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Abstract

Bioprocess optimization is important in order to make the bioproduction process more
efficient and economic. The conventional optimization methods are costly and less
efficient. On the other hand, modeling and computer simulation can reveal the mecha-
nisms behind the phenomenon to some extent, to assist the deep analysis and efficient
optimization of bioprocesses. In this chapter, modeling and computer simulation of
microbial growth and metabolism kinetics, bioreactor dynamics, bioreactor feedback
control will be made to show the application methods and the usefulness of modeling
and computer simulation methods in optimization of the bioprocess technology.

Keywords: modeling, simulation, bioprocess, fermentation, bioreactor, control

1. Introduction

Bioindustry is important in utilization of reproducible resources, developments of environ-

mental friendly production processes, and sustainable economy. In order to make the bio-

processes more efficient and economic, bioprocess optimization and automatic control are

needed. The conventional optimization methods cost much labor, time, and money; on the

other hand, modeling and computer simulation method can reveal the mechanisms behind the

phenomenon to some extent, to assist the deep analysis and optimization of bioprocesses. The

modeling and computer simulation method is much efficient and economic, and widely used

in research and modern bioindustries.

Bioprocess efficiency depends on the cell capability, bioreactor performances, and the optimal

control of the cultivation conditions. The metabolic network inside the cells involves thou-

sands of enzymes, and the enzyme expression and activities are dynamically affected by the

cultivation conditions. As a result, the cultivation condition affects the cell growth, metabolism,
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and product production in a sophisticated and nonlinear way. Control and maintain relatively

optimal cultivation conditions through proper operation and control of the bioreactor are

needed to improve the production efficiency of the bioprocess.

Bioprocess mathematical modeling involves the modeling of the dynamic changes of the

metabolic rates and their distribution inside the cells with the changes of time and cultivation

conditions, the modeling of the dynamic changes of the reaction rates and mass transfer rates

as well as the cultivation conditions inside the bioreactor, and the modeling of the dynamics of

the bioreactor control system etc., based on which optimizations of the bioreactor operation

and control strategies can be made and the results can be predicted and evaluated by computer

simulation. In this chapter, examples of modeling and computer simulation of microbial

growth and metabolism kinetics, bioreactor dynamics, and the feedback control of the biore-

actor are given to show the application methods and the usefulness of modeling and computer

simulation methods in bioprocess technology.

2. Modeling of microbial cell growth and metabolism

2.1. Modeling of microbial cell growth

Cell growth is one of the most important variables to be investigated in bioprocess. The cell

growth is usually described by the specific growth rate, μ, and the time course of cell concen-

tration, X. The specific growth rate is defined by the increase in grams of cells (g) per gram dry

cells (g) per hour (h), and can be modeled by Eq. (1)

μ ¼
1

X
�
dX

dt
ð1Þ

The specific growth rate is related with many process variables, like temperature (T), pH,

dissolved oxygen (DO) concentration (CL), substrate concentration (S), product concentration

(P), X, and time (t). expressed by

μ ¼ f T, pH,DO, S, P, X, t,…ð Þ ð2Þ

In real applications, only the key process variable(s) are included in Eq. (2) for simplification.

Monod equation [1] using the substrate concentration as the single independent variable is

shown by Eq. (3), as T, pH, and in many cases CL are controlled constant and can be neglected

from the equation.

μ ¼
μm � S

km þ S
ð3Þ

where μm, is the maximum specific growth rate and km, is the substrate affinity coefficient.

The typical cell growth curve is of “S” type, which has a lag growth phase and cannot be

properly modeled by Monod equation as discussed later. At the initial cultivation stage, the

cells need some time to adapt to the new environmental conditions for induction of some new
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enzymes needed for cell metabolism, etc., and the specific growth rate is zero or at a low value

resulting in the lag growth phase. One way to model the lag growth phase is to separate the

newly inoculated cells as active cells, X, and inactive cells, Y, and the time for Y to turn into X

conforms to Pearson distribution expressed by Eqs. (4)–(7) [2].

dX

dt
¼ μ tð Þ � X ð4Þ

μ tð Þ ¼
μ
m
� X

Xþ Y
ð5Þ

Y ¼ X0 � X ð6Þ

x tð Þ ¼

ðt

�a1

c 1þ
t

a1

� �m1

1�
t

a2

� �m2

exp μt
� �

dt ð7Þ

where a1, a2, m1, and m2 are the constants of the Pearson distribution. The other methods used to

predict the lag growth phase simply defined the lag time in terms of cell growth, tL [2, 3]. One

way to deal with the lag growth phase is to relate it with the changes of μ defined by Eq. (8) [3].

