
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 4

Relativistic Celestial Metrology: Dark Matter as an
Inertial Gauge Effect

Luca Lusanna and Ruggero Stanga

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/68115

Abstract

In canonical tetrad gravity, it is possible to identify the gauge variables, describing relativ-
istic inertial effects, in Einstein general relativity. One of these is the York time, the trace of
the extrinsic curvature of the instantaneous non-Euclidean 3-spaces (global Euclidean 3-
spaces are forbidden by the equivalence principle). The extrinsic curvature depends both
on gauge variables and on dynamical ones like the gravitational waves after linearization.
The fixation of these gauge variables is done by relativistic metrology with its identifica-
tion of time and space. Till now, the International Celestial Reference Frame ICRF uses
Euclidean 3-spaces outside the Solar System. It is shown that York time and non-Euclidean
3-spaces may explain the main signatures of dark matter in ordinary space-time before
using cosmology. Also dark energy may be connected to these inertial gauge effects,
because both red-shift and luminosity distance depend on them.

Keywords: dark matter

1. Introduction

An extremely important, till now not explicitly clarified, point in Einstein general relativity

(GR) (and in every generally covariant theory of gravity), whose gauge group is the group of

diffeomorphisms of the Lorentzian 4-dimensional space-time,1 is that the fixation of the

gauge freedom is nothing else than the establishment of conventions for relativistic metrology, an

operation performed from atomic physicists, NASA engineers and astronomers [2] with the

introduction of a notion of clock synchronization and with a definition of the axes for the 4-

coordinates in each point, that is, with the identification of a non-inertial frame of the space-

time (global inertial frames are forbidden by the equivalence principle). See Ref. [3, 4] for a

review of the existing conventions in the Solar System.

1See Ref. [1] for theoretical considerations concerning the nature of space and time in GR.
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



According with the International Astronomic Union IAU inside the Solar System, the choice of

the 4-coordinates is solved at the experimental level by the choice of a convention for the description of

matter based on special post-Newtonian (PN) solutions of linearized Einstein equations in a

fixed given harmonic gauge [2–4]: (a) for satellites near the Earth (like the GPS ones) one uses

NASA 4-coordinates compatible with the reference frames of the International Terrestrial

Reference System ITRS20032 and of the Geocentric Celestial Reference System GCRS IAU2000;

(b) for planets in the Solar System one uses the frame of the Barycentric Celestial Reference

System BCRS-IAU2000.

These frames are compatible with the usual interpretation as quasi-inertial frames in Minkowski

space-time and are metrology choices like the choice of a certain atomic clock as standard of

time. However, already in the Solar System, the instantaneous 3-spaces are not Euclidean in

the selected solutions, but the existing technology is not yet able to show it, being a property of

order Oð1=c2Þ3

In astronomy, data like luminosity, light spectrum and angles are used to determine the

positions of stars and galaxies and their temporal evolution in a 4-dimensional nearly Galilei

space-time with the International Celestial Reference System ICRS [2, 3], a frame considered as

a “quasi-inertial frame” and with all galactic dynamics described by PN gravity.

This is in accord with the smallness of the intrinsic 3-curvature of the 3-spaces as implied by

the CMB data, a property included in the standard Friedmann-Lemaitre-Robertson-Walker

(FLRW) Λ CDM cosmological model with its isotropy and homogeneity symmetries. How-

ever, to reconcile all the existing data with this 4-dimensional description, one must postulate

the existence of dark matter and dark energy as the dominant components of the classical

universe [6–8] after the recombination 3-surface (before it quantum mechanics is entering in

the description and there is no acceptable description for the transition from quantum to

classical astrophysics) already within galaxies before making the transition to cosmology and

the replacement of ordinary space-time with the standard cosmological FLWR one, whose

points describe a mean over a volume of 100 Mega-parsecs of the ordinary space-time. The

attempts to avoid the appearance of “darkness” have led to many proposals of modifications

of GR like MOND [9], f ðRÞ gravity [10–12] and the ones analyzed in Refs. [6–8].

After a description of ICRS and of the measurements in ordinary astrophysics (not cosmology)

of quantities like luminosity distance, rotation curves of galaxies, gravitational lensing,….

implying “darkness,”we will study canonical ADM tetrad gravity and its gauge freedom after

a suitable but arbitrary 3 þ 1 splitting of the space-time in a family of Einstein space-times able

to include the extension of the models of particle physics to GR. We will identify which are the

gauge variables to be fixed with astrophysical metrology and how the interpretation of “dark

2A relativistic version of ITRS is not yet existing, so that one cannot yet connect the time of the atomic clocks in different

laboratories to the clock on the Space Station with a suitable Lorentz transformations.
3See however the LATOR proposal [5] of measuring the deviation from 2π of the sum of the three angles of a triangle

formed by the Space Station and two spacecrafts behind the Sun. When this non-Euclidean nature will be measured, one

will have to redefine the standard of length measurements [2].
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matter” and probably also of “dark energy” depends on the fixation of these gauge variables

in a family of gauge-fixings different from the harmonic ones used in the IAU conventions.

Therefore, our suggestion is that “darkness” may be interpreted as a relativistic inertial effect and

that ICRS should be reformulated in a suitable relativistic way.

2. Astrophysical metrology

Reference data for positional astronomy, such as the data in astrometric star catalogs, are

specified in the International Celestial Reference System ICRS [2, 3] with origin in the solar

system barycenter and with kinematically non-rotating spatial axes fixed with respect to space

according to the IAU conventions [2, 3]. It is based on the position of extragalactic radio

sources that are distant enough to be considered stationary, in the limit of today’s capabilities,

and whose position is known with a precision of 0.001arcsec, thanks to the Very Long Baseline

Interferometry technique [13]. These sources are assumed to have no observable intrinsic

angular momentum. The International Celestial Reference Frame ICRF is a realization of ICRS

obtained by supposing that the origin is a quasi-inertial observer and that we have a quasi-

inertial (essentially non-relativistic) reference frame with rectangular 3-coordinates in a nearly

Galilean space-time whose 3-spaces are Euclidean.

