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Abstract

This study was carried out to determine the methods that bear the most realistic results 
in predicting the number of fires and burned area under the climate conditions in future. 
Different indices and statistical methods were used in predicting the burned area and the 
number of fires. With this aim, in addition to the indices used in estimating the climate, 
Machine Learning and multivariate adaptive regression spline (MARS) models are also 
used in predicting these factors. According to the results obtained in several studies, the 
relationship between the drought and fire indices burned area and the number of fires 
changes from region to region. While better results are obtained in predicting the burned 
area and the number of fires via the drought indices being used in this study and the 
MARS models that the combinations of these indices use, it is seen that a 30–39% success 
was achieved for predicting the amount of burned area via Machine Learning methods 
(Kernel Nearest Neighbor (kNN), Recursive Partitioning and Regression Trees (RPART), 
Support Vector Machine (SVM) and RF), and this success ranges widely from 8 to 41% in 
terms of the number of fires. RPART, of these four algorithms, performed the best in fire 
prediction, but kNN was the worst.

Keywords: drought, forest fire, number of fires, burned area, machine learning, silviculture

1. Introduction

The fires that occurred in the Mediterranean Region between 2001 and 2014 are as fol‐
low: 3250 in France, 1425 in Greece, 6525 in Italy, 16,000 in Spain, 21,800 in Portugal and 
2200 in Turkey, 205 of which were seen in Antalya. These statistics emphasize how much 
important it is to understand the factors which have impact on the burned areas and the 

number of fires and their consequences in terms of the sustainable management of for‐

ests [1]. The amount of burned areas and the number of fires are affected by numerous 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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distribution, and reproduction in any medium, provided the original work is properly cited.



variables such as the size of the fire‐sensitive forest area, topography, landscape (e.g., 
road, creek, lake, and agricultural areas), flammable materials characteristics, fire season, 
altitude, firefighting policy and the efficiency of organization, the number of concurrent 
fires and climate conditions [2]. For this reason, although the relationship between these 
factors and climate variables was examined first for the estimation of the number of fires 
and the amount of burned areas, it was seen in the research in Canada that the majority 
of variance could not be explained. Second, therefore, the relationships were examined 
by developing several indexes such as KBDI (Keetch‐Byram Drought Index), SPEI (The 
Standardized Precipitation‐Evapotranspiration Index), FWI (Fire Weather Index) and 
PDSI (Palmer Drought Severity Index). In the studies conducted across the world, various 
results were obtained in the explanation of the variance depending on the study areas 

and variables utilized such as 12, 35, and 66% [2–9]. In the third phase, descriptive regres‐

sion models were used. It was stated by Viegas et al. [10] in France that ISI (Initial Spread 
Index), as a FWI component, is successful under extreme fire conditions. Jong et al. [11] 

state that the 75, 90 and 99% uses of at least one of the FWI components for the UK is of 
a significant advantage in calibration studies. Bedia et al. [12] emphasized DSR (Daily 
Severity Ratio) and FWIP90 as FWI components for a better understanding of the spatial 
and temporal distribution of fires in Spain and identified an increase in the amount of 
burned areas. Venalainen et al. [13] ascertained a 99% relationship for Central and South 
Europe and 95% relationship for Eastern Europe between FWI and burned areas in the 
estimation of forest fires in Europe from 1960 to 2012. When Urbieta et al. [14] examined 

the fire activities for Europe (Portugal, Spain, Southern France, Italy and Greece) and the 
Pacific coasts of the USA (Oregon and California) through FWI components, it was found 
R2 > 0.70 for the models obtained for Europe and R2 > 0.50 for the USA. New approaches 
have been developed in order to look into the relationship of the variables having effects 
on the burned forest areas and the number of fires. Some of these approaches are the 
Machine Learning methods (MLM) used in ecological applications such as kNN (Kernel 

Nearest Neighbor), SVM (Support Vector Machine), RPART (Recursive Partitioning and 
Regression Trees), and RF (Random Forest) [15, 16]. T

max
 and relative humidity were deter‐

mined to be more successful in explaining fire activity in linear regression than RF algo‐

rithm along with all effective climate factors [15]. Moreover, RPART algorithm is made use 
of in determining the need for saplings after fire [17].

