions, FluidMAG-Amine, FluidMAG-UC/A, and FluidMAG-CMX, in parallel with oleic

acid-covered particles suspended in hexane and heptane. Their results reveal the reduction of

magnetic phase in nanoparticles, which varies with different coatings as well as with solvents.

The reduction in magnetization with different coatings was attributed to the different degree of

surface spin disorder.

Polymer Advantages and applications References

Natural Dextran Stability, biocompatibility, enables optimum polar interactions with

iron oxide surfaces, and enhances the blood circulation time

[61–66]

Starch Improves the biocompatibility, good for MRI, and drug target delivery [67, 68]

Chitosan Biocompatible and hydrophilic large abundance in nature,

biocompatibility, and ease of functionalization. widely used as nonviral

gene delivery system

[69–72]

Synthetic Poly(ethylene-glycol)

(PEG)

Enhances the hydrophilicity and water-solubility, improves the

biocompatibility, blood circulation times, and internalization efficiency

of the nanoparticles. Used in target-specific cell labeling, magnetic

hyperthermia, targeted drug delivery

[73–75]

Alginate Improves the stability and biocompatibility. Used in drug delivery

applications

[76–78]

Poly-N-isopropyl-

acrylamide (PNIPAM)

Generally used as thermosensitive drug delivery and cell separation [79–82]

Polyethylene-imine

(PEI)

Ability to complex with DNA, guide intracellular trafficking of their

cargo into the nucleus, used for gene delivery cell transfection with

either DNA or siRNA nucleotides

[83–86]

Table 1. Commonly studied organic polymers and their advantages.
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4. SPION for drug delivery

Over the last two decades, MNPs have been increasingly exploited as platforms for the

transport of therapeutics including drugs and genes [46, 87, 88]. In magnetic drug delivery, a

drug or a therapeutic reagent is conjugated to the nanoparticle and introduced in the body, and

concentrated in the target area by means of a magnetic field gradient (using an internally

implanted permanent magnet or an externally applied field) [89]. Even though magnetic drug

delivery shows a great promise in cancer treatment avoiding the side effects of conventional

chemotherapy, the designing and fabrication of an efficient nanoparticle-based drug delivery

system is still a challenge. Using a targeting ligand, the targeting specificity can be enhanced.

These anticancer drugs carried by the nanoparticles can then be released at the tumor site via

enzymatic activity, or via changes in the physiological conditions such as temperature and pH.

Drug release can also be magnetically triggered from the drug-conjugated magnetic nano-

particles [89–91]. For example, Hayashi et al. [92] reports a study done on superparamagnetic

iron oxide nanoparticles conjugated with folic acid (well known as a targeting ligand for breast

cancer cells), β-Cyclodextrin (which acts as drug container), and Tamoxifen (anticancer drug).

Using an AC magnetic field, heat is generated which triggers drug release—a behavior that is

controlled by switching the high-frequency magnetic field on and off. This is capable of

performing drug delivery and hyperthermia simultaneously. Among various other anticancer

drugs, Doxorubicin (Dox) is widely used as a model drug. There are several methods that can be

used to load Dox into nanoparticles, such as by adsorption onto nanocarrier inorganic

core [93–95], by diffusion [95, 96], or entrapment [97, 98] in the coating materials and by chemical

bonds [99, 100] with the coating of the nanocarrier. Several modifications including surface

functionalization of these SPIONs with Dox have been conducted over the last few years to

investigate their efficacy [101]. Previous studies have reported that PEG-functionalized porous

silica shell onto Dox-conjugated Fe3O4 nanoparticle cores [102], PAMAM (Poly(amidoamine))-

coated Fe3O4 nanoparticles-Dox complex [103], and Dox-loaded Fe3O4 nanoparticles modified

with PLGA-PEG copolymers [104] could potentially be very promising in therapeutic cancer

treatment. However, most of the Dox-SPION–based drug delivery studies have been focused on

human breast cancer cells.

