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Abstract

A fractal is in essence a hierarchy with cascade structure, which can be described with a
set of exponential functions. From these exponential functions, a set of power laws
indicative of scaling can be derived. Hierarchy structure and spatial network proved to
be associated with one another. This paper is devoted to exploring the theory of fractal
analysis of complex systems by means of hierarchical scaling. Two research methods are
utilized to make this study, including logic analysis method and empirical analysis
method. The main results are as follows. First, a fractal system such as Cantor set is
described from the hierarchical angle of view; based on hierarchical structure, three
approaches are proposed to estimate fractal dimension. Second, the hierarchical scaling
can be generalized to describe multifractals, fractal complementary sets, and self-similar
curve such as logarithmic spiral. Third, complex systems such as urban systems are
demonstrated to be a self-similar hierarchy. The human settlements in Germany and
the population of different languages in the world are taken as two examples to conduct
empirical analyses. This study may reveal the association of fractal analysis with other
types of scaling analysis of complex systems, and spatial optimization theory may be
developed in future by combining the theories of fractals, allometry, and hierarchy.

Keywords: fractal, multifractals, hierarchical scaling, rank-size rule, systems of human
settlements, language

1. Introduction

In recent years, the hierarchical systems with cascade structure have attracted attention of

many scientists. Representing a form of organization of complex systems, hierarchy is fre-

quently observed within the natural world and in social institutions [1]. A fractal can be treated

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



as a self-similar hierarchy because a fractal object bears many levels, which are systematically

arranged according to scaling laws [2, 3�5]. Fractal phenomena can be described with power

laws, and a power law can be decomposed into two exponential laws by means of hierarchical

structure. Generally speaking, it is difficult to solve an equation based on power laws or spatial

network because of dimensional problems, but it is easy to deal with the problem based on

exponential models or hierarchies. Using self-similar hierarchy, we can transform fractal scal-

ing into a hierarchical scaling with characteristic scales, thus many complex problems can be

solved in a simple way. If we explore fractal systems such as a system of cities by means of

hierarchy, we can use a pair of exponential laws to replace a power law, and the analytical

process can be significantly simplified [6, 7]. A fractal is a special case of hierarchical scaling.

Hierarchy suggests a new way for understanding fractal organization and exploring complex

systems.

In scientific research, three factors increase the difficulty of mathematical modeling, that is,

spatial dimension, time lag (response delay), and interaction. Economics is relatively simple

because economists do not usually consider much the spatial dimension in economic sys-

tems [8]. However, all the difficult problems related to mathematical modeling, especially the

spatial dimension, are encountered by geographers. If the spatial dimension is avoided, geog-

raphy is not yet real geography. Geographers often study spatial structure by means of

hierarchy. A discovery is that hierarchy and network structure represent two different sides of

the same coin [2]. Two typical hierarchy theories are developed in human geography. One is

central place theory [9, 10], and the other is rank-size distributions [11, 12]. The two theories

are related to fractal ideas [2, 13�16]. Fractal theory, scaling concepts, and the related methods

become much more important in geographical analysis such as urban studies [3]. As Batty

(2008) once observed [17], “an integrated theory of how cities evolve, linking urban economics and

transportation behavior to developments in network science, allometric growth, and fractal geometry, is

being slowly developed.” In fact, fractals, allometry, and complex network can be associated with

one another in virtue of hierarchical scaling.

Hierarchical scaling suggests a new perspective to examine the simple rules hiding behind the

complex systems. Many types of physical and social phenomena satisfy the well-known rank-

size distribution and thus follow Zipf’s law [7, 11, 18]. Today, Zipf’s law has been used to

describe the discrete power law probability distributions in various natural and human sys-

tems [3, 19]. However, despite a large amount of research, the underlying rationale of the Zipf

distribution is not yet very clear. On the other hand, many types of data associated with Zipf’s

law in the physical and social sciences can be arranged in good order to form a hierarchy with

cascade structure. There are lots of evidences showing that the Zipf distribution is inherently

related to the self-similar hierarchical structure, but the profound mystery has not yet to be

unraveled for our understanding of natural laws. The Zipf distribution is associated with

fractal structure and bears an analogy with the 1/f fluctuation [6]. Fractals, 1/f noise, and the

Zipf distribution represent the observation of the ubiquitous empirical patterns in nature [19].

This article provides scientists with a new way of looking at the relations between these

ubiquitous empirical patterns and the complex evolution processes in physical and social

systems, and thus to understand how nature works.
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A scientific research actually includes two elements of methodology, namely description and

understanding. Science should proceed first by describing how a system works and then by

understanding why [20]. The description process is by means of mathematics and measure-

ment, while the understanding process is by means of observation, experience, or even

artificially constructed experiments [21]. This work is devoted to exploring fractal modeling

and spatial analysis based on hierarchy with cascade structure. First of all, we try to describe

and understand hierarchy itself; later, we try to use hierarchical scaling to describe and

understand complex systems. Two research methods are utilized in this works. One is logic

analysis method, including induction method and deduction method, and the other is empirical

analysis method, fitting the mathematical models to observational data. The induction method

is based on various regular fractals such as Cantor set, Koch snowflake curve, Vicsek box,

and Sierpinski gasket, while the deduction method is mainly based on mathematical deriva-

tion. As for empirical analysis, systems of cities and population size distribution of languages

can be taken as examples. Anyway, the success of natural sciences lies in their great emphasis

on the interplay between quantifiable data and models [22]. The rest of the parts are orga-

nized as follows. In Section 2, a set of hierarchical models of fractals, including monofractals

and multifractals, are presented. In Section 3, case studies are made by means of German

systems of human settlements and world population size of different languages. In Section 4,

several questions are discussed, and the hierarchical-scaling modeling is generalized. Finally,

the discussion is concluded by summarizing the main points of this work.

