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Abstract

The mechanisms of agglomeration and defluidization and fluidization characteristic of
iron oxide particles were investigated based on the theory of surface diffusion, interface
reaction, surface nano/microeffect, and phase transformation. Moreover, a mathematical
model was developed to predict the high-temperature defluidization behavior by the
force-balance and plastic-viscous flow mechanism, and the fluidization phase diagram
was obtained. On these bases, a control method of defluidization and its inhibition mech-
anism were proposed. As a result, the theoretical system of agglomeration/defluidization
in the gas-solid fluidization was developed, and thus afforded theory support and techno-
logical bases for the solution of defluidization in industrial fluidized-bed reactors.

Keywords: fluidized-bed reduction, iron ore, agglomeration, defluidization, prevention,
model

1. Introduction

Fluidized-bed reactors can improve the reaction kinetics and realize better utilization of resource/

energy and lower pollutant emissions [1]. Therefore, as a trend in the industrial application,

fluidized beds are ideally suited to the processing of these finely sized raw materials and have

great competitiveness. However, fluidized beds were tested but failed because of the serious

problem of particles agglomeration and subsequent defluidization [2]. The continuous operation

and high productivity was often limited by partial or complete defluidization. It is, therefore, a

critical problem to solve defluidization and particle agglomeration at high temperatures for the

application of fluidized beds.
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Particle agglomeration in fluidized-bed systems has received considerable attention due to its

close association with industrial processes. Gluckman [3] indicated that the generation of

agglomerations depended on the cohesiveness of particles collisions. Seville and coworkers [4, 5]

pointed that the defluidization phenomenon was attributed to an increased rate of sintering at

elevated temperatures, and the tendency of particle to agglomerate depended strongly on their

physical and chemical characteristics at high temperature. Two types of adhesion are consid-

ered [4–7]: (1) Visco materials cause sintering on glassy materials. Increasing the operating

temperature can reduce the viscosity of the materials and cause a larger adhesive force. (2)

Melting and chemical reaction produces liquid-phase materials. These liquid-phase materials

can form a bridge between two particles and cause agglomeration and defluidization.

In the case of fluidized-bed reduction of iron ore, earlier works [8–10] indicated that sticking

occurred mostly during metallization of ore. The defluidization tended to be preferred at a

high fractional reduction and metallization degree. Some ore particles were precipitated by the

metal iron with the fibrous shape on the particle surface. The sticking was initiated by the

contact of the needles that hooked mechanically the particles together. Moreover, the work of

Gransden et al. [9, 10] showed that the sticking was associated with the iron-iron contact

regardless of formation of iron whiskers or not. They believed that the fresh precipitated iron

had a high activity or surface energy, and thus appeared high adhesion energy to agglomera-

tion. Zhong et al. [11] also reported agglomerates formed due to sintering of reduced iron, and

nano/mircostructure on the particle surface had a promotive effect on particle agglomeration.

Therefore, the sticking tendency depended strongly on iron precipitation of particles. With

respect to adhesion of metallic iron, a sintering mechanism of iron particles has been reported

involving the relationship between the bed temperature and the minimum gas fluidizing

velocity required to prevent defluidization [12, 13]. However, most research studies focused

on the metallic iron content and morphologies at the defluidization point [2, 8–11] and thus

did not involve the evolution of particle properties during metallization. In the gas-solid

reaction, new components were produced and thus caused the changes in surface structure

and the particle properties. Therefore, the new phase formation can significantly affect the

particle cohesiveness.

2. Mechanism of agglomeration and defluidization of iron/iron oxide

particles

2.1. Effect of metallization degree on agglomeration tendency

The fluidized-bed apparatus is shown in Figure 1, which is a bubbling fluidized bed consisting

of a transparent silica tube with an inner diameter of 2.5 cm. The reactor is heated by a

transparent electric resistance, and the fluidization state in the reactor can be observed at high

temperature. Bed temperature is measured and controlled by a PID controller connected with

a K-typed thermocouple. The gas flow rate and pressure drop across the bed is measured by a

digital mass flow meter and a pressure transmitter, respectively. The pressure sensor is located

