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Abstract

Porphyrins are tetrapyrrole macrocycles that can coordinate transition metal ions such as 
iron, cobalt and magnesium and are able to perform a diversity of functions and appli-
cations. In biological systems, these molecules are associated with proteins involved 
in photosynthesis, cell respiration, cell death, antioxidant defence, among others. The 
stability and versatile applications of porphyrins inspired the synthesis of derivatives 
including 5,10,15,20-tetrakis(N-methyl pyridinium-4-yl)porphyrin (TMPyP) that is the 
object of the present chapter. In synthetic porphyrins such as TMPyP, the catalytic and 
photochemical properties can be achieved by the coordination with a diversity of cen-
tral metal ions. In photodynamic therapy (PDT), TMPyP and other porphyrins act as 
photosensitizers. The photochemical properties of TMPyP and other porphyrins are also 
useful for the fabrication of solar cells. The catalytic properties require the presence of a 
central metal. The MnTMPyP have antioxidant activity that is influenced the capacity of 
membrane binding, substituents, and meso substituents. Manipulation of the interfacial 
confinement properties is one of the newest application areas of porphyrins. The associa-
tion of porphyrins with different surfaces modulates the electronic and physicochemical 
properties of these molecules. All of these properties are the object of experimental and 
theoretical studies discussed in the present chapter.
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1. Introduction

Porphyrins constitute a group of aromatic organic molecules, composed of four pyrrole rings 

linked by methene (═CH─) bridges (5, 10, 15 and 20), that are the meso-carbon atoms/posi-

tions [1]. Free base porphyrins are able to complex with metal ions such as iron, zinc, copper 

and others at themacrocycle center to form metalloporphyrins. Therefore, the properties of a 

porphyrin can be modulated by the inserting or changing the central metal and appending 

different substituents at the peripheral (β-positions (2, 3, 7, 8, 12, 13,17 and 18)) and meso posi-

tions (Figure 1). Furthermore, the activity of a metalloporphyrin frequently involves redox 

cycling of the central metal. When peripheral and meso substituents are exclusively hydro-

gen atoms, and two of the four macrocycle nitrogen atoms are protonated, this molecule is 

known as a free-base porphine. When different organic groups are appended at the peripheral 
or meso positions, these compounds are known as porphyrins [2]. The manipulation of dif-

ferent substituents and central metal provides a wide diversity of biochemical functions for 

porphyrins.

In biological systems, the porphyrins are associated with proteins involved in important 

cellular processes such as photosynthesis, molecular oxygen transport, cell respiration, cell 

death, the combat of the oxidative stress, biological synthesis, fat acid oxidation and oth-

ers [1, 3–5]. The iron protoporphyrin IX (known as heme group) is the biological metal-

loporphyrin present in almost all biological processes. Heme is the prosthetic group of 

myoglobin, hemoglobin and a diversity of enzymes such as peroxidases, cytochromes, NO• 

synthase and others. Besides iron ion, other metals are found in biological porphyrins, the 

magnesium ion in chlorophyll, and the cobalt ion in vitamin B 12 [6]. Biological and syn-

thetic porphyrins and metalloporphyrins have been extensively investigated and applied 

in medicine, chemistry, sensing and other technological devices due to their catalytic, pho-

tochemical and photophysical properties [6, 7]. In biological systems, free-base porphy-

rins are largely used as photosensitizer (PS) in photodynamic therapy (PDT) [2, 5, 8, 9]. 

Otherwise, metalloporphyrins have been used for mimicking the function of hemeproteins 

such as cytochrome P-450 in oxidative catalysis and superoxide dismutase SOD against 

oxidative stress. Porphyrins are also used as building blocks and in transport chains of 

molecular devices [4, 9–11].

