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Abstract

Both the scalar Green function and the dyadic Green function of an electromagnetic field
and the transform from the scalar to dyadic Green function are introduced. The Green
function of a transmission line and the propagators are also presented in this chapter.

Keywords: Green function, boundary condition, scatter, propagator, convergence

1. Introduction

In 1828, Green introduced a function, which he called a potential, for calculating the distribu-

tion of a charge on a surface bounding a region in Rn in the presence of external electromag-

netic forces. The Green function has been an interesting topic in modern physics and

engineering, especially for the electromagnetic theory in various source distributions (charge,

current, and magnetic current), various construct conductors, and dielectric. Even though most

problems can be solved without the use of Green functions, the symbolic simplicity with which

they could be used to express relationships makes the formulations of many problems simpler

and more compact. Moreover, it is easier to conceptualize many problems; especially the

dyadic Green function is generalized to layered media of planar, cylindrical, and spherical

configurations.

2. Definition of Green function

2.1. Mathematics definition

For the linear operator, there are: L̂x ¼ f ðtÞ, t > 0;
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xðtÞjt¼0 ¼ y0;⋯xðnÞðtÞjt¼0 ¼ yn ð1Þ

Rewriting Eq. (1) as:

L̂x ¼

ð
f ðt0Þδðt� t0Þdt0 ð2Þ

Defining the Green function as:

L̂Gðt, t0Þ ¼ δðt� t0Þ ð3Þ

So, the solution of Eq. (1) is:

xðtÞ ¼

ð
f ðt0ÞGðt, t0Þdt0 ð4Þ

We give several types of Green functions [1]

3. The scalar Green function

3.1. The scalar Green function of an electromagnetic field

The Green function of a wave equation is the solution of the wave equation for a point source

[2]. And when the solution to the wave equation due to a point source is known, the solution

due to a general source can be obtained by the principle of linear superposition (see Figure 1).

This is merely a result of the linearity of the wave equation, and that a general source is just a

linear superposition of point sources. For example, to obtain the solution to the scalar wave

equation in V in Figure 1

ð∇2 þ k2ÞϕðrÞ ¼ sðrÞ ð5Þ

we first seek the Green function in the same V, which is the solution to the following equation:

ð∇2 þ k2Þgðr, r0Þ ¼ δðr�r0Þ ð6Þ

Given g (r, r0), φ(r) can be found easily from the principle of linear superposition, since g (r, r0) is

the solution to Eq. (5) with a point source on the right-hand side. To see this more clearly, note

that an arbitrary source s(r) is just

L̂ ¼ �ð d
2

dt2
þ 2γ d

dt þ ω2
0Þ Gðt, t0Þ ¼ 1

2π

ðþ∞
�∞

exp ½�iðt� t0Þk�

k2 þ 2iγk� ω2
0

dk

L̂ ¼ �½f 0ðtÞ
d2

dt2
þ f 1ðtÞ

d
dt þ f 2ðtÞÞ Gðt, t0Þ ¼ � Ψ 1ðtÞΨ 2ðt

0Þ�Ψ 2ðtÞΨ 1ðt
0Þ

f 0ðt
0Þ½Ψ 1ðt

0Þ _Ψ 2ðt
0Þ� _Ψ 1ðt

0ÞΨ 2ðt
0Þ�

L̂ ¼ � d
dt ½ð1� t2Þ d

dt� Gðt, t0Þ ¼ 1
2 þ

X∞
n¼1

1

nðnþ 1Þ
�
2nþ 1

2
PnðtÞPnðt

0Þ
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sðrÞ ¼

ð
dr0sðr0Þδðr� r0Þ ð7Þ

which is actually a linear superposition of point sources in mathematical terms. Consequently,

the solution to Eq. (5) is just

ϕðrÞ ¼ �

ð

V

dr0gðr, r0Þsðr0Þ ð8Þ

which is an integral linear superposition of the solution of Eq. (6). Moreover, it can be seen that

g(r, r0) � g(r0, r,) from reciprocity irrespective of the shape of V.

To find the solution of Eq. (6) for an unbounded, homogeneous medium, one solves it in

spherical coordinates with the origin at r'. By so doing, Eq. (6) becomes

ð∇2 þ k2ÞgðrÞ ¼ δðxÞδðyÞδðzÞ ð9Þ

But due to the spherical symmetry of a point source, g(r) must also be spherically symmetric.

Then, for r 6¼ 0, adopt the proper coordinate origin (the vector r is replaced by the scalar r), the

homogeneous, spherically symmetric solution to Eq. (9) is given by

gðrÞ ¼ c1
eikr

r
þ c2

e�ikr

r
ð10Þ

Since sources are absent at infinity, physical grounds then imply that only an outgoing solution

can exist; hence,

gðrÞ ¼ c
eikr

r
ð11Þ

Figure 1. The radiation of a source s(r) in a volume V.
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The constant c is found by matching the singularities at the origin on both sides of Eq. (9). To

do this, we substitute Eq. (11) into Eq. (9) and integrate Eq. (9) over a small volume about the

origin to yield

ð

ΔV

dV∇ � ∇
ceikr

r
þ

ð

ΔV

dVk2
ceikr

r
¼ �1 ð12Þ

Note that the second integral vanishes when ∆V ! 0 because dV = 4πr2dr. Moreover, the first

integral in Eq. (12) can be converted into a surface integral using Gauss theorem to obtain

lim
r!0

4πr2
d

dr
c
eikr

r
¼ �1 ð13Þ

or c = 1/(4π).

The solution to Eq. (6) must depend only on r – r0. Therefore, in general,

gðr, r0Þ ¼ gðr� r0Þ ¼
eikðr�r0Þ

4πðr� r0Þ
ð14Þ

implying that g(r, r') is translationally invariant for unbounded, homogeneous media. Conse-

quently, the solution to Eq. (5), from Eq. (9), is then

ϕðrÞ ¼ �

ð

V

dr0
eikðr�r0Þ

4πðr� r0Þ
sðr0Þ ð15Þ

Once ϕ(r) and n̂ � ∇ϕðrÞ are known on S, then ϕ(r0) away from S could be found

ϕðr0Þ ¼ ∮
S

dSn̂ � ½gðr, r0Þ∇ϕðrÞ � ϕðrÞ∇gðr, r0Þ� ð16Þ

3.2. The scalar Green functions of one-dimensional transmission lines

We consider a transmission line excited by a distributed current source, K(x), as sketched in

Figure 2. The line may be finite or infinite, and it may be terminated at either end with

impedance or by another line [3]. For a harmonically oscillating current source K(x), the

voltage and the current on the line satisfy the following pair of equations:

Figure 2. Transmission line excited by a distributed current source, K(x).