at 1 cm below the gas distributor.
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To determine the evolution of the real-time bed agglomeration tendencies and agglomeration
potential, the controlled bed defluidization tests (CBD) were carried out, which were adapted
from Öhman [14, 15]. Each experiment with a 5 g of iron oxide was started by a normal
fluidized-bed reduction by CO at 700�C (1.0 NL/min, about 12.2 cm/s) to obtain a series of
reduced samples with different metallization degrees (MFe). Preliminary reduction experi-
ments indicated that when MFe was higher than 25%, the bed agglomeration would appear.
Thus, MFe of all the reduced samples was controlled below 25%. And then at a point where a
designated metallization degree was achieved by controlling the reducing time, the reduction
was stopped and the fluidizing gas was switched to N2 atmosphere (1.0 NL/min, about 12.2 cm/s).
Then, the bed was heated up at a rate of 3�C/min until a bed agglomeration was achieved. The
bed defluidization temperature, Tdef, was determined by online analysis of the variations in the
measured bed temperatures and differential pressures and was used to characterize bed agglom-
eration tendency at various metallization degrees. Defluidization is defined as any condition
where a well-fluidized bed loses fluidization, whether partial or total [16]. A typical illustration
of fluctuations in temperatures and differential bed pressures versus time in a controlled bed
defluidization test is shown in Figure 2. Meanwhile, the controlled bed defluidization tests can
also be carried out as a series of interrupted experiments to investigate the evolution of particles in
the course of metallization.

The real-time agglomeration tendency of the reduced samples represented by the defluidization
temperature Tdef was obtained by the controlled bed defluidization tests. As shown in Figure 3,
the defluidization temperature decreases with the increase of the metallization degree, indicating
an increase of agglomeration tendency. The analysis of XRD (X-ray diffraction) shows that all
the reduced samples in the controlled defluidization tests only contain metallic iron and FeO
(Figure 4). The diffraction peaks of metallic iron obviously strengthened with increasing
reduction time, indicating the content of precipitated iron increased. Therefore, the agglomer-
ation tendency depended strongly on the metallic iron content. At the metallization degree

Figure 1. Schematic diagram of fluidized-bed apparatus.
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Figure 2. Illustration of a typical controlled defluidization test for Fe2O3 reduction.

Figure 3. Influence of metallization degree on the defluidization temperature in the controlled defluidization tests.

Figure 4. X-ray patterns of each sample from the controlled bed defluidization tests.
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below 0.52%, no indication of defluidization is observed. This was because that the particle

with lower amount of precipitated iron did not have enough adhesion force to form agglom-

erates and thus maintained a good quality of fluidization. When the metallization degree

reached to 23.56%, the defluidization approached, indicating the defluidization was accompa-

nied with the accumulation of precipitated iron. This result suggested that large quantities of

metallic iron can increase the stickiness of particles by providing enough contact area of iron.

This conclusion was in accord with that found by Gransden et al. [9, 10], who indicated that

the agglomeration was caused by the iron-iron contact. Therefore, the reduced Fe2O3 particle

with a higher metallization degree had a larger agglomeration tendency.

Typical morphologies of reduced samples at various metallization degrees are shown in Figure 5.

At lower metallization degree (i.e., <4.57%), numerous pits are formed on the oxide surface prior

to iron nucleation, and the morphology presents smooth. But at higher metallization degree (i.e.,

>15.64%), the iron nuclei tend to appear (about 0.1�0.15 μm in a diameter), forming microcon-

vexities on the surface. These iron nuclei with nano/microsize were prone to soften and sinter

together due to a higher surface energy [11]. Thus, the reduced particles with a higher metalliza-

tion degree had a stronger adhesive force for agglomeration. On the other hand, the particle

surface becomes rough due to the formation of iron nuclei. Such rough surface caused the

enhancement of friction force among bed particles to result in a poor fluidization quality.