2. Models

2.1. Three approaches to estimating fractal dimension

A regular fractal is a typical hierarchy with cascade structure. Let’s take the well-known

Cantor set as an example to show how to describe the hierarchical structure and how to

calculate its fractal dimension (Figure 1). We can use two measurements, the length (L) and

number (N) of fractal copies in themth class, to characterize the self-similar hierarchy. Thus, we

have two exponential functions such as

Figure 1. The Cantor set as a self-similar hierarchy with cascade structure (the first four classes). [Note: An analogy can

be drawn between the Cantor sets and self-hierarchies of human settlements. For the multifractal Cantor set, the length of

each level is the average value.]
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Nm ¼ N1r
m�1
n

¼
N1

rn
e
ðlnrnÞm ¼ N0e

ωm
; ð1Þ

Lm ¼ L1r
1�m

l
¼ L1rle

�ðlnrlÞm ¼ L0e
�ψm

; ð2Þ

where m denotes the ordinal number of class (m ¼ 1, 2, …), Nm is the number of the fractal

copies of a given length, Lm is the length of the fractal copies in the mth class, N1 and L1 are the

number and length of the initiator (N1 ¼ 1), respectively, rn and rl are the number ratio and

length ratio of fractal copies, N0 ¼ N1/rn, L0 ¼ L1rl, ω ¼ ln(rn), ψ ¼ ln(rl). From Eqs. (1) and (2),

it follows the common ratios of number and length, that is

rn ¼
N1r

m
n

N1r
m�1
n

¼
Nmþ1

Nm

; ð3Þ

rl ¼
L1r

1�m

l

L1r
�m

l

¼
Lm

Lmþ1
: ð4Þ

According to the definitions of ω and ψ, the logarithms of Eqs. (3) and (4) are

ω ¼ lnðrnÞ ¼ ln
Nmþ1

Nm

� �

; ð5Þ

Ψ ¼ lnðrlÞ ¼ ln
Lm

Lmþ1

� �

: ð6Þ

From Eqs. (1) and (2), we can derive a power law in the form

Nm ¼ kL
�D

m
; ð7Þ

in which k ¼ N1L1
D is the proportionality coefficient, and D ¼ ln(rn)/ln(rl) is the fractal

dimension of the Cantor set (k ¼ 1). Thus, three formulae of fractal dimension estimation can

be obtained. Based on the power law, the fractal dimension can be expressed as

D ¼ �
lnðNmÞ

lnðLmÞ
: ð8Þ

Based on the exponential models, the fractal dimension is

D ¼
ω

Ψ
: ð9Þ

Based on the common ratios, the fractal dimension is

D ¼
lnrn
lnrl

: ð10Þ

In theory, Eqs. (8)–(10) are equivalent to one another. Actually, by recurrence, Eq. (7) can be

rewritten as Nmþ1 ¼ Lmþ1
�D, and thus we have
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Nmþ1

Nm
¼

Lmþ1

Lm

� ��D

; ð11Þ

Taking logarithms on both sides of Eq. (11) yields

D ¼ �
lnðNmþ1=NmÞ

lnðLmþ1=LmÞ
¼ �

lnðNmÞ

lnðLmÞ
¼

lnrn
lnrl

¼
ω

Ψ
: ð12Þ

For the Cantor set, Nm¼ 2m�1, Lm¼ 1/3m�1, rn¼ Nmþ1/Nm¼ 2, rl¼ Lm/Lmþ1 ¼ 3, ω ¼ ln(2), ψ ¼ ln

(3), thus we have

D ¼
lnð2Þ

lnð3Þ
≈ 0:631:

This suggests that, for the regular fractal hierarchy, three approaches lead to the same result.

The fractal dimension can be computed by using exponential functions, power function, or

common ratios, and all these values are equal to one another. However, in practice, there are

subtle differences between the results from different approaches because of random noise in

observational data. Certainly, the differences are not significant and thus can be negligible.

The mathematical description and fractal dimension calculation of the Cantor set can be

generalized to other regular fractals such as Koch snowflake and Sierpinski gasket or even to

the route from bifurcation to chaos. As a simple fractal, the Cantor set fails to follow the rank-

size law. However, if we substitute the multifractal structure for the monofractal structure, the

multiscaling Cantor set will comply with the rank-size rule empirically.

2.2. Multifractal characterization of hierarchies

Monofractals (unifractals) represent the scale-free systems of homogeneity, while multifractals

represent the scale-free systems of heterogeneity. In fact, as Stanley and Meakin (1988) [23]

pointed out, “multifractal scaling provides a quantitative description of a broad range of heterogeneous

phenomena.” In geography, multifractal geometry is a powerful tool for describing spatial

heterogeneity. A multifractal hierarchy of Cantor set can be organized as follows. At the first

level, the initiator is still a straight line segment of unit length, that is, S1¼ L1¼ 1. At the second

level, the generator includes two straight line segments of different lengths. The length of one

segment is a, and the other segment’s length is b. Let a ¼ 3/8, b ¼ 2/3�a ¼ 7/24. The summation

of the two line segments’ length is 2/3, that is, S2 ¼ aþb¼ 2/3, and the average length of the two

segments is L2 ¼ S2/2 ¼ 1/3. At the third level, there are four line segments, and the lengths are

a2, ab, ba, and b2, respectively. The total length of the four line segments is 4/9, namely S3 ¼

(aþb)2 ¼ (2/3)2, and the average length is L3 ¼ S3/4 ¼ 1/32. Generally speaking, the mth level

consists of 2m�1 line segments with lengths of am�1, am�2b, am�3b2, …, a2bm�3, abm�2, and bm�1,

respectively. The length summation is Sm¼ (aþb)m�1 ¼ (2/3)m�1, so the average length is

Lm ¼
ðaþ bÞm�1

Nm
¼ 31�m; ð13Þ
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where

Nm ¼ 2m�1: ð14Þ

From Eqs. (13) and (14), it follows a scaling relation as below:

Nm ¼ L�lnð2Þ=lnð3Þ
m ¼ μL�D0

m ; ð15Þ

which is identical in form to Eq. (7), and the capacity dimension D0 ¼ ln(2)/ln(3) ≈ 0.631 is

equal to the fractal dimension of the monofractal Cantor set (Figure 1).