Porphyrins are versatile catalytic and therapeutic agents. The properties of porphyrins can 

be modulated by changing the central metal, substituents at the peripheral and meso posi-

tions and the microenvironment. Different microenvironments respond for the diversity of 
functions of heme group in the hemeproteins: oxygen transport, electron transport, hydrox-

ylation, peroxide cleavage and others. The versatility of functions can also be achieved for 

synthetic porphyrins by manipulating their structures and microenvironments. One exam-

ple of interchangeable functions of porphyrins is the substitution of the central metal in 

TMPyP (5,10,15,20-tetrakis(N-methyl pyridinium L)porphyrin). MnTMPyP exhibits anti-

oxidant function, and it has been attributed to the superoxide dismutase (SOD)-like and 
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glutathione peroxidase (GPx)-mimetic capacities [12, 13], while FeTMPyP exhibits pro-oxi-

dant activity that responds to the toxicological effects of these compounds [14]. The pro-

oxidant activity of FeTMPyP has been attributed to the generation of free radicals due to 
the homolytic cleavage of peroxides. The introduction and modification of substituents in a 
metalloporphyrin changes the redox potential and the solubility. In this regard, TMPyP and 

TPPS4 are examples of synthetic porphyrins made water soluble by the meso substitution 

of pyridine and sulfonate groups, respectively. Depending on the meso substituent, there is 

the possibility of a refined modulation of the porphyrin activity by isomerization. Previous 
studies comparing SOD activity of ortho, meta and para isomers of MnTMPyP (Figure 2) 

showed that the former exhibits the most effective SOD-like activity due to an appropriate 
combination of redox potential and electrostatic facilitation [15–18]. Para MnTMPyP exhibits 

a lower redox potential value that disfavors SOD activity [19]. However, the association of 

para MnTMPyP to negatively charged membranes (phosphatidylcholine (PC)/phosphatidyl-

serine (PS)) modulates its redox potential toward a more efficient SOD activity [20]. Thus, 

the study of Araujo-Chaves et al. [13] is an example of the modulation of a porphyrin activ-

ity by the microenvironment. The different activities of TMPyP and other porphyrins are 
described herein.

Figure 1. Free-base porphine with peripheral and meso positions.
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2. Biological applications of porphyrins

2.1. Porphyrins in photodynamic therapy (PDT)

2.1.1. A brief historical of PDT

The term PDT—photodynamic therapy—is recent. However, the heliotherapy—the therapeu-

tic exposure to sunlight—was already used more than 4000 years ago by Egyptians, Greeks, 

and Indians as a treatment for several skin disorders, like psoriasis, vitiligo, cancer and even 

psychosis [21–29]. Heliotherapy, recently known as phototherapy, employs either UV and 

visible light with/without an exogenous photosensitizer. The photosensitizer is a molecule 

which when exposed to light absorbs determined wavelength becomes electronically excited 

and starts photochemical reactions that can produce a desirable beneficial effect, as in the case 
of vitamin D synthesis or damage and death, as in the case of tumor and infections treatment 

[2, 30]. Phototherapy without an exogenous photosensitizer is used in dermatology to treat 

vitiligo, eczema, neonatal jaundice and vitamin D deficiency, and even some cancer types 
[30–33]. During 18th and 19th centuries, phototherapy without exogenous photosensitizer 
was used in France in the treatment of many diseases, including tuberculosis, rheumatism, 

edema, rickets and paralysis [28, 34]. When an exogenous photosensitizer is used in tandem 

with the sunlight, this therapy is called photochemotherapy. An example of the exogenous 

photosensitizer is the psoralen series (Figure 3). These molecules are used as active treatments 

of HIV-associated dermatoses, seborrheic dermatitis, mycosis fungoids, prurigo, palmar and 

plantar pustulosis, among other diseases [30, 35]. The use of psoralens and ultraviolet light—

UV (300–400 nm) was used by ancient Egyptians to treat vitiligo in the past and has been 
accepted for the treatment of psoriasis (PUVA) and in immunotherapy throughout the world 

[22, 27, 30, 35, 36].

Photodynamic therapy (PDT) is a non-invasive treatment method that uses light, photosen-

sitizer and molecular oxygen for the treatments of cancer, inflammation, immunological 