2.2. Effect of iron precipitation on particle cohesiveness

To investigate the evaluation of particle cohesiveness responsible for agglomeration, the

thermomechanical analysis (TMA) was carried out by a dilatometer (NETZSCH-DIL402C,

Figure 5. Evolution of surface morphology of Fe2O3 particles in the controlled defluidization tests: (a) MFe = 0.52%; (b)

MFe = 4.57%; (c)MFe = 15.64%; and (d)MFe = 23.56%.
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Germany). The thermal expansion or contraction was measured to obtain the temperature at

which sintering and surface softening became significant. The sample was heated up to 800�C

at a rate of 10�C/min. The sample was in a flow of 50 ml/min of pure Ar, and the load on it was

30 cN.

The samples from the controlled bed defluidization tests were examined. The greatest change

in ΔL/ΔL0 gradient occurs for each curve is a measure of the minimum sintering temperature

(Ts) [4, 5]. As shown in Figure 6(a), the sample with a higher metallization degree has a lower

value of Ts. This result showed that iron precipitation reduced significantly the minimum

sintering temperature of the whole particle and thus enhanced the sintering activity of the

reduced particle. The sintering rate depended on the diffusion coefficient (Ds) of materials. The

value of Ds for α-iron self-diffusion was calculated to be approximately 10 times larger than

that for the diffusion of Fe in FeO at 800�C according to the empirical correlations [17, 18]. This

indicated that metallic iron had a higher sintering activity than FeO. Therefore, the tendency of

the reduced particles to sinter together was intensified due to iron precipitation.

Many investigations showed the importance of the initial sintering temperature in fluidization

quality [4, 5], because it is an indicator of the onset of agglomeration and is a softening point

where the rate of sintering dramatically accelerated. Previous research studies [4, 5] have

confirmed that the cohesiveness and sintering of the fluidized particles can lead to the

uncontrolled particle agglomeration and subsequent defluidization at temperatures at or

above the sintering point. A special class of agglomeration was due to the formation of new

species on the surface of the solid particle during a chemical reaction. At temperatures well

below the softening (sintering) points of both the reactants and the products, particle agglom-

eration can occur during the process of product formation [19]. Accordingly, in the case of

reduction Fe2O3 to Fe, when metallic iron formed above sintering temperature, the adhesive

force due to sintering was increased. Therefore, the sintering of metallic iron on the surface

provided favorable conditions for agglomeration.

At the minimum sintering temperature (Ts), the surface of material began to soften and deform,

and the surface stickiness began to appear [20, 21]. And the agglomeration and defluidization

occurred as a result of having “sticky” bed materials. In this study, the surface viscosities of the

reduced samples in the controlled bed defluidization tests at various metallization degrees were

Figure 6. Influence of iron precipitation on particle cohesiveness of reduced Fe2O3 particles: (a) the minimum sintering

temperature; (b) (the surface viscosity of Fe2O3 particles at 800
�C).
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measured at 800�C using the thermomechanical analysis as reported by Tardos [20]. Figure 5(b)

shows that the surface viscosities gradually decreased as the metallization degree increased.

When the metallization degree approaches to 23.56% (point of defluidization), the viscosity

drops significantly, indicating a strong surface softening and stickiness of particles. This result

suggested that the particle adhesion of iron oxide was enhanced with the increase of the amount

of metallic iron on the surface.

For crystalline materials, the Huttig temperature is defined as the temperature where the

lattices and surface atoms become appreciably mobile. For pure metals, this temperature was

approximately 0.3Tm (about 330�C for iron) [22]. It was inferred that the Fe2O3 particle surface

preformed viscosity because of the iron precipitation when the temperature was higher than

330�C. This fresh precipitated iron had high particle cohesiveness due to the higher activity

and surface energy [8–11]. In the course of Fe2O3 reduction, numerous Fe vacancies were

formed, and iron atoms were released from the oxide lattice due to oxygen removal. Conse-

quently, the migration of iron atoms to the reducing front through Fe vacancies was acceler-

ated due to the chemical potential gradient of O/Fe [23]. Therefore, the particle surface

softened as metallic iron precipitating, resulting in a decrease of apparent surface viscosity.