In our recently published work [105], we have developed a novel drug delivery platform based

on Fe3O4 nanoparticles as a vehicle for an anticancer drug (Dox), attached to a model dye

(FITC) for their precise tracking and investigated their incorporation into the human pancre-

atic cancer cell line (MIA PaCa-2) for specific drug targeting. Existing EDC/NHS technique was

employed for this dual drug/dye conjugation. This unique drug-dye dual conjugation of

SPION after penetration through the cell membrane shows a steady release of Dox into the

nucleus of the malignant cells. Our studies demonstrate that the association of Dox onto

the surface of nanoparticles enhances its penetration into the cancer cells as compared to the

unconjugated drug as shown in the subsequent text (Figure 3). In addition to the rapid uptake

of these SPIONs by live cells, our results also suggest that upon entering the cells, Dox is

cleaved from the conjugation, which might be due to the enzymatic reactions that occur within

the cells, and tends to accumulate in the nuclei fulfilling the major requirement for an effective

therapeutic system.
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5. SPION for cancer diagnosis using MRI

Magnetic resonance imaging with its high spatial resolution has been a preferred method of

imaging and diagnosing a disease. It is a noninvasive medical diagnostic tool that monitors the

change in magnetization of hydrogen-protons in water molecules contained in a tissue when

placed in a magnetic field and exposed to a pulse of radio frequency electromagnetic waves.

The mapping of the magnetization provides an image of the organ due to the fact that protons

in different tissues, with varying water concentration, respond differently. Contrast agents

have been used to enhance the images as they affect the behavior of the protons in their vicinity

leading to sharper images. Contrast agents used in MRI are divided into two categories: T1 and

Figure 3. (A) Phase and fluorescent micrograph of MIA PaCa 2 cells incubated with Dox. Note the cellular entry,

especially into the nucleus (red fluorescence), of the free drug 6 h following exposure. The inset shows blebbing of cells

exposed to Dox prior to cell death (Scale = 20 μm). (B) Phase and fluorescent micrograph of MIA PaCa 2 cells incubated

with free Dox and free FITC (control) and Dox-FITC-conjugated Fe3O4 NPs at 15 min. Green and red fluorescence

represent FITC and Dox, respectively. Note the accumulation of Dox in the nucleus in cells exposed to the Dox and

FITC-conjugated SPION. White arrowheads indicate Dox entry into the nucleus. Reprinted from Ref. [105], Copyright

(2017), with permission from Elsevier.

Nanostructured Materials - Fabrication to Applications86



T2 contrast agents based on their effect on the magnetic relaxation processes of the pro-

tons [106]. Most commonly used T1 contrast agents are paramagnetic compounds that are

composed of metal ions of Gd3+ or Mn2+ and a chelating ligand, such as diethylene triamine

penta-acetic acid, DTPA [106, 107]. The chelate prevents the metal ion from binding to chelates

in the body making the paramagnetic ion less toxic. T1 contrast agents mainly reduce the

longitudinal relaxation time (T1) which is due to energy exchange between the spins and

surrounding lattice (spin-lattice relaxation) and result in a brighter signal. T2 contract agents,

consisting of superparamagnetic nanoparticles such as Fe3O4, have a strong effect on the

transverse relaxation time (T2). In an external magnetic field, nanoparticles are magnetized

and generate induced magnetic fields locally. These induced fields perturb the magnetic

relaxation processes of the protons in the water molecules decreasing the T2 relaxation time,

which results in darkening of MR images.

There are various research studies conducted on enhancing the MRI signal for cancer detection

using SPIONs as T2 contrast agents [108–110]. The efficiency of SPIONs as T2 contrast agents

mainly depends on their physicochemical properties, particularly their size and surface chem-

istry. Stephen et al. [111] report the correlation between particle size and T2 relaxation. Their

study shows that a decrease in particle size leads to reduction in saturation magnetization,

which in turn reduces the T2 relaxation capabilities of SPIONs. There are studies which show

the effect of shape on relaxivity. For example, Zhen et al. [112] reported that cubic Fe3O4 MNP

showed four times smaller relaxation time and thus better image contrast compared to the

spherical Fe3O4. In another study, octapod Fe3O4 nanoparticles with an edge length of 30 nm

show a smaller value of T2 compared to 16-nm spherical Fe3O4 nanoparticles possessing a

similarMs [37]. The studies by Park et al. [113] report a decrease in relaxivity as PEG molecular

weight increases, indicating that the thickness of PEG coating at the particle surface affects T2

relaxivity.