μðS, tÞ ¼
μ
m
� S

km þ S
� ð1� e�t=tL Þ ð8Þ

After the lag growth phase, the specific growth rate increases gradually and the cells go into

the exponential growth phase, which is expressed by Eqs. (9) and (10)

dX

dt
¼ μ � X ð9Þ

X ¼ X0 � e
μ�t ð10Þ

where X0 is the initial cell concentration. After the exponential growth phase, the specific

growth rate decreases gradually to zero, because of nutrients limitation, accumulation of

intracellular toxic intermediates, accumulation of inhibitors in the culture broth, etc., and the

net cell growth tends to cease to enter into the stationary growth phase. In order to model the

decreased cell growth rate and the stationary growth phase, the Logistic growth model was

developed [4], in which μ decreases with the increase of cell concentration, X, and μ reaches

zero when x reaches its maximum value, Xm, shown by Eq. (11)

dX

dt
¼ μ

m
� 1�

X

Xm

� �

� X ð11Þ

From above analysis, it can be seen that the specific growth rate will start from zero or a low

value in the lag growth phase, increases gradually and reaches the maximum value in the

exponential growth phase, and then decreases gradually in the declined growth phase, which

makes the time course of the specific growth rate the “bell” type curve and the time course of

cell concentration the typical “S” type curve (Figure 1), which cannot be well fitted by the
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models discussed above. In order to simulate the “bell” type specific growth rate curve and the

“S” type cell growth curve more accurately, the following model is developed shown by

Eqs. (12) and (13) [5]

μðtÞ ¼ μ
m
�

1

1þ e�kinðt�tinÞ
�

1

1þ ekdeðt�tdeÞ
ð12Þ

dX

dt
¼ μðtÞ � X ð13Þ

Figure 1. Graphically illustration of model parameters [5]. I is the lag growth phase; II is the increased growth phase; III is

the exponential growth phase; IV is the decreased growth phase; V is the stationary growth phase. kin is the maximum

increasing rate of μ; kde is the maximum decreasing rate of μ; tin is the time point when dμ/dt equals kin; tin is the time point

when dμ/dt equals kde; and tL is the lag time.
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where kin is the maximum increasing rate of μ; kde is the maximum decreasing rate of μ; tin is

the time point when the increasing rate of μ equals kin; tde is the time point when the decreasing

rate of μ equals kde. All the parameters used in the model can be obtained graphically (Figure 1).

One example of this model application is shown in Figure 2. In order to make wider applica-

tion of above model, Eq. (12) can be combined with Monod model to develop Eqs. (12) and (13)

into Eqs. (14) and (15)

Figure 2. Simulation of cell growth of Trichoderma reesei [5].

Computer Simulation of Bioprocess
http://dx.doi.org/10.5772/67732

99



μðS, tÞ ¼
μ
m
� S

km þ S
�

1

1þ e�kinðt�tinÞ
�

1

1þ ekdeðt�tdeÞ
ð14Þ

dX

dt
¼ μðS, tÞ � X ð15Þ

Even if Monod model has some limitations, it is still the widely used growth model in real

applications for the major reasons of simplification and the single independent variable of

substrate concentration, which is the key process variable to be investigated in many fermen-

tation processes. In cases of high density fermentation, or substrate or product inhibition,

modifications of Monod model are needed. Contois model shown by Eq. (16) is an example

for high density fermentation, in which modeling the cell concentration is included in the

denominator of the specific growth rate equation to show the limitation effect of high cell

concentration on the growth, to make the specific growth rate to be reciprocal to the cell

concentration (μ ∝ X
�1) at very low substrate concentration.