Recent Studies in Perturbation Theory68



dVðxÞ
dx

¼ iωLIðxÞ ð17Þ

dIðxÞ
dx

¼ iωCVðxÞ þ KðxÞ ð18Þ

L and C denote, respectively, the distributed inductance and capacitance of the line.

By eliminating I(x) between Eq. (17) and Eq. (18), there is

d2VðxÞ
dx2

þ k2VðxÞ ¼ iωLKðxÞ ð19Þ

where k ¼ ω
ffiffiffiffiffiffi

LC
p

denotes the propagation constant of the line. Eq. (19) has been designated as

an inhomogeneous one-dimensional scalar wave equation.

The Green function pertaining to a one-dimensional scalar wave equation of the form of

Eq. (19), denoted by g(x, x0), is a solution of the Eq. (9). The solution for g(x, x0) is not

completely determined unless there are two boundary conditions which the function must

satisfy at the extremities of the spatial domain in which the function is defined. The boundary

conditions which must be satisfied by g(x, x0) are the same as those dictated by the original

function which we intend to determine, namely, V(x) in the present case. For this reason, the

Green functions are classified according to the boundary conditions, which they must obey.

Some of the typical ones (for the transmission line) are illustrated in Figure 3.

In general, the subscript 0 designates infinite domain so that we have outgoing waves at

x ! �∞, often called the radiation condition. Subscript 1 means that one of the boundary

conditions satisfies the so-called Dirichlet condition, while the other satisfies the radiation

condition. When one of the boundary conditions satisfies the so-called Neumann condition,

we use subscript 2. Subscript 3 is reserved for the mixed type. Actually, we should have used a

double subscript for two distinct boundary conditions. For example, case (b) of Figure 3

should be denoted by g01, indicating that one radiation condition and one Dirichlet condition

are involved. With such an understanding, the simplified notation should be acceptable.

In case (d), a superscript becomes necessary because we have two sets of line voltage and

current (V1, I1) and (V2, I2) in this problem, and the Green function also has different forms in

the two regions. The first superscript denotes the region where this function is defined, and the

second superscript denotes the region where the source is located.

Let the domain of x corresponds to (x1, x2). The function g(x, x0) in Eq. (9) can represent any of

the three types, g0, g1, and g2, illustrated in Figures 3a–c, respectively. The treatment of case

(d) is slightly different, and it will be formulated later.

(a) By multiplying Eq. (19) by g(x, x0) and Eq. (9) by V(x) and taking the difference of the two

resultant equations, we obtain

ðx2

x1

½VðxÞ d
2g0ðx, x0Þ
dx2

� g0ðx, x0Þ
d2Vðx, x0Þ

dx2
�dx ¼ �

ðx2

x1

VðxÞδðx� x0Þdx� iωL

ðx2

x1

KðxÞg0ðx, x0Þdx

ð20Þ
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The first term at the right-hand side of the above equation is simply V(xl), and the term at the

left-hand side can be simplified by integration by parts, which gives

Vðx0Þ ¼ �iωL

ðx2
x1

g0ðx, x
0ÞKðxÞdx ð21Þ

If we use the unprimed variable x to denote the position of a field point, as usually is the case,

Eq. (21) can be changed to [4]

Figure 3. Classification of Green functions according to the boundary conditions.
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VðxÞ ¼ �iωL

ðx2

x1

gðx0, xÞKðx0Þdx0

¼ �iωL

ðx2

x1

g0ðx, x
0ÞKðx0Þdx0

ð22Þ

The last identity is due to the symmetrical property of the Green function. The shifting of the

primed and unprimed variables is often practiced in our work. For this reason, it is important

to point out that g(x0, x), by definition, satisfies the Eq. (9).

The general solutions for Eq. (9) in the two regions (see Figure 3a) are

g0ðx, x
0Þ ¼

i=ð2kÞeikðx�x0Þ, x ≥ x0

i=ð2kÞe�ikðx�x0Þ, x ≤ x0

(

ð23Þ

The choice of the above functions is done with the proper satisfaction of boundary conditions

at infinity. At x = x', the function must be continuous, and its derivative is discontinuous.

They are: ½g0ðx,x
0Þ�

x0þ0

x0�0
¼ 0, and

dg0ðx,x
0Þ

dx

� �x0þ0

x0�0

¼ �1

The physical interpretation of these two conditions is that the voltage at x' is continuous, but

the difference of the line currents at x' must be equal to the source current.

(b) The choice of this type of function is done with the proper satisfaction of boundary

conditions. At x = x', the function must be continuous, its derivative is discontinuous, and a

Dirichlet condition is satisfied at x = 0.

g1ðx, x
0Þ ¼

ι=ð2κÞ eικðx�x0Þ � eικðxþx0Þ
� �

, x ≥ x0

ι=ð2κÞ e�ικðx�x0Þ � eικðxþx0Þ
� �

, 0 ≤ x ≤ x0

(

ð24Þ

In view of Eq. (24), it can be interpreted as consisting of an incident and a scattered wave; that

is

g1ðx, x
0Þ ¼ g0ðx, x

0Þ þ g1sðx, x
0Þ ð25Þ

where g1sðx, x
0Þ ¼ �i

2k e
ikðxþx0Þ.

Such a notion is not only physically useful, but mathematically it offers a shortcut to finding a

composite Green function. It is called as the shortcut method or the method of scattering

superposition.

(c) Similarly, the method of scattering superposition suggests that we can start with

g2ðx, x
0Þ ¼ g0ðx, x

0Þ þ Aeikx ð26Þ

To satisfy the Neumann condition at x = 0, we require

Green Function
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dg0ðx,x
0Þ

dx
þ ikAeikx

� �

x¼0

¼ 0 ð27Þ

Hence

A ¼
i

2k
eikx

0

ð28Þ

g2ðx, x
0Þ ¼ i=ð2kÞ

eikðx�x0Þ þ eikðxþx0Þ, x ≥ x0

e�ikðx�x0Þ þ eikðxþx0Þ, 0 ≤ x ≤ x0

(

ð29Þ

(d) In this case, we have two differential equations to start with

d2V1ðxÞ

dx2
þ k21V1ðxÞ ¼ iωL1K1ðxÞ, x ≥ 0 ð30Þ

d2V2ðxÞ

dx2
þ k22V2ðxÞ ¼ 0, x ≤ 0 ð31Þ

It is assumed that the current source is located in region 1 (see Figure 3d). We introduce two