This study was carried out in three phases in Antalya region. In the first phase, it was inves‐

tigated the relationship between the amount of burned area and the number of fires through 
the variables in Table 1. In the second phase, the descriptive regression equations that are 
used in such countries as Portugal, Spain, Canada and the USA were tried to be achieved 
in order to obtain the nearest estimations for the monitored numbers of fire and amount of 
burned area. In the third phase, the eligibility of MLM such as kNN, SVM, RPART and RF was 
investigated in estimating the burned areas and the number of fires. The results obtained in 
each phase were discussed in terms of the models’ predicting abilities and the variables. The 
data sets comprised of either meteorological data or fire statistics cover the period between 
2001 and 2014.
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KBDI Keetch‐Byram drought index

KBDIX Maximum Keetch‐Byram drought index

KBDIP90 90th percentile Keetch‐Byram drought index

SPEI The standardized precipitation‐evapotranspiration index

FFMC Fine fuel moisture code

FFMCX Maximum fine fuel moisture code

FFMCP90 90th percentile fine fuel moisture code

DC Drought code

DCX Maximum drought code

DCP90 90th percentile drought code

DMC Duff moisture code

DMCX Maximum duff moisture code

DMCP90 90th percentile duff moisture code

BUI Build‐up index

BUIX Maximum build‐up index

BUIP90 90th percentile build‐up index

ISI Initial spread index

ISIX Maximum initial spread index

ISIP90 90th percentile initial spread index

FWI Fire weather index

FWIX Maximum fire weather index

FWIP90 90th percentile fire weather index

DSR Daily severity ratio

DSRX Maximum daily severity ratio

DSRP90 90th percentile daily severity ratio

TX Maximum daily temperature

TXX Maximum of maximum daily temperature

TXP90 90th percentile

RH Relative humidity

TPREC Total precipitation

Table 1. Components related to the drought index and meteorological variables.
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2. Materials and methods

2.1. Study area

Antalya region, which is of the largest forest area in Turkey after Amasya Region, includes 
a forest area of 1,146,062 ha, a rate of 60.43% [18]. The dominant tree species of the region 
is Pinus brutia Ten. (65%), and it is, respectively, succeeded by Cedrus sp. (16%), Pinus nigra 

(8%), Abies sp. (5%), Juniperus sp. (4%) and other leafed species (2%). Such forests are between 
600 and 2100 m, and maquis shrubs are mainly seen up to this altitude. Antalya Regional 
Directorate of Forestry is located between 36° 00′ 45″ north latitudes and 29° 16′ 15″ east longi‐
tudes. Antalya Region has a hot‐summer mediterranean climate (according to Köppen‐Geiger 
climate classification system Csa), which is dry and hot in summers, warm and rainy in winter 
(Figure 1). The lowest precipitation and the highest temperature for a five‐month period, 
from May to September, in 2001–2014 were obtained relatively in 2007 and 2003. Seeing the 
history of regional fires, it is seen that a total of 24,390 ha has burned in 2097 fires between 
2001 and 2014. This value is above the national average (based on the data obtained from 28 
Regional Directorates of Forestry) considering both the areal (∼4145 ha) and numerical aver‐

age (∼1097). For the same period, the annual average burned area and number of fires are, 
respectively, ∼1742 ha and ∼150 [14]. August is of the highest average month in terms of both 
the number of fires and burned area in Antalya’s 14‐year fire records (BA). The forest areas in 
the region encountered the highest damage by the burning of 16,890 ha in 2008 and the most 
of the fires (214) occurred in 2013.