μ ¼
μ
m
� S

km � Xþ S
ð16Þ

In some cases, the substrates which have inhibitory effect on cell growth, like ethanol or

acetate, etc., are used. One example of the growth model under noncompetitive substrate

inhibition with KI >> Km is shown by Eq. (17)

μ ¼
μm � S

Km þ Sþ S2

KI

ð17Þ

One example for modeling product inhibition, like ethanol or lactic acid fermentation, is

shown by Eq. (18)

μ ¼
μm � S

kS þ Sð Þ
� 1�

P

Pm

� �n

ð18Þ

In case of dual substrates, the growth model in form of the sum or product of two Monod type

terms is often used for the substitutable and nonsubstitutable substrates, respectively. For

example, glucose and glycerol are substitutable substrates which can be modeled by Eq. (19),

while glucose and oxygen are nonsubstitutable substrates which can be modeled by Eq. (20).

μ ¼ μm � α1 �
S1

Km1 þ S1
þ α2 �

S2

Km2 þ S2

� �

ð19Þ

μ ¼ μm �
S1

Km1 þ S1
�

S2

Km2 þ S2
ð20Þ

Above growth models are relatively simple, which are unstructured and unsegregated models,

and are useful for practical applications. Structured and segregated growth models, which
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involve the intracellular structure or the nonhomogeneity of the cells, respectively, are gener-

ally sophisticated and contain uneasily measurable model parameters, and are usually used

for theoretical purposes.

2.2. Modeling of microbial substrate uptake and product production

In many cases, the ratio of cell mass produced per substrate utilized is a constant and defined

as the cell yield from the substrate, YX/S, shown by Eq. (21)

YX=S ¼ �
ΔX

ΔS
ð21Þ

The minus sign in Eq. (21) is to ensure YX/S to be positive as ΔS is negative. From Eq. (21), it can

be seen that substrate consumption is proportional to the cell growth, so that substrate con-

sumption can be simply modeled by Eq. (22)

�
dS

dt
¼

1

YX=S
�
dX

dt
¼

μX

YX=S
ð22Þ

Further, the total substrate consumed can be considered of two parts, with one part for real cell

growth and the other part for life maintenance to develop Eq. (22) into Eq. (23)

�
dS

dt
¼

1

YX=S
�
dX

dt
¼

μX

YX=S
¼

μ

YG
þms

� �

� X ð23Þ

where YG is the maximum cell yield when μ tends to μm; ms the maintenance coefficient. From

Eq. (23), Eq. (24) can be obtained showing the positive relationships between the specific

growth rate, μ, and the cell yield, YX/S.

1

YX=S
¼

ms

μ
þ

1

YG
ð24Þ

From Eq. (24), it can be seen that in order to increase the cell yield, YX/S, a high value of μ

should be maintained.

The specific substrate consumption rate is defined by the consumption in grams of substrate

(g) per gram dry cells (g) per hour (h), and can be modeled by Eq. (25)

qS ¼
1

X
�
�dS

dt
ð25Þ

From Eqs. (23) and (25), Eq. (26) can be obtained

qS ¼
μ

YX=S
¼

μ

YG
þms ð26Þ

Then, Eq. (22) or (23) can be expressed in a simple way by Eq. (27)
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�
dS

dt
¼ qS � X ð27Þ

For the metabolism of facultative anaerobes grown in oxygen limited condition, the cell yield

varies greatly depending on the degree of oxygen limitation. Catabolism of 1 mole of glucose

can produce 36 (or 38) mole ATP under aerobic condition or produce 2 mole ATP under

anaerobic condition. The ATP-based cell yield, YATP, can be regarded a constant of 10 g dry-

cell/mol ATP. So, the cell yield of YX/S under anaerobic condition will only be 1/18 (or 1/19) of

that under aerobic condition. The partition of the carbon source between aerobic pathway and

anaerobic pathway in the catabolism is determined by oxygen supply or degree of oxygen

limitation. Examples of cell growth under oxygen limited condition will be given in Sections

4.2 and 4.3.