Green functions of the third kind, denoted by g(11) (x, x') and g(21) (x, x'). g(21), the first

number of the superscript corresponds to the region where the function is defined. The second

number corresponds to the region where the source is located; then

d2gð11Þðx, x0Þ

dx2
þ k21g

ð11Þðx, x0Þ ¼ �δðx� x0Þ, x ≥ 0 ð32Þ

d2gð21Þðx, x0Þ

dx2
þ k22g

ð21Þðx, x0Þ ¼ 0, x ≤ 0 ð33Þ

At the junction corresponding to x = 0, g(11) and g(21) satisfy the boundary condition that

gð11Þðx,x0Þx¼0 ¼ gð21Þðx,x0Þx¼0 ð34Þ

1

L1

dgð11Þðx,x0Þ

dx x¼0
¼

1

L2

dgð21Þðx,x0Þ

dx x¼0
ð35Þ

The last condition corresponds to the physical requirement that the current at the junction

must be continuous. Again, by means of the method of scattering superposition, there are

gð11Þðx, x0Þ ¼ g0ðx, x
0Þ þ gð11Þs ðx, x0Þ

¼
i

2k1

eik1ðx�x0Þ þ Reik1ðx�x0Þ, x ≥ x0

e�ik1ðx�x0Þ þ Reik1ðxþx0Þ, 0 ≤ x ≤ x0

(

ð36Þ

gð21Þðx, x0Þ ¼
i

2k1
Te�iðk2x�k1x

0Þ, x ≥ 0 ð37Þ

The characteristic impedance of the lines, respectively, is
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z1 ¼
L1
C1

� �1=2

, z2 ¼
L2
C2

� �1=2

ð38Þ

By the boundary condition, there are

R ¼
z2 � z1
z2 þ z1

, T ¼
2z2

z2 þ z1
ð39Þ

Example: Green function solution of nonlinear Schrodinger equation in the time domain [5].

The nonlinear Schrodinger equation including nonresonant and resonant nonlinear items is:

∂A

∂z
þ

i

2
β2

∂2A

∂t2
�
1

6
β3

∂3A

∂t3
¼ �

a

2
Aþ i

3k0
8nAeff

χ
ð3Þ
NRjAj

2A

þ
ik0gðω0Þ½1� if ðω0Þ�

2nAeff
A

ðt

�∞

χ
ð3Þ
R ðt� τÞjAðτÞj2dτ

ð40Þ

Where A is the field, β2 and β3 are the second and third order dispersion, respectively. A(z) is

the fiber absorption profile. k0 ¼ ω0=c, ω0 is the center frequency. Aeff is the effective core area.

n is the refractive index.

f ðω1 þ ω2 þ ω3Þ ¼
2ðω1 þ ω2 þ ω3Þð1� jΓjÞ

�2ðω1 þ ω2 þ ω3Þ
2 � 2jΓj þ jΓj2

ð41Þ

gðω1 þ ω2 þ ω3Þ ¼ ½�2ðω1 þ ω2 þ ω3Þ
2 � 2jΓj þ jΓj2� ð42Þ

where g(ω1 + ω2 + ω3) is the Raman gain and f(ω1 + ω2 + ω3) is the Raman nongain coefficient. Г

is the attenuation coefficient.

The original nonlinear part is divided into the nonresonant and resonant susceptibility items

χ
ð3Þ
NR and χ

ð3Þ
R . The solution has the form:

Aðz, tÞ ¼ ϕðtÞe�iEz ð43Þ

Then, there is:

1

2
β2

∂
2φ

∂t2
þ

i

6
β3

∂
3φ

∂t3
�

3k0
8nAeff

χ
ð3Þ
NRjφj

2φ�
k0gðωsÞ½1� if ðωsÞ�

2nAeff
φ

ðþ∞

�∞

χ
ð3Þ
N ðt� τÞjφðτÞjdτ ¼ Eφ ð44Þ

Let:

Ĥ0ðtÞ ¼
1

2
β2

∂
2

∂t2
þ

i

6
β3

∂
3

∂t3
ð45Þ

V̂ ðtÞ ¼
�3k0
8nAeff

χ
ð3Þ
NRjφj �

k0gðωsÞ½1� if ðωsÞ�

2nAeff

ðþ∞

�∞

χ
ð3Þ
R ðt� τÞjφðτÞj2dτ ð46Þ
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and taking the operator V̂ ðtÞas a perturbation item, the eigenequation �
X

k

n¼2

in

n!
β
n

∂nφ
∂Tn ¼ Eφ is

1

2
β2

∂
2φ

∂T2
þ

i

6
β3

∂
3φ

∂T3
¼ Eφ ð47Þ

Assuming E = 1, we get the corresponding characteristic equation:

�
1

2
β2r

2 þ
β3
6
r3 ¼ E ð48Þ

Its characteristic roots are r1,r2,r3. The solution can be represented as:

φ ¼ c1φ1 þ c2φ2 þ c3φ3 ð49Þ

where ϕ
m
¼ exp ðirmtÞ, m ¼ 1, 2, 3, and c1,c2,c3 are determined by the initial pulse. The Green

function of Eq. (47) is:

ðE� Ĥ0ðtÞÞG0ðt, t
0Þ ¼ δðt� t0Þ ð50Þ

Constructing the Green function as:

G0ðt, t
0Þ ¼

a1φ1 þ a2φ2 þ a3φ3, t > t0

b1φ1 þ b2φ2 þ b3φ3, t < t0

(

ð51Þ

At the point t = t0, there are:

a1φ1ðt
0Þ þ a2φ2ðt

0Þ þ a3φ3ðt
0Þ ¼ b1φ1ðt

0Þ þ b2φ2ðt
0Þ þ b3φ3ðt

0Þ ð52Þ

a1φ
0
1ðt

0Þ þ a2φ
0
2ðt

0Þ þ a3φ
0
3ðt

0Þ ¼ b1φ
0
1ðt

0Þ þ b2φ
0
2ðt

0Þ þ b3φ
0
3ðt

0Þ ð53Þ

a1φ
″

1ðt
0Þ þ a2φ

″

2ðt
0Þ þ a3φ

″

3ðt
0Þ � b1φ

″

1ðt
0Þ � b2φ

″

2ðt
0Þ � b3φ

″

3ðt
0Þ ¼ �6i=β3 ð54Þ

It is reasonable to let b1 = b2 = b3 = 0, then:

a1 ¼
φ2

_φ3 �
_φ2φ3

Wðt0Þ
, a2 ¼

φ3
_φ1 �

_φ3φ1

Wðt0Þ
, a3 ¼

φ1
_φ2 �

_φ1φ2

Wðt0Þ
ð55Þ

Wðt0Þ ¼

φ1 φ2 φ3

φ
ð1Þ
1 φ

ð1Þ
2 φ

ð1Þ
3

φ
ð2Þ
1 φ

ð2Þ
2 φ

ð2Þ
3

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

ð56Þ

Finally, the solution of Eq. (44) can be written with the eigenfunction and Green function:
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φðtÞ ¼ φðtÞ þ

ð

G0ðt, t
0ÞVðt0Þφðt0Þdt0

¼ ϕðtÞ þ

ð

G0ðt, t
0, EÞVðt0Þϕðt0Þdt0þ

ð

dt0G0ðt, t
0, EÞVðt0Þ

ð

G0ðt
0, t″, EÞVðt″Þφðt″Þdt″

¼ ϕðtÞ þ

ð

G0ðt, t
0, EÞVðt0Þϕðt0Þdt0þ

ð

dt0G0ðt, t
0, EÞVðt0Þ

ð

G0ðt
0, t″, EÞVðt″Þϕðt″Þdt″ þ⋯

þ

ð

dt0G0ðt, t
0ÞVðt0Þ

ð

G0ðt
0, t″ÞVðt″Þdt″⋯

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

times l

ð

G0ðt
l, tlþ1ÞVðtlþ1Þφðtlþ1Þdtlþ1

ð57Þ

The accuracy can be estimated by the last term of Eq. (57).