When using SPIONs as contrast agents for MRI, it is crucial that they are captured into the cells

efficiently upon exposure. Some approaches include introducing peptides [114], anti-

bodies [115], and polymers [116] onto or surrounding magnetic nanoparticles to improve the

target specificity. For example, Jun et al. [117] have successfully synthesized superparamagnetic

iron oxide nanoparticles of 9-nm size as magnetic probes for the in vivo detection of cancer cells

implanted in a mouse. In their research work, 2,3-dimercaptosuccinic acid (DMSA) ligand is

attached to the nanoparticles surface to obtain hydrophilic nanoparticles and the nanoparticles

are further conjugated with the cancer-targeting antibody, Herceptin. The specific binding prop-

erties of Herceptin against a HER2/neu receptor overexpressed from breast cancer cells lead to

the successful detection of breast cancer cells (SK-BR-3).

Even though both T1 and T2 mapping are powerful techniques, single-mode contrast agents are

not always sufficient in modern diagnosis as they have certain drawbacks and limitations [118].

For example, thedark contrast producedbyT2 agents canalso begenerated fromadjacent bonesor

vascular or there can be susceptibility artifacts due to the sharp change in magnetic field at the

surrounding contrast agent. Also, Gd-chelates (T1 agent) have high mobility which shorten their

presence in the vascular system and raise possible toxicity issues. Thus, there is a growing interest

in developing complementary T1-T2 dual-modal contrast agents, combining the advantages of
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positive and negative contrasts to obtain high sensitivity and biocompatibility for improved

diagnosis [119]. Two different approaches of integrating T1 and T2 species have been reported

recently [118]. One is constructed by labeling T1-signaling elements (Gd species) on magnetic

nanoparticles. In the study done by Bae et al. [120], Gd-DTPA, a representative Gd chelate-based

T1 MRI contrast agent, is covalently attached to dopamine-coated iron oxide nanoparticles. Their

results demonstrated that the composite not only had the ability to improve surrounding water

proton signals on the T1-weighted image but also could induce significant signal reduction on the

T2-weighted image. In another study reported by Santra et al. [121], Gd-DTPA is encapsulated

within the poly (acrylic acid) (PAA) polymer-coated SPION (IO-PAA) conjugated to folic acid,

which acts as the targeting ligand for breast cancer cells (HeLa cells). When nanoprobes are

internalized within the cells, which is acidic, composite magnetic nanoprobe degrades resulting

in an intracellular release of Gd-DTPA complex with subsequent T1 activation, which can be seen

byMRI.Authors claim that thisT1nano-agent couldbeused for thedetectionof acidic tumors. The

other type of conjugated system consists ofT1 paramagnetic elements embedded intoT2magnetic

nanoparticles. For example, Zhou et al. [122] have synthesized Gd2O3-embedded iron oxide

nanoparticles with an overall size of 14 nm which can act as a T1-T2 mutually enhanced dual-

modal contrast agent for MR imaging of liver and hepatic tumor detection with great accuracy in

mice. Xiao et al. [123] have prepared PEGylated, Gd-doped iron oxide nanoparticles which is

applicable as a T1-T2 dual-modal MRI contrast agent. Their in vivo MRI results demonstrated the

simultaneous contrast enhancements in T1- and T2-weighted MR images toward the glioma-

bearingmice.

6. SPION for cancer therapy using magnetic hyperthermia

Magnetic hyperthermia is the transformation of electromagnetic energy from an external

alternating magnetic field into heat using MNP. Magnetic nanoparticles serve as the nano-

heat centers producing heat by relaxation losses, thereby heating the tissue. The main goal of

an effective cancer treatment is to kill the malignant cells with the least of damage to normal

cells. As MHT can be used for heating small regions selectively, it offers the potential for being

highly selective and noninvasive technique for therapeutic treatment of cancers, and conse-

quently it has advantage over other treatment such as chemotherapy and radiation therapy. It

is known that reduced blood flow in tumor causes the lack of oxygen in tumor site which leads

to the formation of lactic acid making the cells more acidic [124]. The acidic cells are more

sensitive to temperature, have lower thermal resistance than normal cells, and the decreased

blood flow in the tumor limit their ability to dissipate heat. As a result, cancer cells can be

damaged or killed by increasing the local temperature to the range of 42–46�C with little

detriment to healthy cells.