However, a number of different categories of astronomical observations are explained in the

usual Euclidean 3-space only in terms of so far undetermined dark matter and dark energy:

rotational curves of galaxies [14–17], gravitational lensing [18–20], application of the virial theo-

rem to galaxy clusters [21–23] and the acceleration of the expansion of the universe [24–29]. This

already happens before the transition from the ordinary space-time to the cosmological one, the

FLWR space-time which is not a Galilean space-time but has nearly internally flat 3-spaces and

uses a theoretical cosmic time. What is still not explored is the possibility that in Einstein GR one

can use non Euclidean 3-spaces with small internal 3-curvature, but with an extrinsic curvature

(as 3-submanifolds of the space-time) depending on the gauge variables, namely on the metrol-

ogy conventions.

In all the astronomical observations, the distance of the objects needs to be known. Measuring

distances in astronomy is a difficult task, especially when dealing with extragalactic objects.

Different methods must be applied at increasing distances, which need to be inter-calibrated

appropriately. To get relevant quantities like distances and absolute luminosity of stars from

the directly measured quantities, that is, apparent luminosity, angles and red-shift, it is impor-

tant to know the geometry of the 3-spaces crossed by the propagating rays of light on null 4-

geodesics of the space-time.

The most important methods rely on the absolute intrinsic luminosity L of a standard candle

compared to the apparent brightness F as measured on Earth. In terms of these quantities, one

defines the luminosity distance [6, 18–20] of a luminous object dL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L=4πF
p

, which is the

proper distance of an object at rest with respect to the observer in a Euclidean stationary

universe. In an expanding universe, the luminosity distance is dependent on the red-shift z of

the light arriving on the Earth from the object and to the comoving distance r1. If ao is the scale

Relativistic Celestial Metrology: Dark Matter as an Inertial Gauge Effect
http://dx.doi.org/10.5772/68115

69



factor, Ho is the Hubble constant, _Ho its time derivative, and if one keeps only the first-order

terms in the expansion, one has

dL ¼ ao r1 ð1þ zÞ ¼
z

Ho
½1þ ð1þ

_Ho

2H2
o

Þ z�; ð1Þ

Also used is the angular diameter distance dA ¼ D=θ, where θ is the angular diameter of the

source as measured by the observer and D is the diameter of well-known close galaxies. Also

the angular diameter distance depends on the red-shift: dA ¼ ao r1
1þz ¼

z
Ho

1� ð1�
_H o

2H2
o

Þ z
h i

.

In both luminosity distance and angular diameter distance, the terms which depart from

Euclidean geometry enter only at higher orders, which depend on the rate of expansion of the

universe and on the curvature parameter. For the galaxies with the most reliable rotation

curves that are within a range of a few tens of Mega-parsec, they can be neglected, and we

can consider the 3-space to be Euclidean. Higher order terms need instead to be considered

when the objects have a distance of hundreds of Mega-parsec or more.

For larger z, one has to take into account a model of cosmology: In a FLWR metric, one has

F ¼ L=½4π ðao r1Þ
2 ð1þ zÞ2� with ao ¼ 1=ð1þ zÞ and with r1 depending also on z.

Assuming that all supernovae (SN) Ia have the same intrinsic luminosity, it was found [26–29]

that the SN1a’s at z ≤ 0:5 are about 10 per cent fainter than expected, and this has been

interpreted as evidence of an accelerated expansion of the universe and dark energy has been

invoked to take care of the accelerated expansion.

3. Einstein general relativity

We shall use the formulation of Einstein GR in a 4-dimensional Lorentzian space-time (the one

used in classical astrophysics, not in cosmology, after the recombination surface for the prop-

agation of light) with the Lagrangian description implied by the ADM action principle [30, 31],

because it allows to make the transition to the canonical formalism and to use Dirac theory of

constraints [32], in particular to use the Shanmugadhasan canonical transformation [33, 34] to

find canonical bases adapted to the constraints (see Ref. [35] for reviews). Light and visible

stars and galaxies constitute the matter.

We will restrict ourselves to globally hyperbolic, topologically trivial and asymptotically Minkowskian

space-times, in the absence of Killing symmetries (see Ref. [36] for their inclusion as Dirac

constraints) and with the asymptotic SPI symmetries at spatial infinity of Ref. [37] restricted to

the asymptotic ADM Poincaré group [38] by eliminating the super-translations with suitable

boundary conditions on the 4-metric. This framework is defined in Refs. [39–43], where the

matter consists of electrically charged positive-energy scalar point particles plus the electromag-

netic field. In the limit of vanishing Newton constant (G ¼ 0), the asymptotic Poincare’ group

becomes the Poincare’ group of particle physics, where elementary particles are always consid-

ered as irreducible representations of this group.
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While in the family of spatially compact without spatial boundary space-times4, considered in

loop quantum gravity [44, 45], the Dirac Hamiltonian is a combination of constraints because

the canonical Hamiltonian vanishes, in our space-times there is not a frozen picture, because

the canonical Hamiltonian is the weak ADM energy ÊADM
5 plus a combination of constraints.

In the absence of matter, Christodoulou-Klainermann space-times [46] are compatible with this

description.

In the ADM Lagrangian, the basic variable is the 4-metric 4gμνðxÞ of the space-time (xμ are local

4-coordinates with an arbitrary origin): it determines the dynamical chrono-geometrical struc-

ture of space-time by means of the line element ds2 ¼ 4gμνðxÞ dx
μ dxν, and it teaches to massless

particles which are the allowed trajectories in each point.

However, to include the coupling of gravity to the spin of fermions, we must use ADM tetrad

gravity: the 10 components of the 4-metric appearing in the ADM Lagrangian are decomposed

on a set of cotetrads [31] EðαÞ
μ ðxÞ, 4gμνðxÞ ¼ EðαÞ

μ ðxÞ ηðαÞðβÞ E
ðβÞ
ν ðxÞ.6 This leads to an interpretation

of gravity based on a congruence of time-like observers endowed with orthonormal tetrads

E
μ

ðαÞðxÞ (i.e., the inverse of the cotetrads E
μ

ðαÞðxÞE
ðβÞ
μ ðxÞ ¼ δ

ðβÞ

ðαÞ): in each point of space-time, the

time-like axis is the unit 4-velocity of a time-like observer, whereas the spatial axes are a

(gauge) convention for the three gyroscopes of the observer.