4. The dyadic Green function

4.1. The dyadic Green function for the electromagnetic field in a homogeneous isotropic

medium

The Green function for the scalar wave equation could be used to find the dyadic Green

function for the vector wave equation in a homogeneous, isotropic medium [3]. First, notice

that the vector wave equation in a homogeneous, isotropic medium is

∇ ·∇·EðrÞ � k2EðrÞ ¼ iωμJðrÞ ð58Þ

Then, by using the fact that ∇ ·∇·EðrÞ ¼ �∇
2Eþ ∇∇ � E and that ∇ � E ¼ ρ=ε ¼ ∇ � J=iωε,

which follows from the continuity equation, we can rewrite Eq. (58) as

∇
2EðrÞ � k2EðrÞ ¼ �iωμ Î þ

∇∇

k2

� �

� JðrÞ ð59Þ

where Î is an identity operator. In Cartesian coordinates, there are actually three scalar wave

equations embedded in the above vector equation, each of which can be solved easily in the

manner of Eq. (4). Consequently,

EðrÞ ¼ �iωμ

ð

V

dr0gðr0 � rÞ Î þ
∇

0
∇

0

k2

� �

� JðrÞ ð60Þ

where g(r0�r)is the unbounded medium scalar Green function. Moreover, by using the vector

identities ∇gf ¼ f∇gþ g∇f and ∇ � gF ¼ g∇ � Fþ ð∇gÞ � F, it can be shown that

ð

V

dr0gðr0 � rÞ∇0f ðr0Þ ¼ �

ð

V

dr0∇0gðr0 � rÞf ðr0Þ ð61Þ

and
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ð

V

dr0½∇0gðr0 � rÞ�∇0 � Jðr0Þ ¼ �

ð

V

dr0Jðr0Þ � ∇0
∇

0gðr0 � rÞ ð62Þ

Hence, Eq. (60) can be rewritten as

EðrÞ ¼ iωμ

ð

V

dr0Jðr0Þ � Î þ
∇

0
∇

0

k2

� �

gðr0 � rÞ ð63Þ

It can also be derived using scalar and vector potentials.

Alternatively, Eq. (63) can be written as

EðrÞ ¼ iωμ

ð

V

dr0Jðr0Þ � Ĝeðr
0, rÞ ð64Þ

where

ĜeðrÞ ¼ I þ
∇

0
∇

0

k2

� �

gðr0 � rÞ ð65Þ

is a dyad known as the dyadic Green function for the electric field in an unbounded, homoge-

neous medium. (A dyad is a 3 · 3 matrix that transforms a vector to a vector. It is also a second

rank tensor). Even though Eq. (64) is established for an unbounded, homogeneous medium,

such a general relationship also exists in a bounded, homogeneous medium. It could easily be

shown from reciprocity that

J1ðrÞ, Ĝeðr, r
0Þ, J2ðr

0Þ
D E

¼ J2ðrÞ, Ĝeðr, r
0Þ, J1ðr

0Þ
D E

¼ J1ðrÞ, Ĝ
t

eðr, r
0Þ, J2ðr

0Þ
D E ð66Þ

where

JiðrÞ, Ĝeðr, r
0Þ, Jjðr

0Þ
D E

¼

ð

V

ð

V

dr0drJiðr
0Þ � Ĝeðr

0, rÞ � JjðrÞ ð66aÞ

is the relation between Ji and the electric field produced by Jj. Notice that the above equation

implies [6]

Ĝ
t

eðr
0, rÞ ¼ Ĝeðr, r

0Þ ð66bÞ

Then, by taking transpose of Eq. (66b), Eq. (64) becomes

EðrÞ ¼ iωμ

ð

V

dr0Ĝeðr, r
0Þ � Jðr0Þ ð67Þ

Alternatively, the dyadic Green function for an unbounded, homogeneous medium can also be

written as
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Ĝeðr, r
0Þ ¼

1

k2
∇ ·∇ · Îgðr� r0Þ � Îδðr� r0Þ
h i

ð68Þ

By substituting Eq. (67) back into Eq. (58) and writing

JðrÞ ¼

ð

dr0Îδðr� r0Þ � Jðr0Þ ð69Þ

we can show quite easily that

∇ ·∇· Ĝeðr, r
0Þ�k2Ĝeðr, r

0Þ ¼ Îδðr� r0Þ ð70Þ

Equation (64) or (67), due to the ∇∇ operator inside the integration operating on g(r0�r), has a

singularity of 1/|r0�r|3 when r0 ! r. Consequently, it has to be redefined in this case for it does

not converge uniformly, specifically, when r is also in the source region occupied by J(r).

Hence, at this point, the evaluation of Eq. (67) in a source region is undefined.

And as the vector analog of Eq. (16)

Eðr0Þ ¼ ∮
S

dS n ·EðrÞ � ∇· Ĝeðr, r
0Þ þ iωμn ·HðrÞ � Ĝeðr, r

0Þ
h i

ð71Þ

4.2. The boundary condition

The dyadic Green function is introduced mainly to formulate various canonical electromagnetic

problems in a systematic manner to avoid treatments of many special cases which can be treated

as one general problem [3, 7, 8]. Some typical problems are illustrated in Figure 4 where (a)

shows a current source in the presence of a conducting sphere located in air, (b) shows a

conducting cylinder with an aperture which is excited by some source inside the cylinder, (c)

shows a rectangular waveguide with a current source placed inside the guide, and (d) shows two

semi-infinite isotropic media in contact, such as air and “flat” earth with a current source placed

in one of the regions.

Unless specified otherwise, we assume that for problems involving only one medium such as

(a), (b), and (c) the medium is air, then the wave number k is equal to ωðμ0ε0Þ
1=2 ¼ 2π=λ. The

electromagnetic fields in these cases are solutions of the wave Eq. (62) and

∇ ·∇·HðrÞ � k2HðrÞ ¼ ∇ · JðrÞ ð72Þ

The fields must satisfy the boundary conditions required by these problems.