The idea of utilizing SPION for hyperthermia was first proposed by Gilchrist et al. [125] in

1950s and since then many types of MNP are being investigated for this purpose. MNPs have

the advantage of being guided and localized specifically at a tumor site by external magnetic

fields and can also be directed to the cancer cells by tagging a ligand, such as an antibody or a

peptide, without reducing its efficiency. For example, Fabio et al. [126] have reported that

the conjugation of folate receptors enhances the targeting for magnetic hyperthermia in solid
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tumors. Magnetite (Fe3O4) and maghemite (γ-Fe2O3) have been extensively studied and are

promising candidates due to their biocompatibility and relative ease for functionalization.

Additionally, iron oxide nanoparticles doped with other magnetic dopants such as Co, Mn,

and Ni [127–129] are under investigation to achieve a high heating efficiency by tuning the

magnetic anisotropy and saturation magnetization of the material. In addition, many recent

findings show that multicore nanoparticles possess a higher heating power than the single-

core particles [130], and may offer an advantage. However, among numerous complications,

with a high Curie temperature of Fe3O4, 850 K, and γ-Fe2O3, 750 K, overheating is one of the

drawbacks of utilizing these nanoparticles, and as a solution, those complex magnetic oxides

with low Curie temperature are being investigated [131–133].

Specific absorption rate (SAR) is a measure of efficiency of heat generation. The SAR value can

be estimated by measuring the temperature change in the ferrofluid samples upon exposure to

an AC magnetic field following the equation [134]:

SARðTÞ ¼ Msample

mFe3O4

C
ΔT

Δt

� �

T

ð2Þ

Here, Msample is the mass of the sample, mFe3O4
is the mass of Fe3O4 nanoparticles in the sample,

C is the specific heat capacity of the sample, and dT
dt

� �

T
is the time rate of change of temperature at

T obtained from the slope of the time-dependent temperature data. SAR depends on magnetic

properties of the particles such as Ms, anisotropy constant K, particle size distribution (σ),

magnetic dipolar interactions, and the rheological properties of the target medium. An ensemble

of poly-disperse particles is usually described by a log-normal distribution function,

f ðDÞ ¼ 1
ffiffiffiffiffiffi

2π
p

σD
exp � ½lnðD=D

∘
Þ� 2

2σ2

� �

ð3Þ

Here, Do is the most probable particle diameter and σ is the width of the distribution. The

temperature-dependent average power dissipation in the sample is expressed as [135]

PðTÞ ¼
ð

∞

0

μ0χ0H
2
0ω

2

ωτef f

1þ ðωτef f Þ2
f ðDÞdðDÞ ð4Þ

where Ho and ω are the amplitude and angular frequency of the applied AC magnetic field, μo

is the vacuum permeability, τeff is the effective relaxation time involving Néel relaxation and

the Brownian relaxation times, and χo is equilibrium susceptibility. τeff is defined as

1
τeff

¼ 1
τN

þ 1
τB
, where τB ¼ 4πηR3

H

kBT
and τN ¼

ffiffiffi

π
p

2 τ0 exp
KV
kBT

	 
 ffiffiffiffiffiffi

KV
kBT

q

are the Néel and Brownian relax-

ation times, η is the viscosity of the suspension, RH is the hydrodynamic radius of the coated

nanoparticle, Vm is the magnetic volume of the nanoparticles, and τo ~ 10�9 s. χo is given by

χo ¼ χi cothξ� 1
ξ

	 


, where χi ¼
μ
∘
φM2

dH∘
Vm

3kbT
is the initial susceptibility, and ξ ¼ μ

∘
MdH∘

Vm

kbT
, with Md

being the domain magnetization of the nanoparticle and φ the volume fraction of the magnetic

nanoparticles in the ferrofluid. SAR in units of W/g is obtained using Eq. (4) as PðTÞ=mFe3O4
,

where mFe3O4
is the mass of Fe3O4 nanoparticles in ferrofluids.
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MHT investigations are often done on colloidal suspensions of surface-coated MNP, called

ferrofluids. It is often necessary to coat the MNP using a biocompatible polymer to avoid direct

contact with the tissue and to reduce the particle aggregation. Ferrofluid preparations fre-

quently yield a mixture of isolated nanoparticles and nanoclusters [136] with varying degree

of magnetic dipole-dipole interactions present in ferrofluids. It has been shown that the dipolar

interactions among the MNP affect the SAR value drastically and can be exploited to optimize