Two sets of parameters are always employed to characterize a multifractal system. One is the

set of global parameters, and the other is the set of local parameters. The global parameters

include the generalized correlation dimension and the mass exponent; the local parameters

comprise the Lipschitz-Hölder exponent and the fractal dimension of the set supporting this

exponent. For the two-scale Cantor set, the mass exponent is

τðqÞ ¼ �
ln½pq þ ð1� pÞq�

lnð3Þ
; ð16Þ

where q denotes the moment order (�∞ < q < ∞), τ(q) refers to the mass exponent, and p is a

probability measurement. Taking the derivative of Eq. (16) with respect to q yields the

Lipschitz-Hölder exponent of singularity in the form

αðqÞ ¼
dτðqÞ

dq
¼ �

1

lnð3Þ

pqlnpþ ð1� pÞqlnð1� pÞ

pq þ ð1� pÞq
; ð17Þ

in which α(q) refers to the singularity exponent. Utilizing the Legendre transform, we can

derive the fractal dimension of the subsets supporting the exponent of singularity such as

f ðαÞ ¼ qαðqÞ � τðqÞ ¼
1

lnð3Þ
ln pq þ ð1� pÞq½ � �

pqlnpq þ ð1� pÞqlnð1� pÞq

pq þ ð1� pÞq

� �

; ð18Þ

where f(α) denotes the local dimension of the multifractal set. Furthermore, the general fractal

dimension spectrum can be given in the following form:

Dq ¼

�
plnpþ ð1� pÞlnð1� pÞ

lnð3Þ
, q ¼ 1

τðqÞ

q� 1
, q 6¼ 1

;

8

>

>

>

<

>

>

>

:

ð19Þ

where Dq denotes the generalized correlation dimension. If the order moment q6¼1, the general

dimension can also be expressed as

Dq ¼
1

q� 1
½qαðqÞ � f ðαÞ�: ð20Þ
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Using the above equations, we can describe multifractal Cantor set. For example, if the length

of one line segment in the generator is a ¼ 3/8 as assumed, then the length of another line

segment is b ¼ 7/24. Accordingly, the probability measures are p ¼ a/(2/3) ¼ 9/16 and 1�p ¼ 7/

16. By means of these formulae, the multifractal dimension spectra and the related curves can

be displayed in Figures 2 and 3. The capacity dimension is D0 ≈ 0.631, the information

dimension is D1 ≈ 0.624, and the correlation dimension is D2 ≈ 0.617. Substituting ln(2) for ln

(3) in the equations shown above, we can use the multifractal models of Cantor set to describe

multiscaling rank-size distribution of cities [6, 24].

2.3. Hierarchical scaling in social systems

Fractal hierarchical scaling can be generalized to model general hierarchical systems with

cascade structure. Suppose the elements (e.g., cities) in a large-scale system (e.g., a regional

system) are divided into M levels in the top-down order. We can describe the hierarchical

structure using a set of exponential functions as follows:

Nm ¼ N1r
m�1
f ; ð21Þ

Pm ¼ P1r
1�m
p ; ð22Þ

Am ¼ A1r
1�m
a : ð23Þ

Figure 2. The dimension spectrums of multifractals Cantor set and the curves of related parameters (p ¼ 9/16).
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where m denotes the top-down order (m ¼ 1, 2, … M), Nm represents the element number in a

given order, rn¼ Nmþ1/Nm is actually the number ratio, N1 is the number of the top-order

elements. Generally speaking, we haveN1 ¼ 1; Pm represents the mean size of order m, rp¼ Pm/

Pmþ1 is the element size ratio of adjacent levels, P1 is the mean size of the first-order elements,

that is, the largest ones; Am is the average area of order m, ra¼ Am/Amþ1 is the area ratio, and A1

is the area of the first order. Rearranging Eq. (22) yields rp
m�1 ¼ P1/Pm, then taking logarithm to

the base rn of this equation and substituting the result into Eq. (21) yield a power function as

Nm ¼ μP�D
m ; ð24Þ

where μ ¼ N1P1
D, D ¼ ln(rn)/ln(rp). Eq. (24) is hereafter referred to as the “size -number law,”

and D proved to be the fractal para dimension of self-similar hierarchies measured by city

population size. Similarly, from Eqs. (21) and (23), it follows

Nm ¼ ηA�d
m ; ð25Þ

in which η ¼ N1A1
d, d ¼ ln(rn)/ln(ra). Eq. (25) is what is “area-number law,” and d is the fractal

para dimension of self-similar hierarchies measured by urban area. Finally, we can derive the

hierarchical allometric-scaling relationships between area and size from Eqs. (22) and (23), or

from Eqs. (24) and (25), and the result is

Am ¼ aPb
m; ð26Þ

where a ¼ A1P1
�b, b ¼ lnra/lnrp. This is just the generalized allometric growth law on the area-

size relations. Further, a three-parameter Zipf-type model on size distribution can be derived

from Eqs. (1) and (2) such as

Figure 3. The f(α) curves of the local dimension versus the singularity exponent.
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Pk ¼ Cðkþ ςÞ�α; ð27Þ

where k is the rank among all elements in a given system in decreasing order of size, Pk is the

size of the kth element. As the parameters, we have the constant of proportionality C ¼ P1[rn/