In general, using the notations Ĝe and Ĝm to denote, respectively, the electric and the magnetic

dyadic Green functions; they are solutions of the dyadic differential equations

∇ ·∇· Ĝeðr, r
0Þ�k2Ĝeðr, r

0Þ ¼ Îδðr� r0Þ ð73Þ

∇ ·∇ · Ĝmðr, r
0Þ�k2Ĝmðr, r

0Þ ¼ ∇· Îδðr� r0Þ
h i

ð74Þ

is the same as Eq. (70), and there is
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Ĝm ¼ ∇· Ĝe ð75Þ

(a) and (b): Electric dyadic Green function (the first kind, using the subscript 1 denotes Ĝe1, Ĝm1,

and the subscript “0” represents the free-space condition that the environment does not have any

scattering object) is required to satisfy the dyadic Dirichlet condition on Sd, namely,

n · Ĝe1 ¼ 0,n · Ĝm1 ¼ 0 ð76Þ

So, for (a)

Eðr0Þ ¼

ð
drJðrÞ � Ĝeðr, r

0Þ ð77Þ

and for (b)

Eðr0Þ ¼ ∮
SA

dSn ·EðrÞ �∇ · Ĝeðr, r
0Þ ð78Þ

(c) the electric dyadic Green function is required to satisfy the dyadic boundary condition on Sd,

namely,

n ·∇ · Ĝe2 ¼ 0 n ·∇ · Ĝm2 ¼ 0 ð79Þ

Hðr0Þ ¼

ð
drJðrÞ � ∇ · Ĝeðr, r

0Þ ð80Þ

Figure 4. Some typical boundary value problems.
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(d) For problems involving two isotropic media such as the configuration shown in Figure 4d,

there are two sets of fields [9]. The wave numbers in these two regions are denoted by

k1 ¼ ωðμ1ε1Þ
1=2 and k2 ¼ ωðμ2ε2Þ

1=2. There are four functions for the dyadic Green function of

the electric type and another four functions for the magnetic type, denoted, respectively, by

Ĝ
11

e Ĝ
12

e Ĝ
21

e and Ĝ
22

e , and Ĝ
11

m Ĝ
12

m Ĝ
21

m and Ĝ
22

m . The superscript notation in Ĝ
11

e means that

both the field point and the source point are located in region 1. For Ĝ
21

e , it means that the field

point is located in region 1 and the source point is located in region 2. A current source is

located in region 1 only, and the two sets of wave equations are

∇ ·∇·E1ðrÞ � k
2E1ðrÞ ¼ iωμ1J1ðrÞ ð81Þ

∇ ·∇·H1ðrÞ � k
2H1ðrÞ ¼ ∇· J1ðrÞ ð82Þ

and

∇ ·∇ ·E2ðrÞ � k
2E2ðrÞ ¼ 0 ð83Þ

∇ ·∇·H2ðrÞ � k
2H2ðrÞ ¼ 0 ð84Þ

There are

∇ ·∇· Ĝ
11

e ðr, r0Þ�k
2
1Ĝ

11

e ðr, r0Þ ¼ Îδðr� r0Þ ð85Þ

∇·∇ · Ĝ
21

e ðr, r0Þ�k
2
2Ĝ

21

e ðr, r0Þ ¼ 0 ð86Þ

At the interface, the electromagnetic field and the corresponding dyadic Green function satisfy

the following boundary conditions

n · ½Ĝ
11

e � Ĝ
21

e � ¼ 0 ð87Þ

n · ½∇· Ĝ
11

e =μ1 � ∇ · Ĝ
21

e =μ2� ¼ 0 ð88Þ

The electric fields are

E1ðr
0Þ ¼ iωμ1

ð
drJðrÞ � Ĝ

11

e ðr, r0Þ ð89Þ

E2ðr
0Þ ¼ iωμ2

ð
drJðrÞ � Ĝ

21

e ðr, r0Þ ð90Þ

5. Vector wave functions, L, M, and N

The vector wave functions are the building blocks of the eigenfunction expansions of various

kinds of dyadic Green functions. These functions were first introduced by Hansen [10–12] in

formulating certain electromagnetic problems.Three kinds of vector wave functions, denoted

by L, M, and N, are solutions of the homogeneous vector Helmholtz equation. To derive the
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eigenfunction expansion of the magnetic dyadic Green functions that are solenoidal and satisfy

with the vector wave equation, the L functions are not needed. If we try to find eigenfunction

expansion of the electric dyadic Green functions then the L functions are also needed.

A vector wave function, by definition, is an eigenfunction or a characteristic function, which is

a solution of the homogeneous vector wave equation ∇ ·∇ · F� κ2F ¼ 0.

There are two independent sets of vector wave functions, which can be constructed using the

characteristic function pertaining to a scalar wave equation as the generating function. One kind

of vectorwave function, called theCartesian or rectilinear vectorwave function, is formed ifwe let

F ¼ ∇ · ðΨ 1cÞ ð91Þ

where ψ1 denotes a characteristic function, which satisfies the scalar wave equation

∇
2Ψ þ κ2Ψ ¼ 0 ð92Þ

And c denotes a constant vector, such as x, y, or z. For convenience, we shall designate c as the

piloting vector and Ψ as the generating function. Another kind, designated as the spherical

vector wavefunction, will be introduced later, whereby the piloting vector is identified as the

spherical radial vector R.

Actually, substituting Eq. (91) into Eq. (92), it is

∇ · ½cð∇2Ψ 1 þ κ2Ψ 1Þ� ¼ 0 ð93Þ

The set of functions so obtained

M1 ¼ ∇ · ðΨ 1cÞ ð94Þ

N2 ¼
1

κ
∇ ·∇· ðΨ 2cÞ ð95Þ

L3 ¼ ∇ðΨ 3Þ ð96Þ

Ψ2,Ψ3 denote the characteristic functions which also satisfy (92) but may be different from the

function used to define M1.

In the following, the expressions for the dyadic Green functions of a rectangular waveguide

will be derived asserting to the vector wave functions. The method and the general procedure

would apply equally well to other bodies (cylindrical waveguide, circular cylinder in free

space, and inhomogeneous media and moving medium).

Figure 5 shows the orientation of the guide with respect to the rectangular coordinate system,

and we will choose the unit vector z to represent the piloting vector c.

The scalar wave function

Ψ ¼ ðA cos kxxþ B sin kxxÞðC cos kyyþD sin kyyÞe
ihz ð97Þ

where k2x þ k2y þ h2 ¼ κ2.
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the constants kx and ky should have the following characteristic values

kx ¼
mπ

a
,m ¼ 0, 1,⋯ ð98Þ

ky ¼
nπ

b
, n ¼ 0, 1,⋯ ð99Þ

The complete expression and the notation for the set of functions M, which satisfy the vector

Dirichlet condition are

MemnðhÞ ¼ ∇ · ½Ψ emnz�

¼ ð�kyCxSyxþ kxCySxyÞe
ihz ð100Þ

where Sx ¼ sin kxx, Cx ¼ cos kxx, Sy ¼ sin kyy, Cy ¼ cos kyy. The subscript “e” attached to

Memn is an abbreviation for the word “even,” and “o” for “odd.”