Figure 2. Ortho, meta and para isomers of MnTMPyP.
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diseases and bacterial infections [8, 37–41]. In ancient times, phototherapy was used based 

on the observation of positive results without a mechanistic knowledge. People using and 

advocating phototherapy did know the key role of the photosensitizer in this type of treat-

ment. In that times, the photosensitizer role was played by an endogenous biomolecule 

absorbing sunlight. The domain of the PDT mechanism initiated with the isolation of hema-

toporphyrin (Hp) (Figure 4) [28, 42]. From dried blood cells by Scherer in 1841 followed by 
the discovery of its fluorescence properties in 1871 [43]. In 1911 and 1913, the side effects of 
sun exposure after the administration of hematoporphyrin were described by Hausmann 

and Friedrich Meyer-Bertz. The latter scientist tested on himself the effect of Hp and sun and 
provided the first scientific communication of human photosensitization [44]. Besides, the 

powerful cytotoxic effect of phototherapy, another significant finding favoring the consoli-
dation of this type of treatment, was the report of Auler and Banzer showing the affinity of 
Hp for cancer cells in 1942 [45]. In the following, several other studies led to the develop-

ment of new range of porphyrinic photosensitizers [28, 43, 46–51].

2.1.2. The PDT mechanism

The Jablonski diagram [52], first proposed by Professor Alexander Jablonski in 1935, has been 
used to describe the photodynamic processes of photosensitizer molecules used in PDT. The 

PDT principles are based on the presence of an endogenous or exogenous photosensitizer in 

the target tissue that can absorb red light to be promoted to a long-lived electronic excited 

state. In the electronic excited state, the photosensitizer triggers photooxidative events directly 

or more commonly via energy transfer to molecular oxygen. The quantum yield triplet state 

generation depends on the molecular structure, and the energy transfer to molecular oxygen 

competes with other deactivating routes for the excited state [25].

According to Figure 5, Jablonski diagram shows that the ground state photosensitizer (S
0
) 

can absorb a photon and be converted to the short-lived excited singlet state (S
n
) at different 

Figure 3. Psoralen series.
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vibrational sublevels (S
n
’). The S

n 
state, if n > 1 can lose energy via internal conversion (IC) to 

populate the first excited single state (S
1
). In the first singlet excited state, the photosensitizer 

can return to the ground state via fluorescence and thermal irradiation. Also, the S
1
 state of the 

photosensitizer can undergo intersystem crossing by spin inversion and populate the lower-

energy first excited triplet state (T
1
), a long-lived state [2, 30, 37, 49]. At this point, two different 

reaction processes involving molecular oxygen can occur Type I or Type II processes. In the 

first process, Type I, the photosensitizer in a triplet excited state is reduced with organic sub-

strates by electron exchange. The reduced photosensitizer can react with molecular oxygen 

(3O
2
) to produce reactive oxygen species (ROS) such superoxide anion (O

2
−·), hydroxyl radical 

(OH·) and hydrogen peroxide (H
2
O

2
) [30, 37, 53]. In the second process, Type II, the triplet 

excited state photosensitizer transfers energy to molecular oxygen, resulting in a long-lived 

and highly reactive species, the singlet oxygen (1O
2
) [37, 49, 54]. Types I and II mechanisms 

occur concomitantly. However, Type II is the dominant process during PDT [30, 37].

Figure 4. Hematoporphyrin.
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In PDT, singlet oxygen is the principal reactive species. However, as well as others ROS, 

singlet oxygen has the capacity of damage limited due to its short lifetime (~100 ns in lipid 

regions of membranes and 250 ns in the cytoplasm) [30, 49, 55], and a diffusion range of 
approximately 45 nm in the cellular medium [28, 56–58]. The PDT has amino acid residues 

in proteins, unsaturated lipids, and DNA as the targets for oxidation leading to cell damage 

[59–61].

2.1.3. Porphyrin as photosensitizers

An ideal photosensitizer needs to have the following characteristics: (1) chemical purity; 

(2) high yield of singlet oxygen production; (3) high absorption coefficient in the red 
region of the visible spectrum (680–800 nm). Wavelengths longer than 900 nm should be 
avoided due to their insufficient energy to excite a dye photosensitizer to the triplet state; 
(4) efficient accumulation in tumor tissue associated with a rapid clearance in healthy 
organs; (5) low toxicity in the dark extensive to their metabolites; and (6) small aggrega-

tion [8, 30, 49, 62–64].