A. Metrology as the Fixation of the Gauge Freedom of General Relativity

While the ADM action for metric gravity is invariant under space-time diffeomorphisms, the

decomposition of the 4-metric on the cotetrads gives an ADM action [30] invariant not only

under the space-time diffeomorphisms but also on a local O(3,1) Lorentz group describing the

freedom in the orientation and transport of the gyroscopes along the time-like world lines of

observers. Let us remark that the same gauge freedoms are present in all the generally covar-

iant formulations of GR proposed as modifications of Einstein GR.

In electromagnetism and in Yang-Mills theories, the Lagrangian description in terms of poten-

tials implies the presence of a gauge group acting on an internal space and implying the gauge

nature of certain scalar and longitudinal components of the potentials: the gauge fixings imply

the description of physics in terms of electric and magnetic fields or of their non-abelian

analogues. Instead, in the metric formulation of GR, the gauge freedom is connected with the

freedom in the choice of the metrology conventions, described in the previous section, for the

definitions of clocks (i.e., time) and 3-space in each point of the space-time. As we shall see a

metrology convention implies the fixation of 8 of the 10 components of the 4-metric, so that the

remaining two components describe the physical degrees of freedom of the gravitational field

4Therefore, it is not possible to define a Poincare’ group and to find a connection with particle physics.
5It is a volume integral over 3-space of a coordinate-dependent energy density. It is weakly equal to the strong ADM

energy, which is a flux through a 2-surface at spatial infinity.
6ðαÞ are flat indices and ηðαÞðβÞ is the flat 4-metric of Minkowski space-time. The signature of the 4-metrics is E ¼ � so that

ηðαÞðβÞ ¼ E ð1; � 1; � 1; � 1Þ. E ¼ 1 is the convention of particle physics, whereas E ¼ �1 is the convention usually used in

GR
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(the gravitational waves (GW) of its linearization in the case of weak fields). In tetrad gravity,

we have 16 fields, but the extra 6 fields are fixed by metrology conventions on the orientation

of three gyroscopes and on their transport along time-like world lines in each point of the

space-time.

In special relativity, the metrology conventions amount to the choice of a standard atomic clock

and of the instantaneous Euclidean 3-spaces of a global inertial frame, whose extension to global

non-inertial frames was done in Ref. [47] with an application to relativistic atomic physics

described in Ref. [48].

In GR, due to the equivalence principle forbidding the existence of global inertial frames, one has

to use the cited theory of global non-inertial frames in the form of the so-called 3þ1 point of view7:

one gives the world line of a time-like observer and a nice foliation of the space-time whose

leaves are the instantaneous 3-spaces. Instead of standard local 4-coordinates xμ centered in a

point of the observer world line, one uses 4-scalar observer-dependent radar 4-coordinates8

σA ¼ ðτ; σrÞ, where τ is an arbitrary increasing function of the observer proper time and σr is

curvilinear 3-coordinates on the 3-spaces Στ (diffeomorphic to R3) with the observer as origin.

The inverse transformation σA↦xμ ¼ zμðτ; σrÞ defines the embeddings of the 3-spaces Στ into

the space-time and the induced 4-metric is gAB½zðτ; σ
rÞ� ¼ z

μ

Aðτ; σ
rÞ zνBðτ; σ

rÞ gμνðzðτ; σ
rÞÞ, where

z
μ

A ¼ ∂ zμ=∂ σA, while the cotetrads take the form E
ðαÞ
A ðτ; σrÞ ¼ z

μ

Aðτ; σ
rÞEðαÞ

μ ðzðτ; σrÞÞ. As shown

explicitly in Ref. [51], the use of the 4-scalar radar 4-coordinates implies that the ten components

4gABðτ; σ
rÞ and the sixteen components E

ðαÞ
A ðτ; σrÞ are 4-scalars of the space-time. Also, all the

components of radar tensors (i.e., tensors expressed in radar 4-coordinates) are 4-scalars of the

space-time.

While the 4-vectors z
μ
r ðτ; σ

uÞ are tangent to Στ, so that in each point of the 3-space, the unit

normal lμðτ; σuÞ is proportional to E
μ
αβγ z

α
1 ðτ; σ

rÞ z
β
2ðτ; σ

rÞ z
γ
3ðτ; σ

uÞ, we have z
μ
τ ðτ; σrÞ ¼

Nðτ; σrÞ lμðτ; σrÞ þNrðτ; σrÞ z
μ
r ðτ; σ

rÞ, where Nðτ; σrÞ ¼ E z
μ
τ ðτ; σrÞ lμðτ; σ

rÞ and Nrðτ; σ
rÞ ¼ �Egτr

ðτ; σrÞ are the lapse and shift functions of canonical GR.

In the chosen family of space-times, the foliation needed for the 3þ1 splitting is nice and

admissible if the lapse function satisfies Nðτ; σrÞ > 0 in every point of Στ,
9 if E4gττðτ; σ

rÞ > 010

and if the positive-definite 3-metric 3grsðτ; σ
uÞ ¼ �E

4grsðτ; σ
uÞ has three positive eigenvalues.

These are the Møller conditions [52, 53].

Moreover, all the 3-spaces Στ must tend to the same space-like hyperplane at spatial infinity.