The daily, monthly and seasonal fire data and daily, monthly and seasonal meteorologi‐
cal data covering 2001–2014 for Antalya region were used. The fire statistics were obtained 
from General Directorate of Forestry [18], and meteorological data were obtained from GDM 
(General Directorate of Meteorology). The fire season is accepted to be May 1 to September 
30. April and October were not taken into consideration because they, respectively, cover 0.26 
and 4.28% of the yearly burned areas. Meteorological data are comprised of daily highest 
temperature, total precipitation, wind speed and relative humidity.

Figure 1. Location of Antalya Regional Directorate of Forestry.
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The annual average KBDI, FWI and SPEI values of the study area are seen in Figure 2. When 
compared to FWI values in EUMED region given by Urbeita et al. [14], FWI values are seen 
to be more stable. The highest and lowest values were encountered twice for the average 
FWI between 1995 and 2010. For the period 2001–2014, a decrease is widely seen to be in the 
annual average number of fires and burned areas to the eastwards of EUMED region from the 
west. Turkey itself, facing with 30,724 fires, changed the distribution of fires to some extent by 
outnumbering Greece (20,002 fires). When the comparison is made by taking forest areas into 
consideration, it is seen that the countries facing with fires the most are put in order relatively 
as follow: Portugal, Greece, Italy, Spain, France and Turkey.

2.2. KBDI, FWI, SPEI

KBDI involves a range of values from 0 to 800. Eight hundred signify the extreme drought, 
while 0 represents saturated soil. In the cases that daily rainfall data causing the change of 
index values reach significant amounts, KBDI value is generally needed to start from 0 [19]. 
Such rainfalls are frequently encountered in spring and winter seasons in Antalya region. 
KBDI (Q) is measured depending on average annual rainfall (R—inches) and daily maximum 

temperature (T—degrees Fahrenheit). The rate of change (dQ) in index is calculated via the 

following formula. In the formula, dT signifies a temporal change.

  dQ =   
  [  800 − Q ]     [  0.968 exp (0.0486T )    − 8.30 ] dT

   ____________________________   1 + 10.88 exp(− 0.0441R )   x  10   −3   (1)

Figure 2. The average KBDI, FWI and SPEI values belonging to Antalya region.
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The structure of FWI system is shown in Figure 3. Temperature, relative humidity, wind 
speed and rainfalls in 24 h are taken into consideration in calculating the components. Seven 
standard components of FWI allow numerical values for a possibility of fire [20].

SPEI, using the distinction between rainfall and evapotranspiration (P‐ET0) as data, is cal‐
culated in a similar way as SPI. Climatic water balance compares current quantity of water 
(P) with atmospheric steam deficit (ET0). Therefore, the data used in SPEI are more suitable 
in measuring drought severity rather than considering only the rainfall [21]. The data used 
in calculating SPEI in the study area were obtained from the link [22] in the grid cell size by 
entering longitude and latitude values.

2.3. kNN, SVM, RPART, RF

Learning methods via artificial intelligence has become more usable in modeling the complex 
relationships and interactions without restricting assumptions of parametric statistics [23, 24]. 
Machine learning methods generate controllable approaches that try to model the relation‐

ships [23]. Some of these methods are artificial neural networks [25], classification and regres‐

sion trees [26], support vector machines [27], random forest [28], fuzzy logic [29], maximum 
entropy [30] and kNN [15].

K‐nearest neighbors (kNNs) are one of the oldest and simplest methods used in model classi‐

fications among machine learning methods. kNN labels each of unlabeled samples according 
to their closest neighbors in the data set. Therefore, its performance depends on the distance 
metrics (Euclidean distance, Minkowski distance, Mahalanobis distance) used for calculating 
its closest neighbors [31].