Porphyrins satisfy most of the desirable properties of photosensitizers, such as high efficiency 
of singlet oxygen generation, absorption of the higher wavelengths of the electromagnetic 

spectrum and a relatively higher affinity for malignant cells. Porphyrins have 18π electrons 
on the aromatic macrocycle that responds for the “Soret” band, with a strong absorption band 

around 400 nm, and Q bands in the 500–700 nm range that constitute the therapeutic window 
for this photosensitizer (Figure 6) [10, 65]. The absorption spectrum of the porphyrins is influ-

enced by ligands and the central metal [66–68].

Figure 5. Energy levels of Jablonski diagram for a typical type II photosensitizer and oxygen.
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In the early twentieth century, data of literature described experiments that demonstrated the 

potential role of Hp in the detection and treatment of cancers; however, one of the major draw-

backs was the large doses required to achieve consistent photosensitizer uptake in tumors, 

which led to inappropriate phototoxicity [45, 69–71]. In 1955, Schwartz et al. [72] demonstrated 

Hp to be impure and attributed selective fluorescence of malignant tissue after in vivo admin-

istration of Hp to a mixture of porphyrins with different properties. Subsequent studies led 
to the development of a derivative of hematoporphyrin (HpD) by the treatment of crude Hp 

with acetic and sulfuric acids, which enhanced tumor accumulation. The ability to accumulate 

selectively in neoplastic tissue using lower doses of HpD than Hp was reported by Lipson and 

coworkers [73–77]. In 1972, Diamond et al. demonstrated the destructive potential of HpD 
irradiated with white light on glioma in rats [78]. Six years later, Dougherty et al. reported 

the partial and complete response of many tumors, including malignant melanomas and 

carcinomas of the colon, breast, and prostate, treated by photodynamic therapy using HpD 

as a photosensitizer [79]. In the following, HpD compounds were purified, many of the less 
active monomers were removed, and the most efficient HpD derivatives were used to produce 
Photofrin (Figure 7).

For a complete study of different porphyrinic photosensitizers [80–109], it is recommended 

the reviews Josefsen et al. [2], Connor et al. [25], Pushpan et al. [28], and Ethirajan et al. [49]

Among a diversity of porphyrinic photosensitizers, meso-tetraphenylporphyrin (TPP) 

and TMPyP are readily synthesized and metallized, and several derivatives have 

been studied as a photosensitizer for PDT. The photochemical efficiency of anionic 
5,10,15,20-meso-tetra(4-sulfonatophenyl)porphyrin (H

2
TPPS

4
) (Figure 8A) was compared 

with meso-tetraphenyl porphyrins with a lower number of sulfonate groups [99, 100] and 

Figure 6. Porphyrin absorption spectrum. a = Soret band; b = Q band.
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with 5,10,15,20-tetrakis(4-sulfonatophenyl-21,23-dichalcogenaporphyrin [110] (Figure 8B). 

These studies showed that H
2
TPPS

4 
is less efficient in PDT than meso-tetraphenyl porphy-

rins with a lower number of sulfonate groups. Also, the replacement of nitrogen atoms 

of the macrocycle by chalcogens S and Se increased the photodynamic efficiency of the 
porphyrin in vitro and in vivo studies. Particularly in vivo, these chalcogen derivatives 

exhibited lower toxicity, morbidity and side effects post administration in animal models.

Regarding TMPyP, the focus of the present study, its efficiency as a photosensitizer is related 
to its topology. A study comparing photodamage in a mitochondrial membrane model 

modulated by the topology of TPPS4 and 5,10,15,20-tetrakis(N-methyl pyridinium L)por-

phyrin (TMPyP) [8] shows that in L-α-phosphatidylcholine/cardiolipin (PC/CL)liposomes 
(mitochondrial membrane model) both porphyrin can damage the membrane via the Type II 

mechanism. However, the injuries on the lipid membranes promoted by TMPyP were greater 

than the damages promoted by TPPS4 due to the affinity between TMPyP and this biological 

Figure 7. Photofrin.

Figure 8. TPP-based photosensitizers. (A) Tetrasulfonated meso-tetraphenyl porphyrin; (B) meso-tetrakis(4-sulfona 

tophenyl)-21,23-dichalcogenaporphyrin.
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structure [111, 112] that in turn influences the photosensitizer and the generation of long-
lived singlet oxygen. In cells, the positively charged TMPyP accumulates in the nucleus and 

mitochondria and could attack DNA, mitochondrial DNA and cardiolipin. The association 
of TMPyP with the inner mitochondrial membranes due to the affinity to cardiolipin favors 
the generation of singlet oxygen in situ with a high efficiency since its concentration is higher 
in the hydrophobic core of the lipid bilayers. Metalloporphyrins have also been studied as 

potential sensitizers for PDT. However, the results were less promising than those obtained 

with the free-base species [113, 114].