Due to the imposed absence of super-translations [39, 40], the non-Euclidean 3-spaces are

orthogonal to the conserved ADM 4-momentum at spatial infinity; therefore, each 3-space is a

7Instead the usually used 1þ3 point of view using the world line of a time-like observer leads only to local coordinate

systems like the Riemann and Fermi ones valid only in a neighborhood of a time-like world line, because locally the 3-

spaces are identified with the tangent spaces orthogonal to the observer 4-velocity so that they intersect each other.
8They were introduced by Bondi in Ref. [49, 50].
9Therefore, the 3-spaces never intersect, avoiding the coordinate singularity of Fermi coordinates.
10This property avoids the coordinate singularity of the rotating disk.
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non-inertial rest frame [39–41] of the 3-universe with vanishing ADM 3-momentum, and there

are asymptotic inertial observers with spatial axes identified by means of the fixed stars of star

catalogues. In each 3-space Στ, there are cotriads
3eðaÞrðτ; σrÞ ¼

X

b
RðaÞðbÞðαðcÞðτ; σrÞÞ 3eðaÞrðτ; σrÞ

defined modulo rotations (RðaÞðbÞ are rotation matrices and αðaÞðτ; σrÞ are angles).

In Refs. [39–43], there is a parametrization of tetrads, cotetrads and 4-metric in the framework

of the 3þ1 splitting of space-time. The basic configuration variables, that is, the cotetrads, are

connected to cotetrads adapted to the 3þ1 splitting of space-time (so that the adapted time-like

tetrad is the unit normal to the 3-space Στ) by standard Wigner boosts LðαÞðβÞ for time-like

vectors depending upon boost parameters ϕðaÞðτ; σrÞ: 4E
ðαÞ
A ¼ LðαÞðβÞðϕðaÞÞ 4E

o
AðβÞ. The adapted

tetrads and cotetrads have the expression11,12

4EA
ðαÞ ¼

def 4 E
∘
A

ðβÞ
LðβÞðαÞðϕðaÞÞ ¼

def
E
∘ A

ðoÞ L
ðoÞ

ðαÞðϕðcÞÞþ

þ
X

ab

4E
∘ A

ðbÞ R
T
ðbÞðaÞðαðcÞÞLðaÞðαÞðϕðcÞÞ;

4gAB ¼ E
ðαÞ
A

4ηðαÞðβÞ E
ðβÞ
B ¼

¼4E
∘ ðαÞ
A

4ηðαÞðβÞ
4E
∘ ðβÞ
B ¼ 4E

∘ ðαÞ

A
4ηðαÞðβÞ

4E
∘ ðβÞ

B ;

4E
∘ A

ðoÞ ¼ 4E
∘ A

ðoÞ ¼
1

1þ n
ð1; �

X

a

nðaÞ
3erðaÞÞ ¼ lA; 4E

∘ A

ðaÞ¼ð0;3erðaÞÞ;

4E
∘ ðoÞ

A ¼ 4E
∘ ðoÞ
A ¼ ð1þ nÞ ð1; 0

!
Þ ¼ ElA;

4E
∘ ðaÞ

A ¼ ðnðaÞ ; 3eðaÞrÞ;

4 E
∘ ðaÞ
A ¼

X

b

RðaÞðbÞ ðnðbÞ; 3eðbÞrÞ;

4gττ ¼ E ½ð1þ nÞ2 �
X

a

n2ðaÞ�; 4gτr ¼ �Enr ¼ �E

X

a

nðaÞ
3eðaÞr;

4grs ¼ �E
3grs ¼ �E

X

a

3eðaÞr
3eðaÞs;

ffiffiffiffiffiffiffi�g
p ¼

ffiffiffiffiffiffiffi

j4gj
q

¼
ffiffiffiffiffi

3g
p

ffiffiffiffiffiffiffiffiffiffiffi

E
4gττ

p ¼ ffiffiffi

γ
p ð1þ nÞ:

ð2Þ

From Eq. (5.5) of the third paper in Ref. [43], we assume the following (direction-independent,

so to kill super-translations) boundary conditions at spatial infinity (r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

r
ðσrÞ2

q

; E > 0;

M ¼ const:): nðτ; σrÞ!r!∞
Oðr�ð2þEÞÞ, πnðτ; σrÞ!r!∞

Oðr�3Þ, nðaÞðτ; σrÞ!r!∞
Oðr�EÞ, πnðaÞðτ; σrÞ

!r!∞
Oðr�3Þ, ϕðaÞðτ; σrÞ!r!∞

Oðr�ð1þEÞÞ, πϕðaÞðτ; σrÞ!r!∞
Oðr�2Þ, 3eðaÞrðτ; σrÞ!r!∞

1þ M
2r

� �

δar þOðr�3=2Þ, 3πr
ðaÞðτ; σrÞ!r!∞

Oðr�5=2Þ.

11Nðτ; σrÞ ¼ 1þ nðτ; σrÞ and nðaÞðτ;σrÞ ¼ ðNr 3erðaÞÞðτ; σrÞ ¼
X

b
RðaÞðbÞðαðcÞðτ; σrÞÞnðbÞðτ; σrÞ are the lapse and shift func-

tions respectively.

124 E
∘

A
ðβÞ and

4 E
∘

A
ðoÞ are tetrads adapted to the 3þ1 splitting.
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As shown in Refs. [[39–43], due to the existence of the asymptotic ADM Poincare’ group, the

isolated system gravitational field plus matter, namely the 3-universe, has the mass given by the

ADM weak energy and the spin by the ADM angular momentum. Therefore, at each time, the

3-universe can be described as a decoupled non-covariant non-observable external pseudo-

particle (the center of mass of the 3-universe) carrying a pole (the mass)-dipole (the spin)

structure. Since the ADM 3-momentum vanishes due to the rest-frame condition, the conjugate

non-observable internal center of mass of the 3-universe may be eliminated from the observ-

able variables by imposing the vanishing of the ADM Lorentz boosts.

As a conclusion to fix the gauge in GR with a metrology convention, so to visualize the

associated gauge-dependent inertial effects, we need to separate the gauge variables from the

dynamical ones, the so-called Dirac observables (DO), and only the Hamiltonian formalism

has the tools to face this problem. The usual criticism that this can be done only in a non-

covariant coordinate-dependent way is avoided due to the use of the radar coordinates imply-

ing the existence of 4-scalar tensors.