Figure 3. The relationship between monthly maximum DSR and monthly NF and BA’s natural logarithm values between 

2001 and 2014.
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SVM offers some theoretical advantages since local minimums do not exist in the optimiza‐

tion phase of the model compared to other machine learning methods. The inputs in SVM are 
transformed through non‐linear methods in the m‐dimensional feature space. In this way, 
SVM finds the best linear classifier hyperplane in the feature space [32].

  f  (  x )    =  w  0   +   ∑  
i=1

  
m

    (   w  
i
    Ø  
i
  (x ) )     (2)

Here,   Ø  
i
  (x )  represents the non‐linear transformation according to the Kernel function    (  K(x,  x   ı ) =   ∑  

i=1
  

m

    

Ø  
i
  (x )  Ø  

i
  ( x   ı   )     [33].

In order to analyze complex ecological data sets, RPART comes up as the powerful statis‐

tical tools. One of the biggest reasons for this is that it offers useful alternatives, while it 
models non‐linear data, which includes independent variables interacting with each other 
[29]. Regression trees were used in numerous ecological applications such as the relationship 
between the severity and frequency of forest fires [34].

Breiman [35] suggests, instead of producing a single decision tree, unifying the multivariate 
decisions trees (  Ø  

k
   ) , each of which is trained through different training data sets. RF (Random 

forest) is a learning algorithm that generates multi‐classifiers instead of a single classifier and 
then classifies the new data (x) with the votes from the predictions (h(x,  Ø  

k
   ), k=1,…) [36]. In the 

performance, evaluation of the algorithm of these four different classifications was used four 
factors which were also preffered by Hong et al. [37]. These factors can be defined as follows:

Precision or positive predictive value (PPV) is the proportion of predicted positive samples 
that were correctly classified:  PPV =   TP

 
______

 TP + FP   ; sensitivity, recall, hit rate or true positive rate (TPR) 
is the proportion of positive samples that were correctly identified:  TPR =   TP

 
______

 TP + FN   ; F1 score is 
the harmonic mean of precision and sensitivity:  F1 =   2TP

 
__________

  2TP + FP + FN   ; finally, accuracy  ACC =   TP + TN
 

______
 P + N  . 

Here, TP is the number of true positive, FP is the number of false negative, FN is the number 
of false negative, P is the number of real positive cases in data, and N is the number of real 
negative cases in the data.

2.4. Statistical analysis

The statistical program, R x 64 3.2.3, was used in order to carry out statistical analysis in the 
study. The statistical analyses were utilized in order to determine both the components of 
drought indices and the machine learning methods as well as determining the relationship 

between KBDI, SPEI and FWI and the number of fires, the data of burned areas. All data 
for drought indices and components were measured as daily, monthly and seasonal data 
(May 1 to September 30). Since most of the forest fires arise under extreme air conditions [8], 
maximum and 90% extreme variables of drought indices and their own components were 
calculated.

Because of the uneven distribution of the raw data for burned area used in the study, their 
natural logarithm equivalents were used instead of such data. It was examined the correla‐

tion between the natural logarithm values of the data for the number of fires and burned area 
and all the components of all data for drought indices. Each component was later used in the 
step‐wise regression analysis.
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3. Results and discussion

In the first phase, no relationship between the drought indices and either the number of fires 
or the data of burned areas was found. The variance values that can be explained by daily 
data range from 2 to 18%. The best correlation results were achieved for the natural logarithm 
of the data for the burned area and the number of fires. As a result of the correlation analy‐

ses by using monthly data, variance results between natural logarithm and the data for the 
number of fires and burned area are, respectively, 53 and 51% through maximum DSR values 
(Figure 3).

When the corrected R2 values were calculated for all the variables in Table 1, it was deter‐

mined that the highest correlation (56%) for the number of fires belongs to the maximum DSR 
and FWI. The highest correlation with 50% among the corrected R2 values calculated for all 

the variables in terms of the burned area still belongs to the maximum DSR. Urbieta et al. [14] 

laid stress on a strong relationship between FWI and the burned area in EUMED for the last 
30 years and said that 60% of this relationship could be explained through the R2 values. In 
the same study, the R2 values are able to explain the variance ranging from 20 to 55% for the 
number of fires and number of large fires. It is of high importance for estimating the activity 
in fire season that the R2 values bear similar results for the both areas where the variables dif‐

fer such as the differences in the study periods, socio‐economic conditions, fire extinguishing 
activities, fuel component accumulations.

