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Abstract

The pathogenesis of psoriasis is complex, and cytokines play an important role in medi-
ating cell-cell interactions that result in abnormal structures and functions of many 
cell types in psoriasis, such as abnormal proliferation and differentiation of keratino-
cytes, abnormal proliferation of blood vessels, stimulation of immune cells, and driving 
abnormal immune reactions. In this chapter, we summarize the roles and functions of 
inflammatory cytokines that play a crucial role in psoriasis such as tumor necrosis factor 
(TNF)-α, interleukin (IL)-12/IL-23, and IL-17, as well as their inhibitors that are used to 
treat psoriasis.
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1. Introduction

Psoriasis is a common chronic inflammatory disease characterized by abnormal proliferation 
of keratinocytes, increased dermal vascularity, and multiple inflammatory cell infiltration. It 
is an immune-mediated skin disease influenced by genetic and epigenetic variations, which 
can be triggered by environmental factors. Psoriasis affects approximately 2% of people 
worldwide [1, 2].

Psoriasis typically presents as indurated scaly erythematous plaques and is easily diagnosed; 

however, variable clinical manifestations may be presented. As a result, psoriasis remains 

a clinical diagnosis defined by morphologic findings and appearances. The major clinical 
manifestations include characteristic cutaneous lesions, including whitish scaly erythema-

tous plaques and/or pustular or guttate lesions. There are several clinical forms of psoriasis, 
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including plaque psoriasis, psoriasis guttate, psoriasis arthropathica, pustular psoriasis, pso-

riasis erythroderma, and inverse psoriasis. The most common type of psoriasis is psoriasis 

vulgaris, which accounts for 85–90% of all cases [1, 3].

Histologically, psoriasis is characterized by hyperproliferation and abnormal differentiation 
of keratinocytes; dilated, hyperplastic blood vessels; and inflammatory infiltration of lympho-

cytes mainly into the dermis. The skin patches are typically erythematous and scaly, which, 

in addition to the physical appearance, may result in psychological stress and poor quality of 

life. Like other systemic inflammatory diseases, psoriasis affects far more organs than the skin 
and often presents with chronic inflammatory responses in joints, nails, and other organs.

Immunological dysfunction in psoriasis involves cross talk between immune cells and non-

immune cells with cytokines. Several important types of immune cells in psoriasis have 

been found to play a role in pathogenesis, including Th1, Th17, and regulatory T cells. 
Corresponding cytokines that may be involved include interferon (IFN)-γ, tumor necrosis 
factor (TNF)-α, interleukin (IL)-23, and IL-17. More recently, IL-9-secreting Th9 cells have 
been identified, and the inflammatory responses of keratinocytes, γδT cells, T regulatory cells, 
and other cell types in psoriasis have been explored. Emerging evidence indicates that new 

genetic variations and epigenetic modifications are associated with psoriatic disease [4, 5].

2. Immunological changes in psoriasis

Psoriasis is characterized by keratinocyte hyperproliferation and the abnormal infiltration 
of effector T cells, dendritic cells, neutrophils, and macrophages [6]. The effect of multiple 
cell types involved in psoriasis is mediated by a complex network of cytokines and their 

interactions.

3. Role of inflammatory cytokines in psoriasis

3.1. Interferons (IFN)

Type I interferons (IFNs), IFN-α and IFN-β, can suppress viral replication and stimulate 
immune reactions in response to viral infections; thus, they are potential mediators of antivi-

ral host defense. Activated plasmacytoid dendritic cells (pDCs) preferentially produce type I 