B. Canonical ADM Tetrad Gravity and Its Gauge Variables

The parametrization of cotetrads given in the previous subsection for ADM tetrad gravity

implies [40] that the ADM action may be considered function of the 16 configurational vari-

ables ϕðaÞ, 1þ n, nðaÞ,
3eðaÞr. At the Hamiltonian level, there is a phase space spanned by these 16

configuration variables and their conjugated 16 momenta, and there are 14 first class con-

straints. Ten of them are primary constraints (the vanishing of the 7 momenta of boosts, lapse

and shift variables plus three constraints describing the gauge freedom in the rotation on the

flat indices ðaÞ of the cotriads), whereas four are secondary ones (the super-Hamiltonian and

super-momentum constraints). Therefore, there are 14 gauge variables describing inertial effects

and 2 canonical pairs of physical degrees of freedom describing the tidal effects of the gravita-

tional field (namely GW in the weak field limit).

The basis of canonical variables for this formulation of tetrad gravity, naturally adapted to 7 of the

14 first-class constraints, is (only the momenta 3πr
ðaÞ conjugated to the cotriads are not vanishing)

ϕðaÞ n nðaÞ
3eðaÞr

πϕðaÞ
≈ 0 πn ≈ 0 πnðaÞ ≈ 0 j3πr

ðaÞ

ð3Þ

In Ref. [42], a York canonical basis, adapted to 10 first-class constraints (not to the super-

Hamiltonian and super-momentum ones, whose solution is unknown), was identified by

means of a Shanmugadhasan canonical transformation [33, 34]; this allows for the first time to

get the explicit identification of the inertial and tidal variables. It implements the York map of Ref.

[54] and diagonalizes the York-Lichnerowicz approach [55]. Its final form is13

13G is Newton constant. The set of numerical parameters γaa satisfies
X

u
γau ¼ 0,

X
u
γau γbu

¼ δ
ab
,
X

aγau γav ¼ δuv �
1
3.

Each solution of these equations defines a different York canonical basis.

Trends in Modern Cosmology74



ϕðaÞ αðaÞ n nðaÞ θr ~φ Ra

πϕðaÞ
≈ 0 π

ðαÞ
ðaÞ ≈ 0 πn ≈ 0 πnðaÞ ≈ 0 π

ðθÞ
r π~φ ¼

c3

12πG
3K Πa

ð4Þ

3eðaÞr ¼
X

b

RðaÞðbÞðαðcÞÞVrbðθ
iÞ ~φ1=3 e

X

1;2

a

γaa Ra

;

4gττ ¼ E½ð1þ nÞ2 �
X

a

n2ðaÞ�;

4gτr ¼ �E nðaÞ Vraðθ
iÞ ~φ1=3 e

X

1;2

a

γaa Ra

;

4grs ¼ �E
3grs ¼ �E

~φ2=3
X

a

Vraðθ
iÞVsaðθ

iÞ e

X

1;2

a

γaa Ra

;

~φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det 3grs
p

;

ð5Þ

In this York canonical basis, the inertial effects are described by the arbitrary gauge variables14

αðaÞ, ϕðaÞ, 1þ n, nðaÞ, θ
i, 3K, whereas the tidal effects, that is, the physical degrees of freedom of

the gravitational field (the two polarizations of GW in the linearized theory), by the two

canonical pairs Ra and Πa, a ¼ 1; 2 (Ra are eigenvalues of the 3-metric with determinant one).

The momenta π
ðθÞ
r ðτ; σrÞ and the 3-volume element ~φðτ; σrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det 3grsðτ; σ
uÞ

p

have to be found

as solutions of the super-momentum (HðaÞðτ; σ
rÞ ≈ 0) and super-Hamiltonian (i.e., the

Lichnerowicz equation [55] Hðτ; σrÞ ≈ 0) constraints, respectively.

Instead, the DO’s (gauge invariant under the Hamiltonian gauge transformations generated by

all the first class constraints; see Ref. [51]) of the gravitational field are not known15; they

would be the two pairs of 4-scalar tidal variables in a Shanmugadhasan canonical basis

adapted to all the 14 first class constraints.

The extra O(3,1) gauge freedom of the tetrads16 is described by the gauge variables αðaÞðτ; σ
rÞ,

ϕðaÞðτ; σ
rÞ. In the Schwinger time gauges, one imposes the gauge fixings ϕðaÞðτ; σ

rÞ ≈ 0,

αðaÞðτ; σ
rÞ ≈ 0 so that the time-like tetrad coincides with the unit normal to the 3-space and the

space-like ones became tangent to it (namely the tetrads become adapted to the 3þ1 splitting).

14αðaÞ, ϕðaÞ, θ
i and 3K are the primary gauge variables, whereas n and nðaÞ are the secondary ones, which are determined as

a consequence of the gauge fixing of the primary ones.
15Ra , Πa are not gauge invariant under the Hamiltonian gauge transformations generated by the super-Hamiltonian and

super-momentum constraints.
16The gauge freedom for each observer to choose three gyroscopes as spatial axes and to choose the law for their transport

along the time-like world line.
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The gauge angles θiðτ; σrÞ17 describe the freedom in the choice of the axes for the 3-coordinates

σr on each 3-space: their fixation implies the determination of the shift gauge variables nðaÞ,

namely the appearances of gravitomagnetism in the chosen 3-coordinate system [55]. The

3-orthogonal gauges are defined by the gauge fixings θiðτ; σrÞ ≈ 0: in them, the 3-metric

3grsðτ; σ
uÞ ¼ �E

4grsðτ; σ
uÞ ¼ δrs ~φ2=3 e

2

X

a
1;2

γar Ra is diagonal.

Only one momentum is a gauge variable (a reflection of the Lorentz signature): the York time

[56, 57], that is, the trace 3Kðτ; σrÞ of the extrinsic curvature of the non-Euclidean 3-spaces as 3-

submanifolds of space-time.18 This inertial effect describes the GR version of the special-

relativistic gauge freedom in clock synchronization [47, 48] when one has to describe physics

in non-inertial frames. Its fixation determines the lapse function.