Canadian FWI system is one of the most commonly used fire weather indices all over the 
world thanks to its success in determining the fire risk and flexibility although it was origi‐
nally developed for Canada [38–40]. Beside this, six components forming the system can indi‐
vidually estimate the fire risk in a succesful way in different conditions. In particular, FWI and 
FFMC among these components stand out in explaining the fire activity [41]. FWI component 
itself is used not only for generally determining the fire severity of many fuel types, but also 
for explaining the fire danger [42, 43]. As for FFMC component, it is generally used as the 
indicator of fire outbreaks and the potential human‐induced fire outbreak danger [43–49]. In 
addition to these two indices, it was also determined that there is a close relationship between 
ISI and DSR and the weather conditions in another study carried out in New Zealand. DSR, 
obtained with the calculation of FWI, as well as FFMC and FWI, was found as a component 
to be of the highest relationship with high temperature and high west winds in Canterbury, 
New Zealand. In a different research area of the same study, ISI was also added to these indi‐
ces in this relationship with different weather conditions [41]. The increase in DSR leads to an 
interpretation that extinguishing fires needs more efforts and time [50–52].

The data on the forest fires in recent years in EUMED countries display that the forest fires 
have decreased [14, 53]. Although Turkey and EUMED countries have different tendencies, 
it is seen that the relationship between forest fires and climates is of vital importance. The 
more the number and variety of fire and climate data increase, the clearer the relationship 
between them will come out to be [14]. When considered the other studies carried out in the 
Mediterranean region, it is seen that the areas, the drought indices (FWI, DSR) of which are of 
low long‐term averages such as those of Turkey, are able to tolerate the climate changes better 
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[54, 55]. For that reason, even though there is an increase in the number of fires in the Antalya 
region, it is thought to be of a downtrend in the amount of burned area and the frequency of 
large fires.

Along with the assumption that a comprehensive model would be more determinant and 

easy to generalize [56, 57], a two‐sided (forward–backward) step‐wise regression analysis was 
made by using all the variables in Table 1 in the second phase of the study, and the results are 
presented in Table 2.

Extreme values (90th percentile) of monthly BUIX and FWI, DSR and TX are the components 
that could be used for estimating both the number of fires and the burned area in Antalya 
region. The components in the both regression equations are statistically significant (P < 0.01). 
When the equations were examined, it is seen that the extreme values are more satisfactory 
than the components in terms of both NF and BA for Antalya region. The shared predicting 
factors in our study and that of Amatulli et al. [58] are the maximum values of BUI and DSR. 
The regression equation found by Amatulli et al. [58] can explain about 75% of the variance 
in estimating the amount of the burned area, similarly 71% of it (Figure 4) can be explained in 

our study with the equation in Table 2. When these results are assessed on the basis of coun‐

tries, the explained variance is lower because large fires occur intensely in some regions like 
in Turkey. While a strong relationship between the amount of burned areas and FWI, BUI, ISI 
and SSR values in Balıkesir region was stated by Ertuğrul and Varol [6], in Muğla region was 
found a relationship only between SSR and the amount of burned area. Similarly, the regres‐

sion equation found by Balshi et al. [59] for the west of Canada explains 80% of the variance, 
whereas the one for the east of Canada is able to explain only 43% of the variance. Antalya 
region comes in second after Muğla region in terms of the burned area and the three regions 
(Antalya, Muğla and Balıkesir) are of approximately 61% of the burned areas in Turkey (for 
the period 1977–2014).

It is shown in Figure 4, the monthly monitored and estimated values graphic of the burned 
area and number of fires. Once Figure 4 was examined, the estimated and monitored values 
for both BA and NF are seen to be distributed equally on the trend line. The high and low 
estimates are considered to be caused by climate and index components, responsible for the 
unexplained part of variance.