SAR [136–139]. A mean-field approximation method has been used to account for effects of

interactions on SAR for a collection of monodisperse MNP [138, 139], and we have used this

approach to explain the very different observed SAR values for similar size particles prepared

by two different methods of preparation [140].

Since the surfactant influences the magnetic properties as well as the degree of interactions in

the ferrofluid, a useful approach for improving the magnetic hyperthermia performance is to

optimize the surface coating to maximize the SAR. Currently, there are conflicting SAR values

obtained for a certain sized nanoparticle making it difficult to evaluate the exact contributions of

surface coating on the SAR. According to Mohammad et al. [141], it is found that inorganic

coatings improve the SAR value and the gold coating retains the superparamagnetic fraction of

Fe3O4 nanoparticles much better than uncoated nanoparticles alone and leads to higher

magnetocrystalline anisotropy. A study by Liu et al. [142] suggested the possibility of increasing

SAR by decreasing the surface-coating thickness using highly monodispersed Fe3O4

nanoparticles with different polyethylene glycol-coating thickness. The increase in SAR was

explained as due to a decrease in coating thickness leading to an increased Brownian loss,

improved thermal conductivity, as well as improved dispersion. It should be noted that the

heating performance of the nanoparticles depends on the medium as well. Whenever

nanoparticles encounter biological systems, interactions take place between their surfaces and

biological components such as proteins, membranes, phospholipids, and DNA forming the so-

called protein corona around the nanoparticles [143, 144]. The formation of corona depends on

the surface properties of the particles [145, 146] and can influence the aggregation behavior of

nanoparticles in biological media, which in turn can affect their performance for desired appli-

cations. Therefore, apart from the optimization of the properties of the magnetic core and surface

coating for high-performance MHT, it is necessary to ensure its performance in the physiological

environments.

In the work reported by Khandhar et al. [147], authors use poly(maleic anhydride-alt-1-

octadecene)-poly(ethylene glycol) (PMAO-PEG), an amphiphilic polymer-coated Fe3O4

nanoparticles of three different sizes, 13, 14, and 16 nm, to study the MHT efficiency in cell

growth medium (CGM) similar to biological environment. Their results showed an increase in

hydrodynamic sizes in all three samples upon exposure to CGM. SAR reduced (30%) only in

16-nm size sample, while other two samples did not exhibit any significant decrease in SAR.

The authors suggest that the increase in hydrodynamic volume prolongs Brownian relaxation

while Néel relaxation is unaffected. Hence, in 13- and 14-nm samples where SAR is mainly due

to Néel relaxation, SAR was not affected. But in the 16-nm samples, in which there is a

contribution from Brownian relaxation to heat dissipation, the SAR dropped due to the

increase in Brownian relaxation. We have investigated the magnetic hyperthermia efficiency

of dextran and citric acid (CA)-coated Fe3O4 ferrofluids in cell growth medium, which contains
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serum proteins similar to physiological environments. From the stock solutions (25 mg/ml), 3

mg/ml concentration of dextran and citric acid-coated ferrofluids samples were prepared using

CGM and deionized water (DI) water. The ferrofluid samples were subjected to an AC field of

235-Oe amplitude at the frequency of 375 kHz. The SAR of dextran-coated samples in DI and

CGM was estimated to be 63 and 72 W/g, which indicates that their performance is not much

affected by the medium if not enhanced. However, SAR values obtained for CA-coated sam-

ples in DI and CGM, 78 and 38 W/g, implies that their efficiency is heavily reduced when

exposed to physiological environments.