(rn�1)]1/D, the small parameter ς ¼ 1/(rn�1), and the power α ¼ 1/D ¼ lnrp/lnrf. Where P1 is the

size of the largest element, q proved to be the reciprocal of the fractal dimension D of city-size

distribution or urban hierarchies, that is, α ¼ 1/D [7]. By analogy, we can derive a three-

parameter Zipf-type model on area distribution from Eqs. (1) and (3), that is

Ak ¼ Gðkþ ζÞ�β; ð28Þ

where G, ζ, and β are parameters. In theory, β ¼ 1/d. From Eqs. (27) and (28), it follows

Pk

C

� ��1=α

� ς ¼
Ak

G

� ��1=β

� ζ; ð29Þ

which suggests an approximate allometric relation. If ζ ¼ ς, then we can derive a cross-

sectional allometry relation between size and area from Eqs. (27) and (28) as below

Ak ¼ aPb
k; ð30Þ

where a ¼ A1P1
�b, b ¼ β/α. Eq. (30) is mathematically equivalent to Eq. (26), that is, the rank-

size allometric scaling is equivalent to hierarchical allometric scaling in theory. Further, if ζ ¼ ς

¼ 0, then Eqs. (27) and (28) will be reduced to the common two-parameter Zipf’s models [3].

The fractal models (principal scaling laws), allometric model (the law of allometric growth),

and rank-size distribution model (Zipf’s law) are three basic scaling laws of hierarchical

systems such as cities, and all the scaling relations can be derived from the hierarchical models

expressed by exponential functions.

3. Empirical analysis

3.1. A case of Germany “natural cities”

3.1.1. Materials and data

First of all, the hierarchy of German cities is employed to illustrate hierarchical-scaling method.

Recently, Bin Jiang and his coworkers have proposed a concept of “natural city” and devel-

oped a novel approach to measure objective city sizes based on street nodes or blocks and thus

urban boundaries can be naturally identified [18, 25]. The street nodes are defined as street

intersections and ends, while the naturally defined urban boundaries constitute the region of

what is called natural cities. The street nodes are significantly correlated with population of

cities as well as city areal extents. The city data are extracted from massive volunteered

geographic information OpenStreetMap databases through some data-intensive computing

processes and three data sets on European cities, including the cities of France, Germany, and
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the United Kingdom (UK), have been obtained. Among all these data sets, the set for German

is the largest one, which encompasses the 5160 natural cities. Therefore, German cities are

taken as an example to make empirical analysis. In the processing of data, the area variable is

divided by 10,000 for comparability.

3.1.2. Method and results

The analytical method is based on the theoretical models shown above. For the natural cities,

the population size measurement (P) should be replaced by the amount of blocks in the

physical areal extent (A), which can be treated as a new size measurement of cities. It is easy

to use German cities to construct a hierarchy to illustrate the equivalence relation between the

rank-size law and the hierarchical scaling. Empirically, the 5160 German cities and towns

follow the rank-size rule and we have

P̂k ¼ 160175:044k�1:051
; ð31Þ

where k is the rank of natural cities, and Pk denotes the city size defined with urban blocks in

objective boundaries. The symbol “^” implies “estimated value,” “calculated value,” or

“predicted value.” The goodness of fit is about R2 ¼ 0.993, and the scaling exponent is around

q ¼ 1.051, as shown in the equation (Figure 4). The Zipf distribution suggests a hierarchical

scaling of the urban system.

Themodels of fractals andallometry canbebuilt forGermanhierarchies of cities as follows. Taking

number ratio rf¼ 2,we can group the cities into different classes according to the 2n rule [7, 26]. The

results, including city number (Nm), total amount of urbanblocks (Sm), average size byblocks (Pm),

total area (Tm), and average area (Am), in each class, are listed inTable 1. In a hierarchy, two classes,

that is, top class and bottom class, are always special and can be considered to be exceptional

Figure 4. The rank-size pattern of Germany cities by blocks within physical extent (2010).
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values (Figure 5). In fact, the power law relations always break down if the scale is too large or too

small [19]. Thus, a scaling range can be found in a log-log plot of fractal analysis on cities [3]. Two

hierarchical-scaling relations can be testified by the least-squares calculation. For common ratio

rn¼ 2, the hierarchical-scaling relation between city size and number is

N̂m ¼ 91161:315P�1:025
m : ð32Þ

The goodness of fit is about R2 ¼ 0.996, and the fractal dimension of the self-similar hierarchy

is D ≈ 1.025. The average size ratio within the scaling range is about rp¼ 1.942, which is very

close to rn¼ 2. Thus, another fractal dimension estimation is D ¼ ln(rn)/ln(rp) ≈ 1.045. The

average size follows the exponential law, that is, Pm¼ 133869.061*exp(�0.674m). So, the third

fractal dimension estimation is D ¼ ω/ψ ≈ 0.693/0.674 ≈ 1.028. All these results are based on the

scaling range rather than the whole classes. Similarly, the relation between urban area and city

number is as below

N̂m ¼ 162295:381A�1:060
m : ð33Þ

The goodness of fit is about R2 ¼ 0.998, and the fractal dimension of the self-similar hierarchy

is d ≈ 1.060. The average size ratio within the scaling range is about rp¼ 1.927. So, another

fractal dimension is estimated as d ¼ ln(rn)/ln(ra) ≈ 1.056. The average area complies with the

exponential law, namely Am¼ 157737.532*exp(�0.653m). Thereby, the third fractal dimension

is estimated as d ¼ ω/ψ ≈ 0.693/0.653 ≈ 1.061. Further, by means of the datasets of urban size

and area, an allometric-scaling model can be built as follows:

m Total block (Sm) Total area (Tm) Average size (Pm) Average area (Am) Number (Nm)