In modeling of specific product production rate, Luedeking-Piret equation is most often used

for its simplification and usefulness, which relates the specific product production rate to the

growth related and nongrowth related parts by using α and β terms, respectively, as described

by Eq. (28). The total product production is described by Eq. (29).

qP ¼ α � μþ β ð28Þ

dP

dt
¼ qP � X ð29Þ

3. Modeling of bioreactor with different operation methods

Continuous stirred tank reactor (CSTR) is the most popular type of bioreactor, which can

be operated in batch, fed-batch, and continuous modes. For batch culture, no substrate is

fed into the bioreactor except air for aeration or acid or base for pH control, and no culture

broth is taken out of the bioreactor during the fermentation process. For modeling of a

typical batch culture, the specific rates of cell growth (μ), substrate uptake (qS), and product

production (qP) introduced in Section 2, and the mass balance equations of Eqs. (30)–(32) can

be used.

dX

dt
¼ μ � X ð30Þ

�
dS

dt
¼ qS � X ð31Þ

dP

dt
¼ qp � X ð32Þ

For fed-batch culture, substrate is fed into the bioreactor but no culture broth is taken out

during the fermentation process, so that the liquid volume is increasing. For modeling fed-

batch culture, V is variant and the mass balance equations of Eqs. (33)–(36) can be used. The

specific rates of μ, qS, and qP introduced in Section 2 can be used in the modeling.
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d VXð Þ

dt
¼ μVX ð33Þ

�
d VSð Þ

dt
¼ FSf �

1

YX=S
μVX ð34Þ

d VPð Þ

dt
¼ qp � VX ð35Þ

dV

dt
¼ F ð36Þ

where F, the substrate feeding rate. Eqs. (33)–(35) can be transformed into Eqs. (37)–(39)

dX

dt
¼ μX�

F

V

� �

X ð37Þ

�
dS

dt
¼

F

V

� �

Sf � S
� �

�
1

YX=S
μX ð38Þ

dP

dt
¼ qpX�

F

V

� �

P ð39Þ

In fed-batch culture, F can be continuous, for example, to be constant, linear increase, expo-

nential increase with time, or uncontinuous, for example, operated in a repeated pulse-fed

mode. Fed-batch culture has many advantages over batch culture. It has higher substrate

conversion yield, extends production phase and can eliminate substrate inhibition or Crabtree

effects, etc., and is widely used in industry.

Continuous culture is another kind of bioreactor operation method, with which method

substrate is continuously fed into the bioreactor meanwhile the culture broth is continuously

taken out of the bioreactor at the same rate so that the liquid volume remains unchanged.

Continuous culture has the advantage of high production efficiency but the disadvantages of

low substrate conversion yield, strain deterioration, and easy contamination, and is not often

used in industry. As a result, examples of only batch and fed-batch cultures are investigated in

next section.

4. Modeling and simulation of control of fermentation processes

4.1. Effects of early pulse aeration on ethanol fermentation

4.1.1. Mathematical modeling

Bioethanol is produced by anaerobic fermentation using Saccharomyces cerevisiae, which can

grow anaerobically through fermentative pathway (glycolysis) catabolizing 1 mole of glucose

and producing 2 moles of ethanol and 2 moles of ATP. S. cerevisiae can also grow aerobically

through tricarboxylic acid (TCA) cycle catabolizing 1 mole of glucose producing 6 moles of
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CO2 and 38 moles of ATP. The cell yield from ATP, YATP, is relatively constant, which is about

10 g dry-cell mass/mole ATP. S. cerevisiae will grow much faster aerobically than anaerobically

for the reason to have more ATP used for cell growth.

Fermentation period, which can be roughly divided into growth phase and production phase, is

one major factor affecting the production cost. Fermentation period will be shortened if the cell

growth phase is shortened. By employing an aerobic condition during the cell growth phase to

fasten the cell growth and an anaerobic condition during the ethanol production phase, the

fermentation period should be shortened while the ethanol production remained. The growth

phase aerobic pulse stimulated ethanol fermentation and the normal anaerobic ethanol fermen-

tation operated in batch mode are investigated and compared by modeling and simulation [6].

The specific glucose consumption rate (qS) subject to substrate and product inhibition effects is

modeled by Eq. (40). In Eq. (41), Q is the on-off switch between anaerobic (Q ¼ 1) and aerobic

(Q ¼ 1) conditions (Q is not Q). Eq. (42) describes the ATP production from glucose under

anaerobic or aerobic condition. The cell growth is based on the net ATP for cell synthesis shown

by Eq. (43). Under aerobic condition, 6 moles of O2 are needed for oxidizing 1 mole of glucose

shown by Eq. (44). Ethanol is produced during the anaerobic production phase shown by Eq. (45).