7. Gd-doped SPION as a potential theranostic agent

The multifunctionality of SPION makes them a good candidate for theranostics. One such

approach to integrate diagnostic imaging and therapeutic function is to develop SPION as an

MRI/a drug delivery platform. Yu et al. [148] reported that PEG-coated iron oxide nanoparticles

when loaded with Dox provide a therapeutic capability. Following their injection into a mouse,

Dox-modified magnetic nanoparticles accumulate in the tumor and the nanoparticles were

imaged by using T2 MRI. The contrast associated with the tumor changes from light to dark at

4.5 h post injection and the growth rate of the tumor mass was decreased in the nanoparticle-

injected mice compared to that of a control group. In another work, Lee et al. [149] developed

PEG-stabilized Fe3O4 nanocrystals on dye-doped mesoporous silica nanoparticles and Dox

was loaded into the pores. Here, SPIONs work as a contrast agent in MRI, the dye molecule

imparts optical imaging modality, and Dox induces cell death. In a similar approach, Kim et al.

[150] developed a core-shell structure consisting of single Fe3O4 core and mesoporous silica

shell for MR and fluorescence imaging which also has the potential to be used as a drug carrier.

Hayashi et al. [92] reports a study done on SPION conjugated with folic acid as targeting

ligand and Tamoxifen as anticancer drug. The drug release was triggered by heat generated

by SPION in an AC magnetic field, hence performing drug delivery and hyperthermia simul-

taneously.

The incorporation of MHT and imaging modalities [151] has been investigated widely as well.

One such study is reported by Hayashi et al. [152] in which authors have investigated SPION for

cancer theranostics by combining MRI and magnetic hyperthermia through a set of in vivo

experiments. They show that FA- and PEG-modified SPION nanoclusters accumulated locally

in cancer tissues within the tumor and enhanced the MRI contrast. Furthermore, they report that

with MHT, the tumor volume of treated mice was reduced to one-tenth that of the control mice.

Also, Gd-doped Fe3O4 nanoparticles have the potential to act as an effective MHTagent [153] in

addition to their use as a T1-T2 dual-modal contrast agent for MR imaging. Gd(III) is known to

oppose net magnetic moment of Fe(III)/Fe(II) in oxides, reducing magnetization [154–156].

Therefore, Gd doping may reduce the hyperthermia efficiency, but by using the correct amount

of doping, one can always explore the possibility of using them as both MRI contrast agents and

hyperthermia mediators. However, there are very few studies done on theMHTefficiency of Gd-

doped Fe3O4 nanoparticles [157, 158]. Both the studies report higher SAR values for Gd-doped

Fe3O4 nanoparticles compared to the reported values for undoped samples. In our work presented
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here, we have investigated the MHT efficiency of Gd0.075Fe2.925O4 nanoparticles for possible use as

a theranostic agent.

7.1. Synthesis and characterization of Gd-doped SPION

Gd0.075Fe2.925O4 nanoparticles were synthesized by coprecipitation method. For a typical syn-

thesis of Gd0.075Fe2.925O4, aqueous solution of FeCl2.4H2O, FeCl3.6H2O and Gd(NO3)3 was

mixed in a molar ratio of 1.00:1.925:0.075 in 25-ml volume followed by the addition of 250 ml

of 1 M NH4OH. The synthesized nanoparticles were then coated with dextran according to the

method outlined by Arachchige et al. [140]. From the structural investigation, it was observed

that Gd doping does not alter the Fe3O4 crystal structure significantly (Figure 4). Using several

intense X-ray diffraction (XRD) peaks and the Debye-Scherer equation, the crystallite sizes of

the Fe3O4 and Gd0.075Fe2.925O4 nanoparticle samples were determined to be 11.7 � 0.6 and

14.9 � 0.5 nm, respectively. This increase in the crystallite size is consistent with the previous

studies on Gd doping in spinel structures [159].

TEM images of the two samples are shown in Figure 5. The undoped sample consists of

roughly spherical nanoparticles with smaller polydispersity, whereas the Gd-doped sample

exhibits nanoparticles with rough edges with wider size distribution.