In a similar manner

Nomn ¼
1

κ
ðihkxCxSyxþ ihkyCySxyþ ðk2x þ k2yÞSxSyzÞe

ihz ð101Þ

It is obvious that Memn represents the electric field of the TEmn mode, while Nomn represents

that of the TMmn mode.

In summary, the vector wave functions, which can be used to represent the electromagnetic

field inside a rectangular waveguide, are of the form

MeðoÞmn ¼ ∇· ½Ψ eðoÞmnz� ð102Þ

NeðoÞmn ¼
1

κ
∇·∇ · ½Ψ eðoÞmnz� ð103Þ

Then

Figure 5. A rectangular waveguide.
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Ĝm2ðR,R
0 Þ ¼

ðþ∞

�∞

dh
X

m, n

ð2� δ0Þκ

πabðk2x þ k2yÞ
� ½aðhÞNemnðhÞM

0
emnð�hÞ þ bðhÞMomnðhÞN

0
omnð�hÞ� ð104Þ

where aðhÞ ¼ bðhÞ ¼ 1
κ2�k2

, h ¼ �ðk2 � k2x � k2yÞ
1=2and δ0 ¼

1, m ¼ 0orn ¼ 0
0, m 6¼ 0, n 6¼ 0

�

.

M', N', m', n', h' denote another set of values, which may be distinct or the same as M, N, m, n,

h.

6. Retarded and advanced Green functions

Green function is also utilized to solve the Schrödinger equation in quantum mechanics. Being

completely equivalent to the Landauer scattering approach, the GF technique has the advan-

tage that it calculates relevant transport quantities (e.g., transmission function) using effective

numerical techniques. Besides, the Green function formalism is well adopted for atomic and

molecular discrete-level systems and can be easily extended to include inelastic and many-

body effects [13, 14].

(A) The definitions of propagators

The time-dependent Schrödinger equation is:

iħ
∂jΨ ðtÞ〉

∂t
¼ Ĥ jΨ ðtÞ〉 ð105Þ

The solution of this equation at time t can be written in terms of the solution at time t0:

jΨ ðtÞ〉 ¼ Ûðt, t0ÞjΨ ðt0Þ〉 ð106Þ

where Ûðt, t0Þ is called the time-evolution operator.

For the case of a time-independent Hermitian Hamiltonian Ĥ , so that the eigenstates

jΨ nðtÞ〉 ¼ e�iEnt=ħjΨ n〉 with energies En are found from the stationary Schrödinger equation

Ĥ jΨ n〉 ¼ EnjΨ n〉 ð107Þ

The eigenfunctions jΨ n〉are orthogonal and normalized, for discrete energy levels 1:

〈ΨmjΨ n〉 ¼ δmn ð108Þ

and form a complete set of states (Î is the unity operator)

X

n

〈Ψ njΨ n〉 ¼ 1 ð109Þ

The time-evolution operator for a time-independent Hamiltonian can be written as

Recent Studies in Perturbation Theory82



Ûðt� t0Þ ¼ e�iðt�t0ÞĤ=ħ ð110Þ

This formal solution is difficult to use directly in most cases, but one can obtain the useful

eigenstate representation from it. From the identity Û ¼ Û Î and (107), (109), (110) it follows that

Ûðt� t0Þ ¼
X

n

ei=ħEnðt�t0ÞjΨ n〉〈Ψ nj ð111Þ

which demonstrates the superposition principle. The wave function at time t is

jΨ ðtÞ〉 ¼ Ûðt, t0ÞjΨ ðt0Þ〉 ¼
X

n

e�i=ħEnðt�t0Þ〈Ψ njΨ ðt0ÞjΨ n〉 ð112Þ

where 〈Ψ njΨ ðt0Þ〉 are the coefficients of the expansion of the initial function jΨ ðt0Þ〉on the basis

of eigenstates.

It is equivalent and more convenient to introduce two Green operators, also called propaga-

tors, retarded Ĝ
R
ðt, t0Þ and advanced Ĝ

A
ðt, t0Þ:

Ĝ
R
ðt, t0Þ ¼ �

i

ħ
θðt� t0ÞÛðt, t0Þ ¼ �

i

ħ
θðt� t0Þe�iðt�t0ÞĤ=ħ ð113Þ

Ĝ
A
ðt, t0Þ ¼

i

ħ
θðt0 � tÞÛðt, t0Þ ¼

i

ħ
θðt0 � tÞe�iðt�t0ÞĤ=ħ ð114Þ

so that at t > t0 one has

jΨ ðtÞ〉 ¼ iħĜ
R
ðt� t0ÞjΨ ðt0Þ〉 ð115Þ

while at t < t0 it follows

jΨ ðtÞ〉 ¼ iħĜ
A
ðt� t0ÞjΨ ðt0Þ〉 ð116Þ

The operators Ĝ
R
ðt, t0Þ at t > t0and Ĝ

A
ðt, t0Þ at t < t0 are the solutions of the equation

iħ
∂

∂t
� Ĥ

� �

Ĝ
RðAÞ

ðt, t0Þ ¼ Îδðt� t0Þ ð117Þ

with the boundary conditions Ĝ
R
ðt, t0Þ ¼ 0 at t < t0, Ĝ

A
ðt, t0Þ ¼ 0 at t > t0. Indeed, at t > t0 Eq. (118)

satisfies the Schrödinger equation Eq. (105) due to Eq. (117). And integrating Eq. (117) from

t ¼ t0 � η to t ¼ t0 þ η where η is an infinitesimally small positive number η ¼ 0þ, one gets

Ĝ
R
ðtþ η, t0Þ ¼

1

iħ
Î ð118Þ

giving correct boundary condition at t = t0. Thus, if the retarded Green operator Ĝ
R
ðt, t0Þ is
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known, the time-dependent wave function at any initial condition is found (and makes many

other useful things, as we will see below).