The Dirac Hamiltonian isHD ¼ 1
c ÊADM þ

ð

d3σ ½nH� nðaÞHðaÞ�ðτ; σ
uÞ þ

ð

d3σ ½λn πnþ λnðaÞ πnðaÞþ

λϕðaÞ
πϕðaÞ

þ λαðaÞ π
ðαÞ
ðaÞ �ðτ; σ

uÞ, where the weak ADM energy is an explicit function of all the

variables, and the λ’s are arbitrary Dirac multipliers (to be determined as a consequence of

the gauge fixings).

In the family of Schwinger time gauges, the fixation of the primary gauge variables 3Kðτ; σrÞ,

θiðτ; σrÞ implies elliptic equations on the instantaneous 3-space Στ for the determination of the

lapse and shift functions (the secondary gauge variables) and then of their Dirac multipliers

λ’s. Instead in the usually used harmonic gauges, one imposes the primary gauge fixing

χAðτ; σrÞ ¼ ∂τ

�

ð1þ nðτ; σrÞÞ 3eðτ; σrÞ 4gτAðτ; σrÞ
�

≈ 0, whose stability in time, that is,

∂τ χ
Aðτ; σrÞ ≈ 0, implies hyperbolic equations for the lapse and shift functions, namely the

necessity of Cauchy conditions in the past for these metrology gauge variables.

This parametrization of canonical tetrad gravity clarifies the meaning of the metrology con-

ventions.

The fixation of the York time determines the sequence of instantaneous non-Euclidean 3-spaces

Στ of the 3þ1 splitting of space-time centered on an observer either on the Earth or on the

Space Station19: all the clocks on each 3-space are synchronized with the atomic clock (τ is its

proper time) of the observer at the intersection of the 3-space with the observer world line. This

time metrology convention implies also the determination of the lapse function, which

describes how the unit of time of the atomic clock changes when one goes from a 3-space to

an infinitesimally near successive one. The metrology conventions on the choice of the three

space coordinates σr also imply the determination of the shift functions, which say in which

point of the infinitesimally near next 3-space there are the same 3-coordinates of the chosen

point on the original 3-space.

17They identify the direction cosines of the tangents to the three coordinate lines in each point of the 3-space Στ.
18It is absent in the Galilean space-time of Newtonian gravity with its absolute notions of time and Euclidean 3-space.
19The detailed structure of these non-Euclidean 3-spaces depends on the extrinsic curvature 3-tensor 3Krs, which depends

not only from all the gauge variables but also on the tidal variables, so that it is determined by the chosen solution of

Einstein equations.
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C. Einstein Hamilton Equations of Tetrad Gravity and their Linearization

In the York canonical basis, the Hamilton equations generated by the Dirac Hamiltonian

HD ¼ ÊADM þ ðconstraintsÞ are divided into four groups after the fixation of the O(3,1) gauge

variables with the Schwinger time gauges:

A. Four contracted Bianchi identities, namely the evolution equations for ~φ and π
ðθÞ
i (they say

that given a solution of the constraints on a Cauchy surface, it remains a solution also at

later times).

B. Four evolution equation for the four basic primary gauge variables θi and 3K: these

equations determine the lapse and the shift functions once four gauge fixings for the basic

gauge variables are added.

C. four evolution equations for the tidal variables Ra, Πa;

D. the Hamilton equations for matter, when present.

The Hamilton equations become completely deterministic after a fixation of the gauge free-

dom. In the York canonical basis, it is convenient to use a family of non-harmonic 3-orthogonal

Schwinger time gauges αðaÞðτ; σrÞ ≈ 0, ϕðaÞðτ; σrÞ ≈ 0, θiðτ; σrÞ ≈ 0, 3Kðτ; σrÞ ≈Fðτ; σrÞ parametrized

by the numerical values Fðτ; σrÞ of the York time 3Kðτ; σrÞ and having the 3-metric in the 3-

spaces diagonal and well determined lapse and shift functions. In these gauges, given a

solution of the super-momentum and super-Hamiltonian constraints, one can find a solution

of Einstein’s equations in radar 4-coordinates adapted to a time-like observer giving the

Cauchy data on an initial 3-space only for the tidal variables. This happens in the associated

3þ1 splitting of space-time with dynamically selected instantaneous 3-spaces in accord with

Ref. [1]. Then, one can pass to adapted world 4-coordinates (xμ ¼ zμðτ; σrÞ ¼ x
μ
o þ E

μ
A σA) and

can describe the solution in every 4-coordinate system by means of 4-diffeomorphisms.

In Ref. [43], this class of asymptotically Minkowskian space-times without super-translations is

used to study the coupling of N charged scalar point particles (with the inertial and gravita-

tional masses equal as required by the equivalence principle) plus the electromagnetic field to

ADM tetrad gravity. The use of Grassmann-valued electric charges and the signs of the energy

of the particles allows to regularize the self-energies. The theory can be reformulated in terms

of transverse electromagnetic fields by using the non-covariant radiation gauge; this allows to

extract the generalization of the Coulomb interaction among the particles in the Riemannian

instantaneous 3-spaces of global non-inertial frames.

From the Hamilton equations in the York canonical basis [43], followed by a Hamiltonian Post-

Minkowskian (HPM) linearization (disregarding terms of order OðG2Þ in the Newton constant

and using an ultra-violet cutoff for matter) with the asymptotic flat Minkowski 4-metric at

spatial infinity as background, it has been possible to develop a theory of GW’s with asymp-

totic background propagating in the non-Euclidean 3-spaces Στ of a family of non-harmonic 3-

orthogonal Schwinger time gauges αðaÞðτ; σrÞ ≈ 0, ϕðaÞðτ; σrÞ ≈ 0, θiðτ; σrÞ ≈ 0, 3Kðτ; σrÞ ≈ Fðτ; σrÞ

parametrized by the numerical values Fðτ; σrÞ of the York time 3Kðτ; σrÞ and having the 3-

metric in the 3-spaces diagonal and well-determined lapse and shift functions.
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Since the celestial reference frame ICRS has diagonal 3-metric, our 3-orthogonal Schwinger

time gauges are a good choice for celestial metrology.