The magnetic properties of the synthesized powder as well as the ferrofluid samples are

determined by analyzing the M(H) curve. The M-H data for undoped and Gd-doped Fe3O4

ferrofluid samples, recorded at room temperature, are shown in Figure 6. The sigmoidal

shape of the M(H) curves with nearly zero hysteresis confirms the superparamagnetic

nature of these nanoparticles at room temperature. The saturation magnetization of Fe3O4

nanoparticles is measured to be ~72 emu/g, whereas that of Gd-doped Fe3O4 nanoparticles is

reduced to ~52 emu/g. This reduction in saturation magnetization at room temperature

agrees with the observations in other reported studies [123, 158] and can be attributed to

the fact that magnetic Fe3+ ions get replaced by the Gd3+ ions in the octahedral sites of the

inverse spinel structure.

Figure 4. X-ray diffraction patterns of as-prepared Fe3O4 and Gd0.075Fe2.925O4 nanoparticles [160].
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It is observed that the doping of Gd3+ ions into Fe3O4 spinel has significantly influenced the

average crystallite size and the saturation magnetization. The M(H) curve for an ensemble of

noninteracting superparamagnetic nanoparticles described by a log-normal distribution func-

tion, f(D), can be fitted using the following expression:

MðHÞ ¼ Ms

ð
∞

0

f ðDÞVLðxÞdD
ð
∞

0

f ðDÞVdD

ð5Þ

where LðxÞ ¼ coth x� 1
x is the Langevin function, x ¼ ðMsVHÞ=kBT, Ms is the saturation mag-

netization, and V is the volume of the particle. The fitted particle size was inconsistent with the

Figure 5. TEM images of (a) Fe3O4 and (b) Gd-Fe3O4 nanoparticles [160].

Figure 6. M versus H curves for two ferrofluid samples fitted with Eq. (5). The inset shows the resulting particle size

distribution obtained for the two samples [160].
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observed XRD data, and it was necessary to introduce the magnetic dipolar interaction effects

through a phenomenological temperature, T*, as described in our recent work [140]. The best-

fit parameters for the two samples are shown in Table 2, and Figure 6 shows the fitted data.

The inset in Figure 6 shows the magnetic core size distributions for two ferrofluid samples. The

fitting of M(H) data with Eq. (5) clearly shows that Gd-doped Fe3O4 nanoparticles have a

higher average magnetic core size with a larger size distribution (14.6 � 3.7 nm) and lower

saturation magnetization (52 emu/g) compared to the undoped Fe3O4 nanoparticles (11.7 � 1.9

nm, 72 emu/g). Both the ferrofluid samples exhibit similar strength of magnetic dipolar inter-

action (T* ~80–100 K).

MHT measurements were carried out on the dextran-coated Gd-doped as well as undoped

Fe3O4 ferrofluid samples at a field of 235 Oe and at a frequency of 375 kHz. The heating

curves for two samples are shown in Figure 7(a), and from the plot it can be observed that

the initial heating rates for the two samples are approximately the same. From these heating

curves, the SAR values were obtained as a function of temperature taking into account heat

loss as described elsewhere [134]. Figure 7(b) presents the corrected experimental SAR

data as a function of temperature for both the undoped and Gd-doped samples. Within the

experimental error, the room temperature SAR values for Gd-doped Fe3O4 and undoped

Figure 7. (a) Heating profiles of Fe3O4 and Gd-doped Fe3O4 ferrofluid samples under an AC magnetic field amplitude of

235 Oe and at a frequency of 375 kHz. (b) The temperature dependence of net SAR for two ferrofluid samples. The black

line shows the theoretical fitting of the experimental data with the linear response theory [160].

Ferrofluid sample Ms (emu/g) Do (nm) σ T
* (K) Davg (nm)

Fe3O4 72 11.6 0.15 80 11.7 � 1.9

Gd -Fe3O4 52 14.2 0.23 100 14.6 � 3.7

Table 2. Fitting parameters obtained from the M(H) fitting with modified Langevin function using T
*.
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Fe3O4 ferrofluid are very similar. The temperature-dependent SAR values were fitted to the

linear response theory incorporated with the interactions and size distribution [140]. The

solid lines in Figure 7(b) are the best fits to the experimental SAR data, using the particle size

distribution parameters and T
* values given in Table 2 and treating the anisotropy constant,

K, as a fitting parameter. The SAR fitting yields a somewhat smaller anisotropy constant

(~12 kJ/m3) for Gd-doped ferrofluid compared to that of undoped ferrofluid (~21kJ/m3). It is

interesting to note that both samples have similar SAR values in spite of a smaller anisotropy

constant and the saturation magnetization for the Gd0.075Fe2.925O4 sample compared to the

undoped sample. The expected lowering of SAR in Gd0.075Fe2.925O4 is probably offset by a

larger particle size in this sample, as the SAR would increase with increasing particle size up

to a critical size [140]. By fine-tuning the composition of Gd-doped Fe3O4 nanoparticles, we

may achieve a higher SAR value.