1 28,866 402657796.2 28866.0 402657796.2 1

2 50,709 731271674.1 25354.5 365635837.1 2

3 77,576 1030661786.8 19394.0 257665446.7 4

4 86,071 973558025.6 10758.9 121694753.2 8

5 82,700 999267240.9 5168.8 62454202.6 16

6 80,912 940916731.4 2528.5 29403647.9 32

7 72,397 986813213.3 1131.2 15418956.5 64

8 75,375 1070810188.5 588.9 8365704.6 128

9 79,299 1165806475.4 309.8 4553931.5 256

10 84,327 1271861134.1 164.7 2484103.8 512

11 84,599 1310854103.8 82.6 1280131.0 1024

12 75,214 1138100595.1 36.7 555713.2 2048

13 21,820 197476690.8 20.5 185424.1 1065*

Source: The original data come from Jiang (http://arxiv.org/find/all/). *Note: The last class of each hierarchy is a lame-duck

class termed by Davis (1978) [26].

Table 1. The size and number for the hierarchy of German cities based on the 2n principle.
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Âm ¼ 1:722P0:967
m

: ð34Þ

The goodness of fit is around R
2 ¼ 0.999, and the scaling exponent b ≈ 0.967 (Figure 6). Another

estimation of the allometric exponent is b ≈ 1.025/1.060 ≈ 0.967. The two results are close to one

Figure 5. The scaling relations between city numbers and average sizes/areas in the hierarchies of German cities by the

blocks in physical extent in 2010. [Note: The hollow squares represent the outliers, while the solid squares form a scaling

range. For simplicity, the urban area is rescaled by dividing it using 10,000.]
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another. The natural cities of Germany lend further support to the equivalent relationship

between the rank-size distribution and the self-similar hierarchy.

3.2. A case of language hierarchy in the world

The hierarchical scaling can be used to model the rank-size distribution of languages by

population. Where population size is concerned, there are 107 top languages in the world

such as Chinese, English, and Spanish. In data processing, the population size is rescaled by

dividing it with 1,000,000 for simplicity. Gleich et al. (2000) [27] gave a list of the 15

languages by number of native speakers (Table 2). The rank-size model of the 107 lan-

guages is as below:

P̂k ¼ 1092:160k�1:053
; ð35Þ

where k refers to rank, and Pk to the population speaking the language ranked k, the goodness

of fit is about R2 ¼ 0.986 (Figure 7). The fractal dimension is estimated as D ≈ 0.949.

Using the hierarchical scaling, we can estimate the fractal dimension of the size distribution of

languages in the better way. According to the 2n rule, the 107 languages fall into eight classes

by size (Table 3). In the top level, one language, that is, Chinese, and the total of Chinese-

speaking population is 885 million; in the second level, two languages, English and Spanish,

with total population 654 million, and so on. The number ratio is defined as rn¼ 2. The

corresponding size ratio is around rp¼ 2.025. Thus, the fractal dimension can be estimated as

D ¼ ln(rn)/ln(rp) ¼ ln(2)/ln(2.025) ¼ 0.983, which is close to the reciprocal of Zipf exponent,

Figure 6. The allometric-scaling relations between average population sizes and urban areas in the hierarchies of Ger-

many cities in 2010. [Note: The hollow square represents the outlier, while the solid squares form a scaling range. For

comparability, the area measure is divided by 10,000.]
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0.949. A regression analysis yields a hierarchical-scaling relation between language number,

Nm, and average population size, Sm, such as

N̂m ¼ 723:421P�1:012
m : ð36Þ

The squared correlation coefficient is R2 ¼ 0.997, and the fractal dimension is about D ¼ 1.012,

which is close to the above-estimated value, 0.983 (Figure 8). The results suggest that the

languages by population and cities by population follow the same hierarchical-scaling laws.

Level Number Language and population Total population Average population Size ratio

1 1 Chinese 885 885 885

2 2 English 470 Spanish 332 802 401 2.207

3 4 Bengali 189 Portuguese 170 711 177.75 2.256

Indic 182 Russian 170

4 8 Japanese 125 Korean 75 657 82.125 2.164

German 98 French 72

Wu-Chinese 77 Vietnamese 68

Javanese 76 Telugu 66

Source: Ref. [27]. Note: If we use the lower limits of population size s1 ¼ 520, s2 ¼ 260, s3 ¼ 130, and s4 ¼ 65 to classify the

languages in the table, the corresponding number of languages is f1 ¼ 1, f2 ¼ 2, f3 ¼ 4, and f4 ¼ 8, and the scaling exponent

is just 1.

Unit: million.

Table 2. The self-similar hierarchy of the 15 top languages by population.

Figure 7. The rank-size pattern of the top 107 languages by population (Unit: million).
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4. Questions and discussion

4.1. Hierarchical scaling: a universal law

A complex system is always associated with hierarchy with cascade structure, which indicates

self-similarity. A self-similar hierarchy such as cities as systems and systems of cities can be

described with three types of scaling laws: fractal laws, allometric law, and Zipf’s law. These

scaling laws can be expressed from Eqs. (24) to (30). Hierarchical scaling is a universal law in

nature and human society, and it can be utilized to characterize many phenomena with

different levels. Besides fractals, it can be used to depict the routes from bifurcation to chaos [3].