The open problem is that the GCRS and BCRS conventions in the Solar System are using the

special harmonic gauge of IAU [2, 3], in which the lapse function satisfies a hyperbolic

equation like the tidal variables and needs initial data in the past, differently from what

happens in the 3-orthogonal Schwinger time gauges. See Subsection 3.3 of the third paper in

Ref. [43] for the comparison of the IAU harmonic gauge for BCRS with the 3-orthogonal

gauges and Subsection 3.3 of the second paper in Ref. [43] for the equations identifying the 4-

coordinate transformation from the 3-orthogonal gauges to the harmonic ones after the linear-

ization, which have to be solved to get the reformulation of IAU conventions in our gauges.

4. Dark matter as a relativistic inertial effect

The linearized HPMHamilton equations for point particles of massmi, i ¼ 1; ::;N20, whose world

lines x
μ

i ðτÞ ¼ zμðτ;ηri ðτÞÞ are identified by radar 3-coordinates ηri ðτÞ due to the 3þ1 splitting, and

for the electromagnetic field coupled to tetrad gravity have been written explicitly in Refs. [43]:

among the forces acting on matter, there are both the inertial potentials and the GW’s.

In the third paper of Ref. [43], electro-magnetism is eliminated and there is a detailed studied

of the HPM equations of motion of the particles. Then, the PN expansion of these regularized

HPM equations of motion for the particles was studied, and it was shown that the particle 3-

coordinates ηri ðτ ¼ ctÞ ¼ ~η
r
i ðtÞ (coinciding with the Newtonian coordinates of the world lines at

this level of approximation) satisfy the equation of motion

d

dt
mi 1þ

1

c

d

dt
3 ~Kð1Þðt;~η i

!
ðtÞÞ

� �

d ~ηr
i ðtÞ

dt

	 


¼
∘

�G
∂

∂ ~η
r
i

X

j=¼i

ηj

mi mj

j~η i

!
ðtÞ � ~ηj

!
ðtÞj

þOðG2Þ:
ð6Þ

where at the lowest order, there is the standard Newton gravitational force

F
!

iðNewtonÞðtÞ ¼ �mi G
∂

∂ ~η
r
i

X

j=¼i

mj

j~η i

!
ðtÞ � ~η j

!
ðtÞj

¼ �mi

∂Φðt; ~η
!

iðtÞÞ

∂ ~η
r
i

: ð7Þ

Since Eqs. (4) imply

E
4g

ττ
ðτ ¼ ct; σrÞ � 1 ¼ 2 nðτ ¼ ct; σrÞ þOðG2Þ ¼ 2

Φðt; σrÞ

c2
�
2

c

∂

∂ t
3 ~Kð1Þðτ ¼ ct; σrÞ þOðG2Þ;

ð8Þ

20mi is both the inertial and the gravitational mass, since they coincide in Einstein GR due to the equivalence principle.
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there is a 0.5 PN inertial effect (hidden in the lapse function) not existing in the Newton theory

where the Euclidean 3-space is an absolute notion like the Newtonian time. It does not depend

on the York time 3Kð1Þ but on the non-local York time (Δ is the Laplacian associated to the

asymptotic Minkowski 4-metric)

3 ~Kð1Þðτ; σ
rÞ ¼

1

Δ

3Kð1Þ

� �

ðτ; σrÞ: ð9Þ

If we put 3Kð1Þ ¼ 0, the standard results about binaries are reproduced.

The term in the non-local York time can be interpreted as the introduction of an effective (time-,

velocity- and position-dependent) inertial mass term for the kinetic energy of each particle:

mi ↦mi 1þ
1

c

d

dt
3 ~Kð1Þðt;~η

!

iðtÞÞ

� �

ð10Þ

in each instantaneous 3-space. Since, in the Newton potential, there are the gravitational

masses mi of the particles, the effect is due to a modification of the effective inertial mass in

each non-Euclidean 3-space depending on its shape as a 3-submanifold of space-time. There-

fore, we find it is the equality of the inertial and gravitational masses of Newtonian gravity to be

violated in a gauge-dependent way in Einstein GR!

In the two-body case, one gets that for Keplerian circular orbits of radius r the modulus of the

relative 3-velocity can be written in the form
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G ðmþΔmðrÞÞ
r

q

with ΔmðrÞ function only of 3 ~Kð1Þ.

The data on the rotation curves of spiral galaxies [14–17] imply that the relative 3-velocity goes to

constant for large r instead of vanishing like in Kepler theory. As shown in Subsection 6.4 of the

third paper in Ref. [43], this result can be simulated by fitting ΔmðrÞ (i.e., the non-local York

time) to the experimental data with ΔmðrÞ interpreted as a dark matter halo around the galaxy.

Therefore, this dark matter can be explained as a relativistic inertial gauge effect consequence of

the non-trivial shape of the non-Euclidean 3-space as a 3-submanifold of space-time. There is

the concrete possibility to explain the rotation curves of galaxies [14–17] as a relativistic inertial

effect inside Einstein GR (choice of a non-local York time compatible with observations) without

modifications: (a) of Newton gravity like in MOND [9]; (b) of GR like in f ðRÞ theories [10–12];

(c) of particle physics with the introduction of WIMPS [58].

A similar interpretation (see Subsections 6.2 and 6.3 of the third paper in Ref. [43]) can be given

for the other two main signatures of the existence of dark matter in the observed masses of

galaxies and clusters of galaxies, namely the mass determination with weak and strong gravitational

lensing21 [18–20] and the mass determination with the virial theorem [21–23].

21In the case of gravitational lensing Einstein’s deflection angle, α ¼ 4GM=c2 ξ (ξ is the impact parameter of the ray of

light deflected at the position of the mass M) has M ¼ Mbaryon þMDM with the dark matter term given by

GMDM ¼ �2 c2 j σ
!
j ∂τ

3 ~Kð1Þðτ;σ
uÞ.
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Therefore, there is the possibility of describing part (or maybe all) dark matter as a relativistic

inertial effect.

The quoted three main experimental signatures of dark matter are well-defined functional of

the time and space derivatives of the non-local York time22 the inertial gauge variable describ-

ing the general relativistic remnant of the gauge freedom in clock synchronization.