qS ¼
qS:max � S

kS þ Sþ S2=kiS
� 1�

P

Pcri

� �α

ð40Þ

Q ¼
0 aerobic condition ðQ ¼ 1Þ
1 anaerobic condition ðQ ¼ 0Þ

�

ð41Þ

qATP ¼ Q�
qS

MGluc
� 2þQ

_

�
qS

MGluc
� 38 ð42Þ

μ ¼ qATP �mS:ATP

� �

� YATP ð43Þ

qO2 ¼ Q� qS �
MO2

MGluc
� 6 ð44Þ

qP ¼ Q� qS �
MEtOH

MGluc
� 2 ð45Þ

where S and P are the glucose and product (ethanol) concentrations, respectively; Pcri is the critical

value of ethanol concentration for inhibition of glucose consumption; qS and qS.max are the specific

glucose consumption rate and its maximum value, respectively; ks, kis, and α are the constants;

qATP, qP, qO2, and μ are the specific rates of ATP and ethanol productions, oxygen consumption,

and the specific growth rate;mS.ATP is the ATP consumption constant for cell maintenance; YATP is

the cell yield from ATP. The mass balance equations are shown by Eqs. (46)–(49)

dX

dt
¼ μ� 1�

X

Xmax

� �

� X ð46Þ

�
dS

dt
¼ qS � X ð47Þ
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dP

dt
¼ qP � X ð48Þ

dOUR

dt
¼ qO2 � X ð49Þ

where OUR is oxygen uptake rate.

4.1.2. Simulation results

Simulation was made using above mathematical model (Figure 3). The references for the

parameter values used in the model or in calculation of the parameter values used in the model

are shown in Table 1. In aerobic condition, qS.mas of 1 g/g/h and mS of 0.1 mole/g/h, respec-

tively, are used, which will be decreased and increased, respectively, compared with anaerobic

condition.

The simulation results of the conventional anaerobic ethanol fermentation and the early

growth phase aerobic pulse stimulated ethanol fermentation processes are shown in Figure 3.

In simulation of the early growth phase aerobic pulse stimulated ethanol fermentation process,

Q was set to zero (Q ¼ 1) for the first 3 h. The qATP and μ were abruptly decreased and the qS
and qEtOH were abruptly increased with the shift of Q from 0 to 1 (Figure 3B). The results

showed that early stage aerobic pulse stimulated ethanol fermentation and had the advantage

in shortening the fermentation period for more than 10 h compared with the conventional

anaerobic ethanol fermentation.

4.2. Fermentation with substrate feeding using DO stat control strategy

4.2.1. Mathematical modeling

In this section, glucose feeding control based on dissolved oxygen (DO) will be investigated by

using a fed-batch fermentation process using Escherichia coli, which is often used as the host for

recombinant protein production. This control strategy, which relates glucose concentration

with DO changes [10, 11], is practical as DO sensor is widely used in fermentation technology.

In the fermentation process, oxygen is continuously transferred into the liquid phase from the

gas phase at a certain oxygen transfer rate (OTR) under aeration and agitation conditions;

meanwhile, oxygen is continuously consumed by microbes at a certain oxygen uptake rate

(OUR). After the cell reach high concentration, oxygen limitation occurs when OUR becomes

larger than OTR so that DO decreases to nearly zero. On the other hand, E. coli catabolizes

glucose aerobically through tricarboxylic acid (TCA) cycle, catabolizing one molecule of glu-

cose into six molecules of CO2 consuming six molecules of O2. When glucose is depleted, O2

consumption stops (OUR ¼ 0) while OTR is positive so that DO rises suddenly. So, the sudden

DO rise can be the indicator for glucose depletion and used as the signal for glucose feeding.

After glucose feeding, glucose consumption and oxygen uptake resume and DO drops again.

Then, the control system will monitor the next sudden DO rise for glucose feeding control,

which strategy can maintain glucose concentration in low level and is called DO stat control

strategy. This control strategy has been analyzed by modeling method [12].
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Figure 3. Simulation of ethanol fermentation. (A) Normal anaerobic fermentation. (B) Early 3 h aerobic pulse followed by

anaerobic fermentation.
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The specific growth rate is modeled by Logistic equation shown by Eq. (50). The specific

glucose consumption rate is modeled to include two parts, one for the net growth and the

other for the maintenance shown by Eq. (51). The mole specific oxygen consumption rate is six

times of the specific glucose consumption rate as shown by Eq. (52). The specific product

production rate is modeled by Luedeking-Piret [Eq. (53)]. OUR and OTR are shown by

Eqs. (54) and (55), respectively.