2.2. Porphyrins in chemical therapy

The synthetic analogs of porphyrins are widely used in therapy of diseases connected to 

oxidative stress processes. A quantitative structure-activity relationship (QSAR) studies 

have been performed to identify the optimal active molecule within a series of analog struc-

ture characteristics to diversify the biological action of the compound. The QSAR stud-

ies can correlate the physicochemical characteristics that affect the compound’s activity 
in biological systems. These studies assumed that the binding affinity of the compound to 
the target receptor could determinate the biological activity [115]. The biological effects of 
two meso-tetrakis porphyrins, TPPS4 (anionic) and TMPyP (cationic) demonstrated that 

the cationic porphyrin has affinity to the inner mitochondrial membrane [99]. Therefore, 

in mitochondria, Mn3+TMPyP has been used as an antioxidant against superoxide ions. 

The replacement of manganese by an iron ion in TMPyP makes this porphyrin a prooxi-

dant agent [116]. Au-porphyrins have been reported as excellent antiproliferative agents, 

showing cytotoxic effects on cancer cells. Regarding to the mimetic SOD activity of por-

phyrins, the correlation between the metal-centered reduction potential and the catalytic 

rate constant for the O
2

•− dismutation was found for Fe and Mn porphyrins. The struc-

ture-activity relationships have been established over the years by the rate-limiting step 

of metal reduction of this class of compounds [117]. Modulation of SOD activity has been 

achieved by decreasing the electron density of the groups at the meso and β-pyrrile posi-
tions, thus increasing the Mn3+/Mn2+ potential and facilitating its reduction [118–120]. 

Either the mimetic SOD activity can occur when the O
2
·− is directed to the catalytic site by 

the metal-centered positive charges via electrostatic facilitation [118, 119]. The manganese 

(III) 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl) porphyrin (Mn3+TE-2-PyP5+, E
½
 = +228 mV 

vs NHE, log 
kcat

 = 7.76) and manganese (III) 5,10,15,20-tetrakis(N-n-hexylpyridinium-2-yl)
porphyrin (MnTnHex-2-PyP5+, E

½
 = +314 mV vs NHE, log 

kcat
 = 7.48), alkylated manganese 

(III) 5,10,15,20-tetrakis(2-pyridyl)porphyrin (MnT-2-Pyp+), combined the thermodynamic 

and electrostatic optimizations and yielded compounds because they exhibit the E
½
 close to 

the reduction potential of the SOD enzyme and are excellent mimetics of the SOD activity 

(E
½ 

≅ +300 mV vs NHE, kcat ≅ 2 × 109 M−1 s−1) [19, 117–122]. Recently, it has been reported 

that the para isomer (E
½ 

= +60 mV vs NHE) of Mn3+TMPyP is less efficient as a SOD mimic 
relative than the ortho isomer (E

½ 
= +260 mV vs NHE) [12, 19, 123, 124].

In a cell redox balance, the association of Mn3+TMPyP to membrane lipid bilayers can be 

intrinsically related to the redox potential of the Mn2+/Mn3+ couple. In homogeneous systems, 

Batinić-Haberle et al. [19] had reported the effect of Mn3+TMPyP in a CL-containing inner 

Phthalocyanines and Some Current Applications10



mitochondrial membrane under pH 11 to 7.8 conditions. The potential values of Mn2+/Mn3+ 

redox process were found to be E
1/2 

=94 mV for ortho Mn3+TMPyP and E
1/2 

= 42 and 50 mV, 

respectively, for meta and para isomers. However, in a heterogeneous system, Araujo-Chaves 

et al. [20] have reported that the para isomer has the redox potential increased by the associa-

tion with the negatively charged interface of lipid bilayers. Interestingly, the association of 

para Mn3+TMPyP to PC/PS liposomes at physiological pH exhibited a redox potential of +110 
mV vs NHE. The shift of the Mn2+/Mn3+ E

1/2 
value to a more positive value favors the SOD and 

peroxidase activities. Theoretical calculations corroborated with these results.