Since the time evolution of the signatures of dark matter is not known, at best from the data,

we can extract information only on amean value in time of the time- and space derivatives of the

non-local York time. Since from Eq. (7), we see that �∂τ
3 ~Kð1Þðτ; σrÞ is a modification of the

Newton potential, we can assume that in Einstein GR the gauge variable non-local York time

can be equated to the time-independent potentials Vð σrÞ used either in phenomenology or in

modified theories of GR to describe dark matter in either galaxies or cluster of galaxies. Then,

we can make the ansatz 3 ~Kð1Þðτ; σrÞ ¼ �τVð σrÞ and find the local York time 3Kð1Þðτ; σrÞ ¼

Δ
3 ~Kð1Þðτ; σrÞ connected with the dark matter of the chosen either galaxy or cluster of galaxies.

Since there is no indication of dark matter in the voids existing among the clusters of galaxies,

we can get an idea on the form of the local York time in the 3-space Στ (i.e., the whole 3-

universe) by summing its value for all the known galaxies and clusters of galaxies. This would

produce an indication of which could be a metrology convention on the inertial gauge variable

describing the general relativistic gauge freedom in clock synchronization in the Einstein

space-time outside the Solar System. One expects that, with this metrology convention, the

resulting 3-spaces (each one with all the clocks synchronized) are nearly Euclidean except

where there is need of introducing dark matter.

In Ref. [59], there is a first attempt to fit some data of dark matter by using a Yukawa-like

ansatz on the non-local York time of a galaxy. In each galaxy, the Yukawa-like potential of f ðRÞ

theories [10–12] is put equal to a contribution to the extra potential depending on the non-local

York time present in the lapse function appearing in Eq. (8); in this way, the good fits of the

rotation curves of galaxies obtainable with f ðRÞ theories can be reproduced inside Einstein’s

GR as an inertial gauge effect.

5. Metrology against darkness

In conclusion, a suitable metrology convention on the inertial gauge variable York time could

reduce or maybe eliminate the necessity of introducing dark matter in the classical universe

and in its extension to classical cosmology after the recombination surface.

A needed natural proposal is now to define a Post-Minkowskian ICRS with non-Euclidean 3-

spaces, whose intrinsic 3-curvature (due essentially to GW and matter) is small, in such a way

22
∂τ

3 ~Kð1Þðτ;σrÞ in the gravitational lensing case, d
dt

3 ~Kð1Þðc t;~η
!

iðtÞÞ ¼ ð ∂

∂ t þ
_
~η
!

iðtÞ �
∂

∂ ~η
!

i

Þ 3 ~Kð1Þðc t; ~ηðtÞÞ
!

in the rotation curve

case and d2

dt2
3 ~Kð1Þðc t;~η i

!
ðtÞÞ in the virial theorem case.
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that the York time be (at least partially) fitted to the observational data implying the presence of

dark matter. As a consequence, BCRS would be its quasi-Minkowskian approximation for the

Solar System.23 Let us remark that the 3-spaces can be quasi-Euclidean (i.e. with a small internal

3-curvature tensor), as required by CMB data in the astrophysical context, even when their shape

as 3-submanifolds of space-time is not trivial and is described by a not-small York time.

In this way, one would get a solution to the gauge problem for the PM space-times of GR: one

chooses a reference system of 4-coordinates in a 3-orthogonal gauge selected by the observa-

tional conventions for matter. A PM definition of ICRS will be also useful for the ESA-GAIA

mission [60] (cartography of the Milky Way) and for the possible anomalies (different from the

already explained Pioneer one) inside the Solar System [5].

Regarding dark energy in cosmology [24–29], we can remark that in the FLRW cosmological

solution, the Killing symmetries connected with homogeneity and isotropy imply (τ is the

cosmic time, aðτÞ the scale factor) 3KðτÞ ¼ �
_aðτÞ
aðτÞ ¼ �H, namely the York time is no more a gauge

variable but coincides with the Hubble constant. However, in cosmological perturbation theory,

we have 3K ¼ �Hþ3Kð1Þ at the first order with 3Kð1Þ being again an inertial gauge variable.

Let us also remark that in Szekeres space-times [61–63], that is, in inhomogeneous space-times

without Killing symmetries, the York time remains an inertial gauge variable.

As said in Section2, the red-shift and luminosity distance of SNIa is a signal of dark energy. In

Section3 of the third paper in Ref. [43], there is the evaluation of the dependence on the non-

local York time of the PM time-like geodesics, whereas in Section4 of that paper, there is

evaluated the dependence on it of the PM null geodesics, of the PM red-shift, of the PM

geodesics deviation equation, of the PM luminosity distance and of the Hubble old red-shift

distance relation (becoming the Hubble law if cosmology in introduced in the description).

Like in the case of dark matter, one has a dependence on the second derivatives ∂2
τ
, ∂τ ∂r and

∂r ∂s of the non-local York time now concentrated along the either time- or null geodesics.

Therefore, also, this indication of dark energy is metrology dependent!

Let us also remark that in the back-reaction approach [64–69], in which to take into account the

inhomogeneity of the observed universe when trying to get a cosmological description of it,

one considers spatial mean values on large scales, dark energy in cosmology is a byproduct of

the nonlinearities of GR. In this approach, one gets that the spatial average of the 4-scalar

gauge variable York time gives the effective Hubble constant of this approach.

Finally, as shown in Eq. (10) of the last paper in Ref. [35], it can be shown that the York time is

responsible for the negative terms in the kinetic energy term in the ADM energy, whose

existence was known but whose explicit form could be given only in the York canonical basis.

It is therefore possible that the connected Landau-Lifschitz energy-momentum pseudo-tensor

[70] of GR could be reformulated as the energy-momentum tensor of a viscous pseudo-fluid,

23To test this possibility, one has to study the transition from harmonic gauges to 3-orthogonal ones in linearized Einstein

GR.
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which could have a negative pressure for certain choices of the York time like the dark energy

fluid in FLWR cosmology.

In conclusion, the York time has a central position in all the cases where darkness is required to

fit the data!
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