μ ¼
μm � S

km þ S
� 1�

X

Xm

� �

ð50Þ

qS ¼
μ

YG
�mS ð51Þ

qO2
¼ qS �

MO2

MGluc
� 6 ð52Þ

qP ¼ α � μþ β ð53Þ

OUR ¼ qO2
� X ð54Þ

OTR ¼ kLa � C� � CLð Þ ð55Þ

where qO2 and qP are the specific rates of O2 consumption and product production, respec-

tively; α, β, are the constants for Luedeking-Piret equation; kLa, is the volume oxygen transfer

rate; CL and C* are the dissolved oxygen concentration and its saturated value, respectively;

MO2 and MGluc are the molecular weights of O2 and of glucose, respectively.

The mass balance equations for fed-batch culture can be made and transformed into Eqs. (56)–(60).

dX

dt
¼ μX�

F

V

� �

X ð56Þ

Parameter Value Reference

kS 0.213 g/L [7]

kiS 386.64 g/L [7]

Pcri 226 g/L [7]

μmax (anaerobic) 0.45 L/h [8]

YX/S (anaerobic) 0.15 g/g [8]

qS.mas (anaerobic) 3 g/g/h qS.mas ¼ μmax/YX/S

Α 1.5 [8]

mS 0.01 mole/g/h [9]

Xmax (anaerobic) 11 g/L [7]

YATP 10 g/mol [9]

Table 1. Parameter values and references.
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�
dS

dt
¼

F

V

� �

� Sf � S
� �

� qS � X ð57Þ

dP

dt
¼ qp � X�

F

V

� �

� P ð58Þ

dCL

dt
¼ OTR�OUR�

F

V

� �

� CL ð59Þ

dV

dt
¼ F ð60Þ

where P is the product concentration; Sf is the substrate concentration in the feeding solution; V

is the volume of the culture broth; F is the feeding rate.

4.2.2. Simulation results

In the simulation, glucose pulse feeding was made when DO increased over 10% in order to

avoid noise interruptions. In each pulse feeding, a dosage equivalent to 20 g/L increase in

glucose concentration was fed. The initial glucose was depleted at about 75 h and the product

concentration was a little over 6 g/L at that time. By glucose pulse feeding, the product

concentration was more than doubled (Figure 4). Glucose and DO concentrations go up and

down in turn and fluctuate during the control period. By using this control strategy, glucose

concentration can be maintained in an averaged low concentration, which is desired and helps

to overcome the glucose effects and increase the product yields. In addition, the DO stat

control strategy does not need the extra sensor and is easily applied.

4.3. Fermentation with DO feedforward-feedback control and substrate-feedback control

4.3.1. Mathematical modeling

DO control is important in fermentation process. The level of DO can affect the metabolic flux

distribution and the product yield and production efficiency. As oxygen has low solubility in

water, DO control is a hard task for fermentation process. Compared with feedback control,

DO feedforward-feedback (FF-FB) control has the advantage in dealing with the time-varying

characteristics resulted from the cell growth during the fermentation process. The oxygen

consumption of the microbial cells is considered the disturbance to the control system and is

estimated by using the mathematical model and compensated by the FF control action. The

substrate is FB controlled by repeated pulse-fed of carbon source. The schematic diagram for

the control system is shown in Figure 5 [13].

The specific cell growth rate is modeled using double substrate Monod equation shown

by Eq. (61). The equations for the specific glucose consumption rate, the specific oxygen con-

sumption rate, OUR, and OTR are shown by Eqs. (62)–(65), which are the same as that of

Section 4.2.1.
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Figure 4. Computer simulation of process variables of DO stat fed-batch culture.
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Figure 5. The schematic diagram of the bioreactor control system. (A) Bioreactor: F, substrate feeding rate; N, agitation

speed; G, aeration rate. (B) DO FF-FB control. (C) Substrate FB control.
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μ ¼
μm � S

km þ S
�

CL

kO2
þ CL

ð61Þ

qS ¼
μ

YG
�mS ð62Þ

qO2
¼ qS �

MO2

MGluc
� 6 ð63Þ

OUR ¼ qO2
� X ð64Þ

OTR ¼ kLa � CL
� � CLð Þ ð65Þ

The mass balance equations for the repeated fed-batch culture are described by Eqs. (66–69).

dX

dt
¼ μ � X�

F

V
� X ð66Þ

dS

dt
¼ �qS � Xþ

F

V
� SF � Sð Þ ð67Þ

dCL

dt
¼ OTR�OUR�

F

V
� CL ð68Þ

dV

dt
¼ F ð69Þ

where SF is the substrate concentration in the concentrated feeding solution. The substrate

feeding solution is concentrated so that the volume change resulted from the substrate feeding

can be neglected in Eqs. (66)–(68).