Some of the agglomerates, sampled from controlled bed defluidization tests, were examined

by SEM/EDS analysis. As seen in Figure 7, sintered necks instead of iron whiskers were

observed between particles. The reduced particles are sticked together by the sintered neck,

the diameter of which was roughly 0.8 μm. The EDS analysis showed that Fe was the domi-

nant species (97 wt.%) in the connect position. Thus, the reduced particle was connected by a

connective bridge composed of metallic iron. These results proved that the presence of iron,

rather than iron oxide (FeO, Fe3O4), caused the formation of the sticky particle surfaces readily

for agglomeration. In addition, it was noted that the agglomerates contained particles only

several microns in diameter between coarse particles. These fine particles played a role of

“bridge” in the formation of agglomerates.

3. Model to predict agglomeration and defluidization

The aim of this work is modeling the high-temperature defluidization behavior of iron pow-

ders involving the effects of gas velocity and gas properties. The calculation is focused on the

Figure 7. SEM image and EDS analysis of agglomerate sample at metallization degree of 15.64%.
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evolution of forces acting on particles with temperature based on the surface viscosity and

bubble motion. By analyzing the experimental data with a statistical regression, a force balance

model is developed to describe the defluidization processes in a fluidized bed, by which the

temperature dependence of the defluidization behavior is predicted.

3.1. Modeling defluidization phenomena

3.1.1. Assumptions

The fluidization behavior of bed particles depended on the forces acting on them. Therefore,

this model employed the balance of cohesive and segregate forces to simulate agglomeration/

defluidization and predict the defluidization temperature. Taking account of particle moving,

colliding, coalescing, and breaking in a fluidized-bed system, the following assumptions are

made to describe the main characteristics of the defluidization phenomena based on the

previously described experimental results:

1. Bed material particles are spherical and in uniform size.

2. The fluidizing gases do not react with the bed particles, and no coating layer form on the

surface.

3. The adhesive force between two particles arises from surface viscosity and is determined

by the plastic-viscous flow mechanism.

4. The force against agglomeration is the drag force acted on particles due to bubble motion.

5. If the adhesive force equals or exceeds the segregation force, the bed defluidization appears.

3.1.2. Model formulation

As the temperature increases, the effect of adhesion force becomes dominant due to surface

softening, resulting in a quick defluidization. The adhesive force associated with the plastic-

viscous flow mechanism can be described by:

Fad ¼ πb2σ ð1Þ

where σ represents the tensile stress of the agglomerate and b is the radius of the connection

between the particles.

According to Benson et al. [24], the tensile stress of the agglomerate is

σ ¼
At

μsdp
ð2Þ

where A is a constant; t represents the connect time of two particles; dp is the mean size of the

particle; and μs is the surface viscosity of the particle materials.

In a fluidized bed where particles are intermittently mixed, the contact time of particles is

dependent on the bubbles motion. The residence time is required to be sufficiently long for

particle connection to form agglomerates. Therefore, in this study, the connect time of two
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particles was considered as the characteristic residence time for which particles within a

fluidized bed remain in contact with each other as reported by Seville et al. [13, 25]:

t ¼
β

ðUg �UmfÞ
ð3Þ

where β is a proportional coefficient; Ug is the operating gas velocity; and Umf is the minimum

fluidization velocity.

The surface viscosity of solid is a function of temperature and is assumed be estimated by the

Arrhenius’ expression [25]:

μs ¼ μs0 exp
Es

RT

� �

ð4Þ

where Es is the activation energy for the surface viscosity and T the absolute temperature.

To accurately predict the segregate force, this model employs the drag force acting on particles

to represent the force against agglomeration, which is related to the effect of the particle size,

gas velocity, and gas properties. The expression is [26]:

Fd ¼ αCd
π

8
d2pρgU

2
g ð5Þ

Cd ¼
24

Re
ð1þ 0:173Re0:657Þ þ

0:413

1þ 16300Re�1:09
ð6Þ

Re ¼
dpρgUg

μg

ð7Þ

where α is a proportional coefficient, representing the unknown errors in this equation. Cd

is the drag coefficient; Re is Reynolds number; ρg and μg are the gas density and viscosity,

respectively.