In geomorphology, the hierarchical scaling has been employed to describe river systems [28�31].

Level (m) Total population (Sm) Number (Nm) Average size (Sm) Size ratio (rp)

1 885,000,000 1 885000000.0

2 654,000,000 2 327000000.0 2.706

3 711,000,000 4 177750000.0 1.840

4 656,687,800 8 82085975.0 2.165

5 751,058,000 16 46941125.0 1.749

6 668,446,000 32 20888937.5 2.247

7 433,020,412 44 9841373.0 2.123

Note: The source of the original data: http://www.nationmaster.com/. The number ratio is 2. The first class is exceptional,

and the last class is a lame-duck class, which is defined by Davis (1978) [26]. By the way, there is subtle difference of

English population between Tables 2 and 3, but this error does not influence the conclusions.

Table 3. The self-similar hierarchy of the 107 top languages by population size.

Figure 8. The hierarchical-scaling relationships between population size and number of languages (Unit: million). [Note:

The small circles represent top classes and the lame-duck classes, respectively. Removing the first and last classes yields a

scaling range. The slope based on the scaling range indicates the fractal parameters of rank-size distributions.]
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In geology and seismology, it is employed to describe the cascade structure of earthquake energy

distributions [32, 33]. In biology and anatomy, it is used to describe the geometrical morphology

of coronary arteries in human bodies and dogs [34�36]. In urban geography, it is used to

describe central place systems and self-organized network of cities [3, 7]. In short, where there

is a rank-size distribution, there is cascade structure, and where there is cascade structure, there

is hierarchical-scaling relations.

Next, hierarchical scaling is generalized to describe fractal complementary sets and quasi-

fractal structure, which represent two typical cases of hierarchical description besides fractals.

The basic property of fractals is self-similarity. For convenience of expression and reasoning,

the concept of self-similarity point should be defined. A fractal construction starts from an

initiator by way of generator. If a fractal’s generator has two parts indicative of two fractal

units, the fractal bears two self-similarity points; if a fractal’s generator has three parts, the

fractal possesses three self-similarity points, and so on. For example, Cantor set has two self-

similarity points, Sierpinski gasket has three self-similarity points, Koch curve has four self-

similarity points, and the box growing fractal has five self-similarity points. The number of

self-similarity points is equal to the number ratio, that is, the common ratio of fractal units at

different levels. A real fractal bears at least two self-similarity points, this suggests cross-

similarity of a fractal besides the self-similarity. Self-similarity indicates dilation symmetry,

where cross-similarity implies translation symmetry. However, if and only if a system pos-

sesses more than one self-similarity point, the system can be treated as a real fractal system,

and this system can be characterized by fractal geometry. A fractal bears both dilation and

translation symmetry. The systems with only one self-similarity point such as logarithmic

spiral can be described with hierarchical scaling. However, it cannot be characterized by fractal

geometry. In this case, we can supplement fractal analysis by means of hierarchical scaling.

4.2. Hierarchies of fractal complementary sets

A fractal set and its complementary set represent two different sides of the same coin. The

dimension of a fractal is always a fractional value, coming between the topological dimension

and the Euclidean dimension of its embedding space. Certainly, the similarity dimension is of

exception and may be greater than its embedding dimension. The dimension of the

corresponding complement, however, is equal to the Euclidean dimension of the embedding

space. Anyway, the Lebesgue measure of a fractal set is zero; by contrast, the Lebesgue

measure of the fractal complement is greater than zero. Let us see the following patterns.

Figure 9(a) shows the generator (i.e., the second step) of Vicsek’s growing fractal set [37],

which bears an analogy with urban growth; Figure 9(b) illustrates the complementary set of

the fractal set (the second step). It is easy to prove that the dimension of a fractal’s complement

is a Euclidean dimension. If we use box-counting method to measure the complement of a

fractal defined in a two-dimension space, the extreme of the nonempty box number is

Cm ¼ lim
m!∞

r
2ðm�1Þ
l

� r
m�1
n

� �

! r
2ðm�1Þ
l

; ð37Þ

where Cm denotes the nonempty box number for fractal complement, the rest notation is the

same as those in Eqs. (1) and (2). Thus, the dimension of the fractal complement set is
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d ¼ � lim
m!∞

lnCm

lnLm
¼ � lim

m!∞

ln r
2ðm�1Þ
l

� rm�1
n

� �

lnðr1�m

l
Þ

! 2; ð38Þ

which is equal to the Euclidean dimension of the embedding space.

However, a fractal set and its complement are of unity of opposites. A thin fractal is character-

ized with the fractal parameter, and the value of a fractal dimension is determined by both the

fractal set and its complement. Without fractal dimension, we will know little about a fractal;

without fractal complement, a fractal will degenerate to a Euclidean geometrical object. This

suggests that the fractal dimension of a fractal can be inferred by its complement by means of

hierarchical scaling. For example, in fractal urban studies, an urban space includes two parts:

one is fractal set and the other fractal complement. If we define a fractal city in a two-dimen-

sional space, the form of urban growth can be represented by a built-up pattern, which

comprises varied patches in a digital map. Further, if we define an urban region using a circular

area or a square area, the blank space in the urban region can be treated as a fractal complement

of a city. Certainly, a self-organized system such as cities in the real world is more complicated

than the regular fractals in the mathematical world. The differences between fractal cities and

real fractals can be reflected by the models and parameters in the computational world.