In summary, the Gd doping on the Fe3O4 nanoparticles affects the morphology and the

magnetic properties of Fe3O4 nanoparticles considerably but the magnetic hyperthermia

efficiency of the samples was about the same within the experimental uncertainties. The

possibility of using Gd-doped Fe3O4 nanoparticles as a dual-modal T1-T2 contrast agent is

being currently explored by others and our magnetic hyperthermia results demonstrate

that this material is a potential candidate for multimodal contrast imaging and cancer

treatment by hyperthermia. However, further research is necessary to optimize the

amount of Gd doping to enhance SAR for cancer treatment and to be used as a theranostic

agent.

8. Conclusions

In this chapter, we have discussed various approaches to exploit the multifunctionality of

SPION for cancer theranostics. We have given a brief background on the nanoparticle

magnetism, followed by a description of commonly used synthesis methods and surface-

functionalizing strategies. Three major applications of Fe3O4 nanoparticles in drug delivery,

MRI, and MHT, including our recent work on Gd-doped SPION as a possible theranostic

agent, are described. This chapter also addresses the recent work on integrating the indi-

vidual diagnostic and therapeutic approaches to develop SPION-based theranostic plat-

form.

Despite the exciting progress, SPION is far from meeting clinical standards as theranostic

agent. It has its own promises and advantages, but there are still some disadvantages to be

overcome. These include target specificity as drug carriers, optimizing the heating efficiency

and aim for sufficient heating using minimum dosage, preventing the overheating in MHT,

and issues of biocirculation, biodistribution, and bioelimination within the biological system.

In summary, although in theory, SPION is a perfect vehicle in the development of theranostic

nanomedicine, more research is required to overcome its disadvantages and this should be the

main focus of the next stages of investigation.
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9. Future directions

In recent years, the research in the field of theranostics has brought many diverse fields

together for targeting, imaging, and therapy for a deadly disease like cancer. These fields

include physics of magnetism, chemistry of synthesis, material science of structure-

property relationship, surface science for functionalization, biomedical engineering in

MRI and radiofrequency activation and treatment, and biology for understanding the

behavior of cancer cells. SPIONs have played a key role in this application as visual,

imaging, and therapeutic agent. Several studies have shown promising results; however,

many challenges still remain in moving theranostic applications from laboratory settings

to clinics. Two major challenges we face are low efficacy and toxicity of SPION. For

in vivo applications, the amount of SPION used (several hundred microgram/ml) usually

produces undesirable toxic side effects. The smaller concentration, on the other hand, is

not sufficient for imagining and therapeutic action of the material. It is well known that

the size, shape, and surface modifications influence the performance of SPION. There is

a lack of information about the combined effects of these parameters in the clinical

applications. Also, we do not have a clear understanding of controlling the delivery of

SPION to a specific target in the body by using external magnetic field gradient. It has

been found that some particles would end up accumulating in other parts of the body

such as liver, spleen, kidney, and lungs along with the specific intended location. We do

not know how they will affect those nonspecific organs and how long they will stay

there. In magnetic hyperthermia therapy, measuring precise temperature at the tumor

site and adjusting particle properties with frequencies and amplitude of the external

field for apoptosis/necrosis of cancer cells without affecting normal tissues are challenges

that researchers and clinicians face every day. There have been promising results in

treating prostate and skin cancers with magnetic fluid hyperthermia but no real efforts

have been made to treat deep tumors such a pancreas and liver with SPION. In order to

make progress with these therapies, research is needed in the development of new

materials that have higher reflexivity, better thermal activation properties, and have

better coating materials to improve the bio-distribution and biocompatibility for in vivo

applications. Most imperatively, we need data on large animal studies before theranostics

can make a fruitful transition from research laboratories to the clinics, and so on.
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