3. Technological applications

Porphyrins free base are extensively applied in solar cells and sensor due to their photo-

physical characteristics. The intense absorption bands covering a significant range of the 
visible region of the electromagnetic spectrum and due to the relatively low cost of these 

compounds as compared with inorganic semiconductors make these molecules appropriate 

for application in solar cells. These characteristics experimentally observed are consistent 

with the results obtained by density functional theory (DFT). Therefore, DFT/time-depen-

dent (TD)DFT calculation is a useful strategy for the molecular design of porphyrins with 

the more appropriate characteristics for application is dye-sensitizer solar cells (DSSCs) 

[125–129]. As an example, Santhanamoorthi et al. [129] have presented the theoretical study 

of newly designed porphyrin dyes (1−5) for DSSC applications. In this study, the authors 
calculated seven different structures of porphyrins and found the best characteristics for use 
in solar cells for two calculated molecules that were named Dyes 2 and 4. Dyes 2 and 4 pre-

sented smaller HOMO-LUMO energy gaps and absorption in Q band significantly stronger. 
Equally, DFT/TDDFT can be used for conceiving porphyrin derivatives for a diversity of 

technological applications. Theoretical calculations allow the prediction of the best charac-

teristics for porphyrins to be used in technological applications and optimize the subsequent 

efforts for the synthesis.

3.1. Porphyrins in solar cells

Solar energy is an important source of energy (~3 × 1024 J year−1) that sustains the life on the 

Earth [130–132], and it can be an alternative to using fossil fuels due to be a clean, inexhaust-

ible and sustainable source of energy [133–139]. The utilization of solar energy as solar fuel 

or electricity is fundamental for the maintenance of development and live on Earth and has 

attracted the attention of various members of the scientific community.

O’Regan and Grätzel [140] have discussed dye-sensitized solar cells (DSSC), a viable and 

promising technology which have low-cost production and high power conversion efficiency 
[141–148]. To build an efficient system of the solar cell is necessary [149–152] three compo-

nents: (1) dye (light-absorber); (2) a hole transport agent; and (3) an electron-transport agent. 
Figure 9 shows the schematic representation of components and representative operational 

principles of DSSC.
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A typical DSSC device consists of a dye-sensitizer photoanode (TiO
2
, anode) and a plati-

num counter electrode (Pt-coated, cathode) sandwiching an electrolyte that contains a redox 

mediator (iodine-based or cobalt complexes, redox mediator). Upon light illumination, the 

photoexcited dye in the LUMO level of sensitizer injects an electron into a conduction band 

(CB) of TiO
2
, and then, the resultant oxidized dye is reduced by I− species (or Co2+ complex). 

The injected electrons move through an external circuit to the platinized counter elec-

trode. Finally, the I− species (or Co2+ complex) is regenerated to produce the I3
− species 

(or Co3+ complex) at the surface of the platinized counter electrode, and the circuit is 

completed [133]. The efficiency of conversion of light to electric power (η) increases when 
a light-absorbing the dye, and therefore, the choice of a suitable dye is essential to a high 

η [127, 144, 153–156].

Despite to the intense absorption band, typical porphyrins have poor light-harvesting ability 

in the Q bands, being necessary the introduction of a push-pull structure [157–160] and the 

elongation of porphyrin π-conjugated system into meso or β-positions to improve the light-
harvesting property of porphyrins [158].

Porphyrin also can be used as a dye in thin layers on the porous TiO
2
 film. However, this sys-

tem results in weak absorption of irradiated light, being essential the development of a way to 

strongly absorb the light in the dye layer. Gold layer can have been used in these systems due 

Figure 9. Schematic representation of components and representative operational principles of DSSC.
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to its surface plasmon resonance (SPR) that offers an enhanced optical field with increased 
short-circuit current, which can be corroborated by theoretical calculations [161].