If the adhesive force equals the drag force, the bed is defluidized:

πAβb2

μsdpðUg �UmfÞ
¼ αCd

π

8
d2pρgU

2
g ð8Þ

In this work, we defined two number groups, Na and Nd, representing the adhesion force and

the drag force, respectively:

Na ¼
π

μsdpðUg �UmfÞ
ð9Þ

Nd ¼ Cd
π

8
d2pρgU

2
g ð10Þ

Therefore, the defluidization criterion (Eq. (8)) can be expressed as:
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Na ¼ K �Nd ð11Þ

K ¼
α

Ab2β
ð12Þ

where K is a regressive constant, representing the unknown errors in this equation. The vari-

ables in the model are as a function of temperature, and the correlations are nonlinear. There-

fore, by combining Eqs. (9)–(12), the temperature to reach defluidization was obtained by a

numerical method.

3.2. Modeling results and comparison with experimental data

3.2.1. Influence of gas velocity

Figure 8 presents the results obtained at different gas velocities. According to the definition of

defluidization criterion, the temperature corresponding to the intersection of the curves of Na

and K∙Nd is the defluidization temperature. As it can be seen, the temperature to reach

defluidization increases with increasing the gas velocity for all the fluidizing gases. In previous

studies [27–29], the generation of agglomeration and defluidization depended on the balance

of the cohesive and breaking forces. And if the adhesive force between particles exceeded the

breakage force, agglomeration and defluidization in the bed probably occur. As shown in

Figure 8. The variation of the calculated values of Na and K∙Nd with temperature: (a) N2; (b) Ar; and (c) H2.
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Figure 8, at a constant fluidizing velocity, both the adhesion force and the drag force increase

with increasing temperature. However, the increase of adhesion force is much more rapid than

that of drag force, especially at the temperatures above the initial sintering temperature.

Therefore, at a given temperature, namely, the defluidization temperature, the adhesion force

begins to be greater than the drag force, and thus the defluidization appears. This explained

the temperature dependence of defluidization behavior. On the other hand, as the gas velocity

increases, the drag force of the particles increases, whereas the adhesion force decreases at a

constant temperature. As a result, the state of fluidized particles gets out of the defluidization

region because the drag force is greater than the adhesion force. Therefore, the temperature

to reach defluidization is delayed by increasing the gas velocity. Comparing the calculated

defluidization temperature with the experimental data in Figure 9(a), both the tendencies

are in a good agreement, although the calculated values are to some extent lower than the

experimental ones.

3.2.2. Influence of gas properties

Figure 9(b) presents the effect of gas type on defluidization temperature. According to the

calculated results, the defluidization temperature decreases when using the gas with greater

viscosity and density as a fluidizing agent. As seen in Figure 9(b), at a constant gas velocity the

adhesion force for different gases almost has no change, whereas the drag force is strongly

dependent on the gas properties and increases with increasing the gas viscosity. Comparing

the three fluidizing gases, the defluidization temperatures are in the following sequence:

H2< N2< Ar. This was because the fluidizing gas with greater viscosity can produce a stronger

drag force to resist agglomeration, which was in accord with the experimental results [21].

The calculated defluidization temperatures were in a good agreement with the experimental

results in all experiment conditions, and thus confirmed the predicted modeling. The model

successfully described the defluidization temperature as a function of gas velocity and gas

property. According to the results above, the fluidizing phase diagram was obtained as shown

in Figure 10, which was divided into the stable fluidization and the defluidization region. The

fluidization state was maintained below the curve intersection of Na and K∙Nd, while the bed

was defluidized above the intersection. This suggested that at a certain operating parameter,

Figure 9. Comparison of calculated defluidization temperature with experimental data: (a) Influence of gas velocity; and

(b) influence of gas properties.
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there was a limiting operating temperature and gas velocity, above which the defluidization

occurred. Therefore, the model can be considered as a theory reference to avoid defluidization

in the actual fluidizing operations. However, the model cannot simulate the agglomeration

involving chemical reaction and phase transformation. More work is needed for a comprehen-

sive model of agglomeration in a fluidized-bed reactor.

4. Prevention of agglomeration by surface coating of Mg and Ca oxides

4.1. Effect of MgO and CaO addition on defluidization

Figure 11 shows the effects of the addition of MgO and CaO on the defluidization time of

Fe2O3 particles at various operating temperatures. It was found that adding Mg and Ca had

the similar effect on prolonging the defluidization time. As the addition content of MgO and

CaO increased, the defluidization time was delayed. The defluidization time of adding MgO

Figure 10. The fluidization phase diagram of iron powders at elevated temperatures.