For a time-independent Hamiltonian, the Green function is a function of the time difference

τ ¼ t�t0, and one can consider the Fourier transform

Ĝ
RðAÞ

ðEÞ ¼

ðþ∞
�∞

Ĝ
RðAÞ

ðτÞeiEτ=ħdτ ð119Þ

This transform, however, can not be performed in all cases, because Ĝ
RðAÞ

ðEÞ includes oscillat-

ing terms eiEτ=ħ. To avoid this problem we define the retarded Fourier transform

Ĝ
R

ðEÞ ¼ lim
η!0þ

ðþ∞
�∞

Ĝ
R

ðτÞeiðEþiηÞτ=ħ
dτ ð120Þ

and the advanced one

Ĝ
A

ðEÞ ¼ lim
η!0þ

ðþ∞
�∞

Ĝ
A

ðτÞeiðE�iηÞτ=ħ
dτ ð121Þ

where the limit η! 0 is assumed in the end of calculation. With this addition, the integrals are

convergent. This definition is equivalent to the definition of a retarded (advanced) function as

a function of complex energy variable at the upper (lower) part of the complex plain.

Applying this transform to Eq. (117), the retarded Green operator is

Ĝ
R

ðEÞ ¼ ½ðEþ iηÞÎ � Ĥ ��1 ð122Þ

The advanced operator Ĝ
A

ðEÞ is related to the retarded one through

Ĝ
A

ðEÞ ¼ Ĝ
Rþ

ðEÞ ð123Þ

Using the completeness property
X

n
jΨ n〉〈Ψ nj ¼ 1, there is

Ĝ
R

ðEÞ ¼
X
n

jΨ n〉〈Ψ nj

ðEþ iηÞÎ � Ĥ
ð124Þ

and

Ĝ
R

ðEÞ ¼
X
n

jΨ n〉〈Ψ nj

E�En þ iη
ð125Þ

Apply the ordinary inverse Fourier transform to Ĝ
R

ðEÞ, the retarded function becomes

Ĝ
R

ðτÞ ¼

ðþ∞
�∞

Ĝ
R

ðEÞe�iEτ=ħ dE

2πħ
¼ �

i

ħ
θðτÞ

X
n

e
�iEnτ=ħjΨ n〉〈Ψ nj ð126Þ
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Indeed, a simple pole in the complex E plain is at E ¼ En � iη, the residue in this point determines

the integral at τ > 0 when the integration contour is closed through the lower half-plane, while at

τ < 0 the integration should be closed through the upper half-plane and the integral is zero.

The formalism of retarded Green functions is quite general and can be applied to quantum

systems in an arbitrary representation. For example, in the coordinate system Eq. (124) is

Ĝ
R
ðr, r0, EÞ ¼

X

n

〈rjΨ n〉〈Ψ njr
0〉

E�En þ iη
¼

X

n

Ψ nðrÞΨ
∗

nðrÞ

E�En þ iη
ð127Þ

(B) Path integral representation of the propagator

In the path integral representation, each path is assigned an amplitude ei
Ð

dtL, L is the Lagrang-

ian function. The propagator is the sum of all the amplitudes associated with the paths

connecting xa and xb (Figure 6). Such a summation is an infinite-dimensional integral.

The propagator satisfies

iGðxb, tb, xa, taÞ ¼

ð

dxiGðxb, tb, x, tÞiGðx, t, xa, taÞ ð128Þ

Let us divide the time interval [ta, tb] into N equal segments, each of length Δt ¼ ðtb � taÞ=N.

iGðxb, tb, xa, taÞ ¼

ð

dx1⋯dxN
Y

N

j¼1

iGðxj, tj, xj�1, tj�1Þ

¼ AN

ð

Y

j

dxj exp i
X

ΔtLðtj,
xj þ xj�1

2
,
xj � xj�1

2
Þ

� �

¼

ð

DðxÞei
Ð

dtLðt,x, _xÞ

ð129Þ

Figure 6. The total amplitude is the sum of all amplitudes associated with thee paths connecting xa and xb.
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where ln½iGðxj, tj, xj�1, tj�1Þ� ¼ iΔtLðtj, xjþxj�1

2 ,
xj�xj�1

2 Þ.

Example: LC circuit-based metamaterials

In this section, we will use the relationship of current and voltage in the LC circuit to build the

propagator of the LC circuit field coupled to an atom.

Figure 7 shows the LC-circuit.The following are valid:

I ¼ � dq

dt
ð130Þ

V ¼ q

C
¼ L

dI

dt
ð131Þ

Thus:

C
d2x

dt2
¼ � x

L
ð132Þ

where x ¼ LI, I is the current, V is the voltage, q is the charge quantity, L and C are the

inductance and capacitance, respectively. Eq. (132) is equal to a harmonic, and the Lagrangian

operator is:

L0ðx, _xÞ ¼ 1

2g
ð _ε

2 �Ω
2
LCε

2Þ ð133Þ

The Lagrangian operator describing the bipole is:

L0ðx, _xÞ ¼ m

2
_x2 �mΩ

2
0

2
x2 ð134Þ

where x is the coordinate of the bipole, ε is the LC field, m is the mass of an electron, and e is

the unit of charge. g ¼ 1
c, and ΩLC ¼ 1

ffiffiffiffiffi

LC
p . Defining their action items as:

SLC ¼
ð

dt
1

2g
ð _ε

2 �Ω
2
LCε

2Þ
� �

ð135Þ

And

S0 ¼
ð

dt
m

2
ð _x2 �Ω

2
0x

2Þ
h i

ð136Þ

Taking the coupling effect (exε) into account, the Green function of the coupled system is:

Gðx, εÞ ¼
ð

DxDεeiSLCþiS0þi
Ð dt½exε�

ð137Þ

Where x represents the series coordinates x1,x2,…,and so on and ɛ represents ɛ1,ɛ2,…., and so

on.
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7. The recent applications of the Green function method

7.1. Convergence

In the Green function, the high oscillation of Bessel/Hankel functions in the integrands results

in quite time-consuming integrations along the Sommerfeld integration paths (SIP) which

ensures that the integrands can satisfy the radiation condition in the direction normal to the

interface of a medium. To facilitate the evaluation, the method of moments (MoM) [15], the

steepest descent path (SDP) method, and the discrete complex image method (DCIM) [16, 17]

are very important methods.

The technique for locating the modes is quite necessary for accurately calculating the spatial

Green functions of a layered medium. The path tracking algorithm can obtain all the modes for

the configuration shown in Figure 8, even when region 2 is very thick [18]. Like the method in

Ref. [19], it does not involve a contour integration and could be extended to more complicated

configurations.

The discrete complex image method (DCIM) has been shown to deteriorate sharply for dis-

tances between source and observation points larger than a few wavelengths [20]. So, the total

least squares algorithm (TLSA) is applied to the determination of the proper and improper

poles of spectral domain multilayered Green’s functions that are closer to the branch point and

to the determination of the residues at these poles [21].

The complex-plane kρ for the determination of proper and improper poles is shown in Figure 9.

Since half the ellipse is in the proper sheet of the kρ-plane and half the ellipse is in the improper

sheet, the poles will not only correctly capture the information of the proper poles but will also

capture the information of those improper poles that are closer to the branch point kρ = k0.