3.2. Porphyrins in catalysis and sensing

The application of metalloporphyrins in bioinorganic chemistry has attracted interest in cata-

lytic reactions. Synthetic metalloporphyrins are mimetic models inspired two heme proteins: 

cytochrome P450 (biosynthesis and degradation of biomolecules) and peroxidases as lignin 

peroxidases (degrades the lignin-cell wall). In 1970, Groves et al. [162] designed the first-
generation of metalloporphyrin chlorine (5,10,15,10-tetraphenyl-porphyrinato)iron(III), or 

[Fe3+TPPCl], activated by iodosylbenzene (PhIO) revealed a catalytic activity in the epoxida-

tion of alkenes and the hydroxylation of alkanes. About 30 years ago, Traylor and Tsuchyia 
[163] presented the first synthesis of porphyrins with more stability and more efficient catalytic 
activity due to the introduction of electronegativity and/or bulky auxiliaries groups such as 

halogen, nitro or sulfonate at the meso and/or β-pyrrolic positions, to obtain the second and 
third generation of porphyrin catalysts. Lately, the metal complexes like meso-tetrakis(penta 

fluorophenyl)porphyrin H
2
(TPFPP) represent alternative possibilities to structural modifica-

tion of porphyrins by nucleophilic substitution of its fluorine atoms [164, 165]. The second 

generation of porphyrins, especially the manganese (II) and iron(III) porphyrins is the most 

important representatives as catalysts in the epoxidation of alkenes (cyclohexane, adamantane, 

or n-hexane). In this case, during the epoxidation reactions, Mn and Fe ions can accept active 

species from different substrates and oxygen atom donors that result in metal-oxo species for-

mation. In some conditions, the catalytic efficiency of iron(III) porphyrins can be limited due 
to the presence of some by-products resulted from the epoxidation of alkenes, for example to 

the allylic oxidation reactions. In anadamant oxidation reaction, the catalytic reaction of man-

ganese porphyrins (MnPor) derived from 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin had 

an increased product yield of 1-adamantanol than those obtained with [Fe3+TPPCl] catalyst 

[166]. The MnPors can exhibit different behaviors regarding the electron-withdrawing sub-

stituents in the macrocycle structure. Doro et al. [167] revealed that MnPors had lower catalysis 

efficient than the second generation of catalyst [Mn3+PFTDCPP]Cl due the high-valence active 

species caused by the electronegativity of the substituents (fluoro and chlorine) at the meso-aryl 

positions of the macrocycle in [Mn3+PFTDCPP]Cl. Consistently with this observation, Rayati 

et al. [168] made a comparative catalytic study of two partially brominated MnPs, namely 

[Mn3+Br
4
TPP]Cl and [Mn3+Br

4
T

4
(-OME)PP]Cl revealing that the electron-deficient Mnps were 

a better catalyst than electron-rich MnPs. Lately, new materials of metalloporphyrin catalysts 
supported on mesoporous silica have shown a high efficiency of stability and reaction condi-
tions. Poltowicz et al. [169] have studied the supported MnTMPyP catalysts on aluminated 

MCM-41 and SBA-15 mesoporous to investigate the oxidation of cyclooctane with molecular 

oxygen (as air) without the use of sacrificial co-reductant. Due to the existence diffusion limita-

tions within the pore inner space, the supported MnTMPyP had increased the catalysis activity 

in the SBA-15 mesoporous because it exhibits increased-size pore. The catalytic activity of por-

phyrins, including TMPyP, allows the use of these compounds in sensing. Porphyrins can form 

complexes with almost all metals, and consequently, a broad diversity of catalytic properties 
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can be achieved. The central metal in porphyrins determines the affinity for additional ligands. 
In general, the complex of Cu2+ and Ni2+ has low affinity for additional ligands. The Mg3+, Cd2+ 
and Zn2+ porphyrins form pentacoordinate complexes with square-pyramidal structure. The 
metalloporphyrins with (Fe2+, Co2+, Mn2+) in the central position produce distorted octahedral 
structure with two axial ligands. Metallo meso tetrakis porphyrins have been extensively used 
in the voltammetric determination of oxygen, NO, sugars, organohalides, DNA, alcohols, 
dopamine and others. Therefore, due to their switchable structures and a diversity of catalytic 
properties, porphyrins are widely used in analytical chemistry. A diversity of porphyrins can 
be applied biosensors and as stationary phases in HPLC.
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