Estimated equivalent values of NF and Ln (BA) data monitored in Antalya region for the 
period 2001–2014 as in Figures 5 and 6 are shown monthly. While there are low estimations 
for the years 2005–2007 in terms of the number of fires, high estimates are seen for the years 
2008–2011. The period in which high estimates are made in terms of the number of fires is 
succeeded by another period of time with low estimates. While there are low estimates for 
2001–2011 in terms of burned area, there are high estimates for the years 2011–2012.

When examined Figures 5 and 6, an above average loss of field for 2005–2009 causes low 
estimates in the given period. Even only the years 2007 and 2008 lead to an increase by 3.82 in 
the average for the period 2001–2014. Considering Figures 5 and 6, the number of fires goes 
up the average by 1.4 in terms of number of fires especially in 2005, 2006 and 2007, and it was 
understood that this caused low estimates.
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Regression model NF P value

‐35.54–0.39DMCX+0.44BUIX‐2.08FWIP90+5.1DSRP90+1.7TXP90 9.086e‐14

Variables P value Variables P value

DMCX 0.000565*** DSRP90 0.002219**

BUIX 0.000160*** TXP90 0.004018**

FWIP90 0.034976*

Regression model Ln(BA) P value

‐5.31+0.01BUIX‐0.30FWIP90+0.57DSRP90+0.25TXP90 9.911e‐12

Variables P value Variables P value

BUIX 6.58e‐05*** DSRP90 0.002314**

FWIP90 0.007374** TXP90 0.000395***

Table 2. Multivariate adaptive regression spline models (MARS) selected through step‐wise regression analysis by using monthly NF and BA.
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When it is considered that approximately 42% of the fires that occurred in Turkey between 
2004 and 2014 stemmed from the negligence and carelessness, the fires caused by either phys‐

ical or human induced factors in EUMED region, thus resulting in non‐linear trends, makes 
us consider that non‐parametric fire modelling would be more convenient. Syphard et al. [60] 

Figure 4. The relationship between the monitored values and estimated values of monthly NF and BA natural logarithm 

values for the period 2001–2014.

Figure 5. Monthly monitored and estimated NF values for 2001–2014.

Figure 6. Natural logarithm values of monitored and estimated monthly values of BA for 2001–2014.
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and Vilar et al. [57] also expressed the existence of a non‐linear relationship between the fires 
and independent variables. Therefore, Machine Learning algorithms were used in the third 
phase of the study.

These four algorithms (kNN, SVM, RPART and RF) managed to predict of the amount of 
burned areas with a success rate ranging 30–39%. In terms of the number of fires, its success 
widely ranges from 8 to 41%. The unsuccessful algorithms failing to predict both the num‐

ber of fires and the amount of burned areas were able to be very successful in predicting the 
possibility of the destruction of areas greater than 300 ha. Also, the prediction results for the 
possibility of fire outbreaks according to drought value are seen in Table 3.

In the study carried out by Cortez and Morais [32] in the Montesinho National Park in 
Portugal, the most successful results were obtained with SVM model, while the performance 
of kNN and SVM models in Antalya (79.21% and 30.81) was seen to be relatively lower than 
those of other models. The difference is thought to stem from that the study in Portugal was 
carried out in a national park and also the direct weather inputs were used instead of drought 

indices as an input. The drought indices take into consideration not only weather inputs but 
also the factors such as fine fuel moisture and duff moisture. The fire possibility is of poor pre‐

diction accuracy for all models compared to large fires. RPART displays the best performance 
in predicting both the existence of fires and large fires. kNN, on the other hand, displays the 
worst performance for the both classifications.