Figure 11. Influence of operating temperature on the defluidization time (50–74 μm, 36.5 cm/s): (a) adding MgO and (b)

adding CaO.
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are higher than that of adding CaO. It was indicated that MgO species had a better effect to

reduce the bed agglomeration tendency and inhibit the defluidization.

However, previous research studies suggested that some compounds with low melting points

or iron whiskers were formed by adding MgO and CaO. These compounds and iron whiskers

provided a favorable condition to form agglomeration of the Fe2O3 particles during reduc-

tion [8, 30]. With inconsistent results as compared to those of the experiment, this work was

focused on investigating the relationship between the new phase formation and particle

adhesion during Fe2O3 reduction. It has been confirmed that agglomeration at high tempera-

ture was attributed to the activity of metallic iron [10, 21]. The surface energy of precipitated

iron may be deactivated or reduced by Mg/Ca oxide, and thus the surface cohesiveness was

eliminated. On the other hand, MgO and CaO may react with Fe2O3 to generate some eutectics

with high melting points or some stable compounds hard to be reduced to metallic iron. In

these conditions, the formation of liquid phase and the connection of metallic iron on the

surface can be avoided at high temperature. Therefore, MgO and CaO inhibited the formation

of agglomeration and delayed the defluidization time.

4.2. Behaviors of Mg and Ca species during reduction

In previous studies [31, 32], the formation of coating layer and connective bridge among the

bed particles had been found based on the SEM (scanning electron microscopy)/EDS (energy

dispersive spectrometry) analysis. However, in the case of no liquid phases, the physicochem-

ical behavior of Mg/Ca species on the surface and their effects on the bed particles has not been

determined yet. Therefore, the focus was the role of Mg and Ca species in the formation of the

coating layer. The surfaces of bed particle samples were analyzed by SEM/EDS after the test at

Figure 12. The SEM images of reduced particles (800�C, 74–149 μm, 24.3 cm/s): (a) no additive; (b) adding 2% MgO; and

(c) adding 2% CaO.
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the bed temperature of 800�C. As shown in Figure 12(a), the morphology of sample was

porous when no MgO or CaO was added, and many tiny iron grains appeared on the surface.

But the bed particles were covered by the local coating layer when adding MgO and CaO

(Figure 12(b) and (c)). And no obvious iron whiskers and substance in molten state were found

on the surface, which was inconsistent with the results suggesting cation additions promoted

fibrous iron [33, 34]. The reason was that the growth of iron whiskers was suppressed due to

the formation of coating layer. The EDS spot analysis (Figure 13(a) and (c)) shows that the

compositions of this coating layer were not only Mg and Ca but also large amount of Fe. It was

inferred that this layer consisted of some complex compounds where Fe2O3 were not reduced

completely. However, unlike the coating layer, the uncoated surface appears the porous mor-

phology. The EDS analysis (Figure 13(b) and (d)) show that the compositions of the uncoated

surface were element Fe, suggesting that metallic iron was precipitated under the coating

layer. This was because that the coating layer was porous and cracked, and thus the external/

internal diffusion for Fe oxides was easy. The metallization in bulk was slightly affected by

surface coating. Therefore, it was inferred that the coating layer behaved like shell structure

and inhibited the precipitated iron to expose on the surface of bed particle. The coating layer

formed by adding MgO and CaO had a suppressive effect on defluidization and agglomera-

tion.

To further identify the formation of new phase of Mg or Ca compounds during the reduction,

the dominant species in the agglomerates was analyzed by XRD. Figure 14 shows the phase

composition with adding MgO and CaO before and after reduction. Before reduction the bed

particles contained mainly Fe2O3 and a little MgO�Fe2O3. However, after reduction a great

number of metallic irons were observed, and the Mg and Ca species were in the formation of

MgO�FeO and CaO�FeO. Mg and Ca species can react with Fe2O3 to generate magnesium

ferrite and calcium ferrite after pretreatment at 400�700�C [35], and these Fe compounds can

Figure 13. The EDS spot analysis of reduced particles (800�C, 74–149 μm, 24.3 cm/s): (a) Point a; (b) Point b; (c) Point c;

and (d) Point d.
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be reduced to low-valent oxides, whereas the reaction rate was much lower than that of pure

Fe2O3. Therefore, the rate of surface metallization was decreased by adding MgO and CaO.