For FF control of DO, in order to compensate the DO disturbance resulted from the cell

growth, OTR should be equal to OUR according to Eq. (68) if the dilution effect of the feeding

is neglected so as to ensure CL unchanged (dCL/dt ¼ 0) and remained at the set-point. As the

oxygen transfer driving force, ∆C ¼ (CL
* � CL), is relatively constant when CL is maintained at

the set-point, kLa should be controlled to meet Eq. (70) to compensate the time-varying OUR by

the cell respiration according to Eqs. (65) and (68), and dCL/dt ¼ 0.

OUR

C�
L � CL

� � ¼ kLa ð70Þ

The value of kLa is controlled by agitation speed (N) and aeration rate (G) shown by Eq. (71).

kLa ¼ k �N3 � G0:5 ð71Þ

Between the two manipulated variables, N is more effective than G in controlling kLa [14].

Therefore, 70% of the control effort is assigned toN and 30% is assigned to G by using Eqs. (72)

and (73), respectively, which are drawn from Eqs. (70) and (71).
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NFF�t ¼
OUR

C
�
L
� CL

� � �
1

k � Gt�1
0:5

 !1
3

� 70% ð72Þ

GFF�t ¼
OUR

CL
� � CLð Þ

�
1

k �Nt�1
3

� �2

� 30% ð73Þ

where the subscripts t and t�1 are the current and last timepoints, respectively. So,N andG control

actions should be finished in several control rounds. Eqs. (72) and (73) are used in the FF control.

As model predictions may not be very accurate, FB control is used to eliminate the control

error and ensure the control accuracy. In the case of FB control, the error between DO set-point

and process variable is calculated by Eq. (74).

e ¼ CL:sp � CL ð74Þ

where CL.sp is DO set-point. The proportional and integration (PI) control strategy is used for

FB control by using Eqs. (75) and (76) for N and G control, respectively. Similarly, 70% of the

control action is assigned to NFB and 30% is assigned to GFB.

NFB�t ¼ kP�N � eþ kI�N

ð

e

� �

� 70% ð75Þ

GFB�t ¼ kP�G � eþ kI�G

ð

e

� �

� 30% ð76Þ

Then, the total DO control actions of N and G are shown by Eqs. (77) and (78)

Nt ¼ N0 þNFF�t þNFB�t ð77Þ

Gt ¼ G0 þ GFF�t þ GFB�t ð78Þ

where N0 and G0 are the initial values of N and G, respectively.

4.3.2. Simulation results

In this system, DO is FF-FB controlled by agitation speed and aeration rate and the substrate

concentration is FB controlled by repeated pulse-fed of certain amount of the concentrated feeding

solution tomake the substrate concentration reach30g/Lwhen the substrate concentration is lower

than the set-point of 5 g/L. In order to confirm the robustness of the control system under model

prediction errors and noises, 5% randomized noises and 20%over estimate of the cell growthwere

added in themathematicalmodel predictions in FF control. Then, simulationsweremadewith the

above noises and prediction errors. The results indicated that even if the noises and relatively large

model prediction errors existed, the control system still had good performance. The reason is that

FB control finally compensated the inaccuracy of the FF control, as shown in Figure 6 [13].
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Figure 6. Simulation of DO FF-FB control and substrate FB control with prediction error and noise. The model pre-

dictions with 5% randomized noises and 20% over estimate of the cell growth in FF control.
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5. Conclusion

Modeling and simulation are useful tools for understanding, analysis, and optimization of

bioprocesses [14–17]. By using the modeling and computer simulation methods, the dynamics

of cell growth and metabolism under different conditions and various fermenter operation

modes can be evaluated and the information can be used for bioprocess optimization and

bioreactor control.
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