The predictions trying to understand the relationship between the fires and droughts quali‐
tatively were tested via the analyses in three phases. The results of these studies show that 
the use of MARS models bears better results at predicting both the amount of burned areas 
and the number of fires rather than using several drought indices. Because much of the area 
burned occurs during extreme fire weather condition [8], the extreme values (maximum and 
90th percentile) of drought indices take place in MARS models. As well as stating that MARS 
and Machine Learning methods are more successful because they take the complex relation‐

ships in the data into consideration, it is seen that MARS models perform better in both the 

PPV (%) TPR (%) F1 (%) ACC. (%) PPV (%) TPR (%) F1 (%) ACC. (%)

kNN SVM

Fire 

possibility

60.00 59.02 59.50 86.27 67.33 58.62 62.67 88.66

BA≥ 300 ha 97.86 100.00 98.92 99.30 99.16 98.74 98.95 99.30

Average 78.93 79.51 79.21 92.79 83.24 78.68 80.81 93.38

RPART RF

Fire 

possibility

100.00 77.01 87.01 97.20 64.38 67.92 66.10 88.75

BA≥ 300 ha 100.00 98.89 99.44 99.58 98.82 99.87 99.34 99.53

Average 100.00 87.95 93.23 98.39 81.60 83.89 82.72 94.14

Table 3. The performance results of different classification algorithms in predicting forest fires.
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article by Amatulli et al. [58] and our study. It is stated that it is successful because MARS 
models constitute functions in each hyper‐region by taking regression coefficients into con‐

sideration [61]. Contrary to the expectations, Machine Learning methods such as kNN, SVM, 
RPART and RF were unable to perform as successfully as MARS and linear regression models 
in order to predict the amount of burned areas and the number of fires. The performances 
of Machine Learning methods vary from geographical region to region, and these methods 
perform better in larger areas (like EUMED) compared to its performance in smaller areas 
[62]. Trigo et al. [63] emphasized that through Machine Learning methods were obtained 
poor results in Portugal where the burner areas hit the top in 2003, and large fires became 
intense in a small region. It is considered that a single fire that destroyed an area of 16,890 ha 
in 2008 in Antalya region as the study area bore similar results. Similarly, Prasad et al. [64] 

also stated that the same variables would vary depending on the spatial and analysis scale 

because environmental and social conditions differ from region to region. SVM and RF stand 
out compared to Machine Learning methods in terms of prediction performance [65] and 

RPART algorithm produced more successful results in our study. Besides the statements of 
both Trigo et al. [63] and Prasad et al. [64], it is thought that RPART algorithm performed bet‐
ter for Antalya region as it used decision tree mechanism along with regression equations in 
a similar way to MARS.

4. Conclusion

The relationship between factors such as meteorological factors, FWI System components, 
KBDI and SPEI and both the amount of burned area and the number of fires was investigated 
for Antalya region. The results show that the extreme values of the given factors are more 
effective on the amount of burned area and the number of fires. DSRX explains the majority 
of the variance in the number of fires and the amount of burned area. Normal or extreme val‐
ues of KBDI and SPEI could not take place in the equations obtained as a result of step‐wise 
regression. In a study in Antalya carried out by Varol and Ertuğrul [6], it was found that there 
was a significant relationship between KBDI values and the burned area only in the years 
when big fires arose but there was no relationship between KBDI values and the number of 
fires. As a result of step‐wise regression analysis, the extreme ones of FWI, DSR, T compo‐

nents for both the burned area and the number of fires were selected as significant variables. 
As a result of the obtained equations, approximately 65% of the variance in the number of fires 
and 62% of the burned area could be explained through 90th percentiles of these components.

This study will be able to be used as base work in order to estimate the number of fires and 
the amount of burned area in Antalya region for future climate scenarios. Moreover, when the 
extent of the study is expanded in a way that it covers fire sensitive forests, the differences and 
similarities between regions will be pointed out as well as a general view for Turkey which 

could be reached.

In a study carried out in Canada by Harrington et al. [3], the mean and extreme values of the 
FWI components were compared with each other, and the extreme values in six out of nine 
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different regions were seen to be more successful in the explanation of the variance. In another 
study carried out by Flannigan and Harrington [2], the use of meteorological data as a satis‐

factory variable explained that it could explain 30% of the variance in Canada, and this value 
was a similar result to FWI components. It was pointed out that maximum temperature and 
low humidity have a strong relationship with the dry conditions, and therefore, this is a fre‐

quently preferred variable. In our study, the existence of maximum temperature in the equa‐

tions of either the number of fires or burned area promotes this assertion as a result of step‐wise 
regression.