Because the defluidization occurred at a critical metallization degree, agglomeration/

defluidization was delayed by reducing the time to reach the critical metallization degree by

adding MgO and CaO.

The composition and reducibility of the coating layers formed by adding MgO and CaO were

different. For addingMgO,MgO�Fe2O3was observed, which was reduced toMgO�FeO based on

XRD analysis. But the reduction of MgO�FeO to Fe hardly happens below 1100�C [36]. And the

surface not only contains Fe and Mg, but also considerable O (Figure 13(a)), indicating the outer

layer was mainly composed of oxides. Therefore, an unreduced coating layer in the formation of

MgO�FeO generated on the surface, and thus prevented the contact of iron precipitated. As a

result, the defluidization was inhibited. However, for adding CaO, the Fe oxides in the

calciowustite coating can be reduced thermodynamically to metallic iron [37]; and the outer

layer (Figure 13(c)) contains Fe, Ca, and a little O, suggesting that the phases of Fe were mainly

metallic iron and a little oxide. It indicated that the calciowustite was reduced finally to iron.

Therefore, the inhibition effect of Ca species can only temporarily inhibit defluidization. When

metallic iron appeared on the surface, the defluidization occurred again. Thus, the inhibition

effect of CaO on defluidization was less than that of MgO, especially at high temperatures

5. Conclusions

1. Particle cohesiveness and agglomeration tendency were initiated by metallization and de-

pended strongly on the amount of iron precipitation. As the metallization degree increased,

the fluidization behavior of Fe2O3 particles evolved from cohesiveness to sticky, and thus

agglomeration appeared. The precipitation of metallic iron with submicro size was clearly

identified as the necks on the Fe2O3 surfaces, which caused the formation of agglomerates.

2. Based on force balance, a quantitative model for the fluidization characteristics of iron

powders was developed to describe the defluidization behavior at elevated temperatures.

The theoretical model successfully predicted the defluidization temperature as a function

of fluidizing gas velocity and gas properties. The simulated defluidization temperatures

Figure 14. The XRD patterns of Fe2O3 particles before and after reduction (800�C, 74–149 μm, 24.3 cm/s): (a) adding 2%

MgO and (b) adding 2% CaO.
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were in a good agreement with the experimental results. According to the operating phase

diagram of fluidization obtained by this model, the stable fluidization and the

defluidization region were determined.

3. Mg- and Ca-coating Fe2O3 particles were shown to significantly extend the defluidization

time, and this inhibition effect was increased by increasing the addition amount. A coating

layer on the surface was found to mainly contain magnesiowustite (MgO�FeO) and

calciowustite (CaO�FeO) generated by the reactions between Mg/Ca oxides and Fe2O3/

FeO during reduction process, and this coating layer was effective in preventing the

connection of precipitated iron. And compared with CaO, MgO was more effective in

delaying defluidization at the same conditions, because the unstable calciowustite was

reduced to metallic iron and cannot completely suppress the precipitation of iron.

Nomenclature

A Proportional constant for adhesion force kg2∙m/s4

b Radius of the connection between the particles m

Cd Drag coefficient �

(Cd)mfs Drag coefficient in initial fluidization �

dp Mean particle size m

Es Activation of surface viscosity J/mol

Fad Adhesion force kg∙m/s2

Fd Drag force kg∙m/s2

K Regressive constant s4/(kg2∙m4)

Na Number group for adhesion force s2/(kg∙m)

(Na)mfs Number group for adhesion force in initial fluidization s2/(kg∙m)

Nd Number group for drag force kg∙m3/s2

(Nd)mfs Number group for drag force in initial fluidization kg∙m3/s2

R Gas constant J/(K∙mol)

Re Reynolds number �

T Bed temperature �C

Tdef Defluidization temperature �C

(Tdef)cal Theoretical results of Tdef
�C

(Tdef)exp Experimental results of Tdef
�C

t Connect time of two particles S
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