A set of exponential functions and power laws can be employed to characterize the hierarchi-

cal structure of fractal complementary sets. Suppose the number of fractal units in a generator

is u, and the corresponding number of the complementary units in the generator is v. For

example, for Cantor set, u ¼ 2, v ¼ 1 (Figure 1); for Koch curve, u ¼ 4, v ¼ 1; for Sierpinski

gasket, u ¼ 3, v ¼ 1; for Vicsek fractal, u ¼ 5, v ¼ 4 (Figure 9); and so on. Thus, a fractal

complement can be described by a pair of exponential function as below:

Nm ¼
ν

u
r
m�1
n

¼νr
m�2
n

; ð39Þ

Lm ¼ L1r
1�m

l
; ð40Þ

Figure 9. A schematic representation of fractal set and its complementary set (the second step). (a) Fractal set. (b) fractal

complement.

Fractal Analysis Based on Hierarchical Scaling in Complex Systems
http://dx.doi.org/10.5772/intechopen.68424

157



where the parameter u ¼ rn. That is, the number of fractal units in the generator is equal to the

number ratio of the fractal hierarchy. Obviously, Eq. (39) is proportional to Eq. (1), while

Eq. (40) is identical to Eq. (2). From Eqs. (39) and (40), it follows

Nm ¼ cL�D
m ; ð41Þ

in which c ¼ (v/u)L1
D is the proportionality coefficient, and D ¼ ln(rn)/ln(rl) is the fractal

dimension. This suggests that we can estimate the dimension value of a fractal by means of

its complement. For a fractal defined in a two-dimensional embedding space, the dimension of

the complementary set is d ¼ 2. However, we can calculate the fractional dimension of the

fractal through the scaling exponent of the complement. For instance, the exponent of the

hierarchical-scaling relation between scale and number in different levels of the complement

of Sierpinski gasket is D ¼ ln(3)/ln(2) ¼ 1.585, which is just the fractal dimension of Sierpinski

gasket itself. The other fractals can be understood by analogy (Table 4).

Studies on fractal complement hierarchies are useful in urban and rural geography. In many

cases, special land uses such as vacant land, water areas, and green belts can be attributed to a

fractal complement rather than a fractal set [38]. However, this treatment is not necessary.

Sometimes, we specially evaluate the fractal parameter of vacant land, water areas, green belts,

and so on. In particular, the spatial state of a settlement may be reversed: the fractal structure

evolves into fractal complementary structure and vice versa. The concepts of fractals and fractal

complements can be employed to model the evolution process of a settlement. If a fractal

settlement is defined in a two-dimensional space, its fractal dimension comes between 0 and 2

[2, 4, 39]. According to the spatial state and fractal dimension, the settlement evolution can be

divided into four stages. The first stage is fractal growth. In this stage, the geographical space

is unstinted, and settlement growth bears a large degree of freedom. Typical phenomena are

the new villages and young cities. The second stage is space filling. In this stage, small fractal

clusters appear in the vacant places. Typical phenomena are the mature cities, towns, and

villages. The third stage is structural reverse. Settlement growth is a process of phase transi-

tion, which can be explained by space replacement dynamics. In this stage, the fractal structure

of a central part in the settlement is replaced by a fractal complementary structure. The space

dimension is near 2, which is a Euclidean dimension. Typical phenomena are the old cities,

towns, and villages. Gradually, the central part becomes aging, degenerate, and finally has to

be abandoned. Thus, the settlements become hollow cities or hollow villages, from which

inhabitants move away. The fourth stage is fractal regeneration. After a period of desolation,

the buffer space becomes large, and the central area is suitable for reconstruction. Thus, some

people try to settle there by rebuilding houses. In this stage, the fractal structure may become

more complex and should be characterized by multifractal parameters.

4.3. Logarithmic spiral and hierarchical scaling

The logarithmic spiral is also termed equiangular spiral or growth spiral, which is treated as a

self-similar spiral curve in the literature and is often associated with fractal such as the

Mandelbrot set. The logarithmic spiral was first described by René Descartes in 1638 and later

deeply researched by Jacob Bernoulli, who was so fascinated by the marvelous spiral that he
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wished it to be engraved on his tombstone. Hierarchical scaling can be employed to describe

logarithmic spiral. Where geometric form is concerned, a logarithmic spiral bears an analogy

with fractals, while where mathematical structure is concerned, the logarithmic spiral is simi-

lar to rank-size rule. Sometimes, the logarithmic spiral is treated as a fractal by scientists [40].

In fact, a logarithmic spiral is not a real fractal because it has only one self-similarity point. For

Level Cantor set Koch curve

Scale (Lm) Number (Nm) Scale (Lm) Number (Nm)

Fractal Complement Fractal Complement

1 1/30 20 (2�1) 1/30 40 (4�1)

2 1/31 21 20 1/31 41 40

3 1/32 22 21 1/32 42 41

4 1/33 23 22 1/33 43 42

5 1/34 24 23 1/34 44 43

6 1/35 25 24 1/35 45 44

7 1/36 26 25 1/36 46 45

8 1/37 27 26 1/37 47 46

9 1/38 28 27 1/38 48 47

10 1/39 29 28 1/39 49 48

Level Sierpinski gasket Vicsek snowflake

Scale (Lm) Number (Nm) Scale (Lm) Number (Nm)

Fractal Complement Fractal Complement

1 1/20 30 (3�1) 1/30 50 (4 � 5�1)

2 1/21 31 30 1/31 51 4 � 50

3 1/22 32 31 1/32 52 4 � 51

4 1/23 33 32 1/33 53 4 � 52

5 1/24 34 33 1/34 54 4 � 53

6 1/25 35 34 1/35 55 4 � 54

7 1/26 36 35 1/36 56 4 � 55

8 1/27 37 36 1/37 57 4 � 56

9 1/28 38 37 1/38 58 4 � 57

10 1/29 39 38 1/39 59 4 � 58

Table 4. The relationships and differences between hierarchies of fractal sets and corresponding hierarchies of

complementary sets (four typical examples).
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the section around the original point, the part of the logarithmic spiral is strictly similar to its

whole. However, there is only self-similarity but there is no cross-similarity (Figure 10).