For the 2-D dielectric photonic crystals as shown in Figure 10, the integral equation is written

in terms of the unknown equivalent current sources flowing on the surfaces of the periodic

Figure 7. The coupled system, including an LC field and a bipole.
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2-D cylinders. The method of moments is then employed to solve for the unknown current

distributions. The required Green function of the problem is represented in terms of a finite

summation of complex images. It is shown that when the field-point is far from the periodic

sources, it is just sufficient to consider the contribution of the propagating poles in the struc-

ture [22]. This will result in a summation of plane waves that has an even smaller size

compared with the conventional complex images Green function. This provides an analyzed

method for the dielectric periodic structures.

Figure 8. A general configuration with a three-layered medium: region 1 is free space, region 2 is a substrate with

thickness h and relative permittivity ɛr1, and region 3 is a half space with relative permittivity ɛr2.

Figure 9. Elliptic path chosen in the complex kρ-plane when applying the total least squares algorithm. The upper half

ellipse (solid line) is located in the proper Riemman sheet, and the lower half ellipse (dashed line) is located in the

improper sheet.
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Others, since the Gaussian function is an eigenfunction of the Hankel transform operator, for

the microstrip structures, the spectral Green’s function can be expanded into a Gaussian series

[23]. By introducing the mixed-form thin-stratified medium fast-multiple algorithm (MF-TSM-

FMA), which includes the multipole expansion and the plane wave expansion in one

multilevel tree, the different scales of interaction can be separated by the multilevel nature of

the the fast multipole algorithm [24].

The vector wave functions, L, M, and N, are the solutions of the homogeneous vector Helm-

holtz equation. They can also be used for the analyses of the radiation in multilayer and this

method avoids the finite integration in some cases.

7.2. Multilayer structure

The volume integral equation (VIE) can analyze electromagnetic radiation and scattering

problems in inhomogeneous objects. By introducing an “impulse response” Green function,

and invoking Green theorem, the Helmholtz equation can be cast into an equivalent volume

integral equation including the source current or charges distribution. But the number of

unknowns is typically large and the equation should be reformulated if there are in contrast

both permittivity and permeability. At present, it is utilized to analyse the general scatterers in

layered medium [25, 26].

Figure 10. Typical (a) waveguide and (b) directional coupler in a rectangular lattice.
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When the inhomogeneity is one dimension, the Green function can be determined analytically

in the spectral (Fourier) domain, and the spatial domain counterpart can be obtained by

simply inverse Fourier transforming it.

Surface integral equation (SIE) method is another powerful method to handle electromagnetic

problems. Similarly, by introducing the Green function, the Helmholtz equation can be cast

into an equivalent surface integral equation, where the unknowns are pushed to the boundary

of the scatterers [27].

Despite the convergence problem, the locations of the source and observation point may cause

the change of Green function form, for example, for a source location either inside or outside

the medium, the algebraic form of the Green functions changes as the receiver moves vertically

in the direction of stratification from one layer to another [28].

First, we introduce the full-wave computational model [29]. A multilayer structure involving

infinitely 1-D periodic chains of parallel circular cylinders in any given layer can be

constructed as shown in Figure 11. Each layer consists of a homogeneous slab within which

the circular cylinders are embedded. This is the typical aeronautic situation with fiber-

reinforced four-layer pile (with fibers orientated at 0�, 45�, �45�, and 90�), but any other

arrangement is manageable likewise.

In the multilayered photonic crystals, the Rayleig’s method and mode-matching are combined

to produce scattering matrices. An S-matrix-based recursive matrix is developed for modeling

electromagnetic scattering. Field expansions and the relationship between expansion coeffi-

cients are given.

There is a mix treatment for the inhomogeneous and homogeneous multilayered structure

[30]. As shown in Figure 12, a substrate is divided into two regions. The top region is laterally

inhomogeneous and for the finite-difference method (FDM) or the finite element method

(FEM), the volume integral equation, is used. The bottom region is layerwise homogeneous,

Figure 11. (a) Sketch of a standard (0, 45, �45, 90) degree, four-layer fiber-reinforced composite laminate as in aeronau-

tics. (b) General two-layer pile of interest exhibiting two different cylinder orientations and associated coordinate systems

with geometrical parameters as indicated. (c) Cell defined in the lth layer of multilayered photonic crystals.
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and the boundary-element methods (BEM) are used. The two regions are connected such as a

BEM panel is associated with an FEM node on the interface.

A Green function was derived for a layerwise uniform substrate and was then used in a

layerwise nonuniform substrate with additional boundary conditions applied to the interface.

Given that the lateral inhomogeneity is local, volume meshing is used only for the local

inhomogeneous regions, BEM meshing is applied to the surfaces of these local regions.

For a field (observation) point in the jth layer and a source point in the kth layer, the Green

function has the form:

Gu, l
jk ¼ Gu, l

jk,0 þ
X∞

m¼0
mþn6¼0

X∞

n¼0

cmnϕ
u, l
jk

abεkγmn

· cos
mπxf

a
cos

nπyf

b
cos

mπxs
a

cos
nπys
b

ð138Þ

where the superscripts u and l indicate the upper and lower solutions, respectively, depending

on whether the field point (or observation point) is above or below the source point. a and b are

the substrate dimensions in the x- and y- directions, respectively, and more details can be

found in Refs. [31, 32].

The electromagnetic field in a multilayer structure can be efficiently simplified by the assump-

tion that the multilayer is grounded by a perfect electric conducto (PEC) plane [33, 34]. When

the source and the field points are assumed to be inside the dielectric slab, in a layered medium

as shown in Figure 13, by applying the boundary conditions, the 1-D Green functions is

Gxðx, x0;λx1,λx2Þ ¼ ðGPMC
x þ GPEC

x Þ=2 ð139Þ

where PMC represents the perfect magnetic conductor. The simplified Green function form

can be deduced to the cae of (b).

Figure 12. Substrate is divided into homogeneous and inhomogeneous regions in combined BEM/FEM and BEM/FDM

methods.
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The three-dimensional (3-D) Green function for a continuous, linearly stratified planar media,

backed by a PEC ground plane, can also be expressed in terms of a single contour integral

involving one-dimensional (1-D) green function. The constructure is shown in Figure 14.

The general formulation for a single electric current element has been worked out in detail in

Ref. [35] which is based on the appropriate information from Ref. [36].

Figure 13. (a) Geometry of an infinite dielectric slab of thickness d grounded by a PEC plane at x = d. (b) Geometry of a

finite dielectric slab of thickness 2d and height 2L surrounded by regions □ and □.

Figure 14. Representation of the continuous, linearly stratified media by discrete slabs of finite thickness and constant

permittivity, ɛp and permeability μp for the pth layer of thickness hp. The thicknesses, permittivities and permeabilities are

different for each layer.
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