Urbeita et al. [14] stated that SPEI8 produced better results in the period from autumn to 
spring. In our study, however, SPEI is seen to be ineffective compared to other indices and 
SPEI1 produced better results for the forest fires in Antalya region. It is thought that the analy‐

ses for investigating the relationship between SPEI and forest fires should be made in longer 
periods, and the studies, as in Antalya subregion, should be expanded to the worldwide; thus, 
it would bear better results [14].

What determine in fire statistics are surely not factors used only in calculating drought indices. 
However, it is a crucial data source that is not of a certain relationship between fire statistics 
and meteorological data. So, it is needed a detailed and foolproof record of both fire statistics 
and meteorological data records. In terms of forest fire statistics, much more certain data are 
existent for the period after 2001, while there are no data for earlier periods. Similarly, the lack 
of daily meteorological data led to the determination of the study period between 2001 and 
2014 for Antalya region.

Many researchers also state that a number of social factors like unemployment or arson are of 

influence on forest fires [66]. Moreover, in some studies, it is pointed out that socio‐economic 
and landscape factors would be more efficient on the burned area than climate conditions in 
local scale [67]. So, it will be necessary to take some social factors such as unemployment, pop‐

ulation as well as road intensity into consideration in order that the number of fires and the 
amount of burned areas can be predicted more successfully [15]. Therefore, MARS is thought 
to be more efficient after it has been added more variables. In defining complex relationships, 
simple and multiple regression techniques are not productive for investigating the relation‐

ships in high‐dimensional data sets, while MARS can be a solution to overcome these obsta‐

cles. Moreover, it is usually simpler to compare the models developed using MARS approach 
with other modeling and mathematical techniques. MARS approach is considered to be more 
suitable than other approaches for representing the temporal variability in the factors such 

as temperature, precipitation, relative humidity and wind. The effects of predictors on the 
distribution, the model, intervals, explained variance and the extrapolation skills [58] also 

support the aforementioned statements. It should not be forgotten that even the best model 
chosen presents the maximum variance explained in the observation period, and it should be 
taken into account that the model would exceed this period in the future climate conditions.

Determining the factors effective on the reasons for fires is of high importance in determin‐

ing the way, quality and density degree of technical interference with natural and artificial 
forest stands that fire sensitive plant species generate especially in the regions of ecological 
conditions, which are also fire sensitive. Silvicultural activities closely affect the amount of 
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fuel [68]. The plantation and restoration activities, which aim at establishing artificial forests, 
it is necessary to form fire resistant and especially fire retardant forests in the Mediterranean 
Region climate zone, which is fire sensitive in terms of especially ecological conditions. Thus, 
it is so important to choose the suitable origins and clones of those as well as choosing the fire 
resistant and indigenous plant species [69].

These results displayed that climate conditions and stand structure have important effects on 
the forest fires in Antalya region as the reason of their outbreaks. Similarly, the majority of the 
fires occurred in the Calabrian pine and cedar forests whose closure was high (71–100%) and 
where middle sized and thick trees were seen in the studies, which were carried out on the 
forest fires in Antalya climate zone and stand dynamics and silvicultural techniques. When 
analyzed the current fire statistics, most of the forest fires are seen to occur in the Calabrian 
pine and cedar forests which are of high closure and middle sized and thick trees near espe‐

cially the residential areas, recreation areas and main arterial roads. Also, taking the current 
ecological conditions into consideration for silvicultural objectives and aims, it is quite impor‐

tant to enable the suitable mesophyte species to take place in the area in order to reduce the 

effects of fire danger in pure coniferous monoculture Calabrian pine and cedar plantations, 
where especially important silvicultural interventions are compulsory such as opening neces‐

sary maintenance paths [70].
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