Though a logarithmic spiral is not a fractal, this curve bears the similar mathematical model to

simple fractals. A logarithmic spiral can be expressed as below:

x ¼ a
ϕ sinθ ¼ sinθeðlnαÞϕ ¼ βeαϕ; ð42Þ

where x denotes the distance from the origin, φ is the angle from the abscissa axis, θ is a

constant, and α ¼ ln(a) and β ¼ sin(θ) are two parameters. Integrating x over ϕ yields

LðϕÞ ¼

ð
mπ

0

xðϕÞdϕ ¼ β

ð
mπ

0

e
αϕdϕ ¼

β

α

ð
mπ

0

e
αϕdðαϕÞ ¼

β

α
½eαmπ � 1� ! ∞; ð43Þ

where L(φ) refers to a cumulative length. Thus, we have

LmðϕÞ ¼ β

ð
mþ1

m

e
αφdϕ ¼

β

α
½eαφ�mþ1

m
¼

β

α
ðeα � 1Þeαm ð44Þ

in which Lm(φ) denotes the length of the curve segment at the mth level. From Eqs. (42) and

(44), we can derive two common ratios

rl ¼
Lmþ1ðϕÞ

LmðϕÞ
¼ e

α ð45Þ

rx ¼
xmþ1

xm
¼

βeαðmþ1Þ

βeαm
¼ e

α
: ð46Þ

Figure 10. A sketch map of spatial hierarchy for the logarithmic spiral based on the golden rectangle. [Note: Using

squares based on golden rectangles of different scales, we can derive a self-similar hierarchy for the logarithmic spiral,

from which we can find an allometric-scaling relation.]
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This suggests that the two common ratios are equal to one another, that is, rl¼ rx. From Eqs. (45)

and (46), we can derive an allometric-scaling relation such as

Lm ¼ κxbm; ð47Þ

whereκ refers to a proportionality coefficient, and b to the scaling exponent. The allometric-scaling

relation indicates a special geometricmeasure relation. In fact, the allometric-scaling exponent is

b ¼
ln rl
ln rx

¼
α

α

¼ 1: ð48Þ

This result suggests a special allometric relation between the two measurements of the loga-

rithmic spiral. The above mathematical process shows that the logarithmic spiral as a quasi-

fractal curve can be strictly described by hierarchical scaling.

In urban studies, the logarithmic spiral study is helpful for us to understand the central place

theory about human settlement systems and the rank-size distribution of cities. Central place

systems are composed of triangular lattice of points and regular hexagon area [9]. From the

regular hexagonal networks, we can derive logarithmic spiral [41]. On the other hand, the

mathematical models of hierarchical structure of the logarithmic spiral based on the systems of

golden rectangles are similar to the models of urban hierarchies based on the rank-size distri-

bution. The logarithmic spiral suggests a latent link between Zipf’s law indicating hierarchical

structure and Christaller’s central place models indicative of both spatial and hierarchical

structure. Maybe, we can find new spatial analytical approach or spatial optimization theory

by exploring the hierarchical scaling in the logarithmic spiral.

5. Conclusions

The conventional mathematical modeling is based on the idea of characteristic scales. If and

only if a characteristic length is found in a system, the system can be effectively described

with traditional mathematical methods. However, complex systems are principally scale-

free systems, and it is hard to find characteristic lengths from a complex system. Thus,

mathematical modeling is often ineffectual. Fractal geometry provides a powerful tool for

scaling analysis, which can be applied to exploring complexity associated with time lag,

spatial dimension, and interaction. However, any scientific method has its limitation. Fractal

description bears its sphere of application. In order to strengthen the function of fractal

analysis, hierarchical-scaling theory should be developed. Fractal analytical process can be

integrated into hierarchical-scaling analysis. In this work, three aspects of studies are

presented. First, hierarchical scaling is a simple approach to describing fractal structure. Fractal

scaling is used to be expressed with power laws. Based on hierarchical structure, a power

law can be transformed into a pair of exponential laws, and the analytical process is signif-

icantly simplified because the spatial dimensional problems can be avoided. Second, fractal

analysis can be generalized to quasi-fractal phenomena such as logarithmic spiral. A real fractal

possesses more than one self-similarity point, while logarithmic spiral has only one self-
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similarity point. Using hierarchical scaling, fractals and quasi-fractals can be modeled in its

right perspective. Third, spatial analysis can be associated with hierarchical analysis. Spatial

dimension is one of obstacles for mathematical modeling and analysis. It is more difficult to

make spatial analysis than hierarchical analysis. By hierarchical scaling, a spatial network

can be transformed into a hierarchy with a cascade structure, and the spatial analysis can be

equivalently replaced by hierarchical analysis. According to the abovementioned ideas, we

can develop an integrated theory based on fractal and hierarchical scaling to research com-

plex systems such as cities. What is more, fractals reflect optimum structure in nature. A

fractal object can occupy its space in the most efficient way. Using concepts from fractals and

hierarchical scaling, we can optimize human settlement systems, including cities, towns,

villages, and systems of cities and towns.
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