IFNs following interactions between intracellular TLR7 and TLR9 with viral RNA and DNA 
[7, 8]. Type I IFN-α and IFN-β are not expressed in the normal skin but are produced in 
virally infected skin where pDCs are present, as well as in skin wounds where mechanical 

injury stimulates infiltration of pDCs and in lesional psoriatic skin where pDC-derived type 
I IFNs are sustained [9]. This stimulates myeloid DC phenotypic maturation and activation, 

enabling T-cell priming. Several studies have demonstrated that these cytokines are most 

relevant in the early phase of psoriasis, as demonstrated by the IFN-α signature in primary 
psoriatic plaques. Albanesi et al. [10] found that pDC infiltration in psoriatic skin correlates 
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with the expression of markers typical of early stage of disease, whereas it is notably absent in 

chronic lesions. In this regard, blocking of type I IFN signaling may prevent the upregulation 

of T cells and development of non-lesional to lesional skin [9]. For downstream inflammatory 
pathways, type I IFNs modulate the production of IFN-γ and IL-17 and are involved in the 
differentiation and activation of T cells, particularly Th1 and Th17 cells [11] (Figure 1).

Th1 cells are a potential source of IFN-γ, a type II interferon. Previously, the Th1 pathway 
was proposed to be the predominant pathogenic path for psoriasis [12]. Th1 cells, producing 
IFN-γ, are increased in the psoriatic lesional skin and peripheral blood and can be decreased 
by effective therapy. However, the potential role of IFN-γ became less important after the 
identification of a new key cytokine, Th17-producing IL-17 [13]. Selective blockage of IL-23-
induced IL-17 leads to full recovery of psoriasis based on clinical, histological, and molecular 
markers [14].

IFN-γ acts on psoriatic keratinocytes and endothelial cells, leading to the activation and pro-

duction of antimicrobial peptides (e.g., LL-37 cathelicidin and β-defensins). IFN-γ induces 
the cross phosphorylation of Janus kinase 1 (JAK1) and JAK3, resulting in the downstream 
activation of STAT3. Subsequent activation of STAT transcription factors is important for cell 
growth and is efficient for regulating many genes expressed in psoriatic lesions [15]. IFN-γ 
promotes the release of cytokines (IL-23, IL-1) and chemokines (CXCL10, CXCL11), as well 
as the expression of adhesion molecules from DCs, T cells, keratinocytes, and endothelial 

cells [16], thus promoting the recruitment of inflammatory cells to lesional plaques. Studies 
suggest that IFN-γ can be used as a biomarker for determining psoriasis severity and therapy 
evaluation because of the positive correlation between serum IFN-γ levels and PASI scores 
[17].

However, direct blockage of IFN-γ with a neutralizing antibody in patients with psoriasis 
was shown to have little or no therapeutic effect, indicating that IFN-γ does not directly par-

ticipate the psoriasis phenotype [18]. It has been suggested that the IL-12/IFN-γ axis acts to 
suppress IL-17-modulated tissue injury [19, 20]. Consequently, continued expression of the 

IL-12/IFN-γ axis in disease while Th17 circuits are inhibited through IL-23 or IL-17 blockage 
may lead to better suppression and improvement of psoriasis [5].

3.2. TNF-α

TNF-α is involved in many inflammatory cutaneous diseases, including psoriasis. Several 
different cells can produce TNF-α in the context of skin inflammation, including keratino-

cytes, macrophages, T cells (Th1, Th17, and Th22 cells), and psoriatic DCs (particularly TIP-
DCs) [5, 21, 22]. Several studies showed that circulating levels of TNF-α (in addition to IFN-γ 
and IL-12) are elevated in psoriasis patients and correlate with severity of disease [23, 24], 

although different studies have shown varying results [25].

The key effects of TNF-α are regulating the antigen-presenting ability of DCs and stimulation 
of T-cell infiltration. It has a variety of effects because there are two types of TNF receptors 
(TNFR), TNFR1 and TNFR2. TNFR1 is expressed on nearly all cell types, whereas TNFR2 
is present predominantly on endothelial cells and hematopoietic cells. TNF-α acts in part 

Pathogenic Role of Cytokines and Effect of Their Inhibition in Psoriasis
http://dx.doi.org/10.5772/intechopen.68421

43



by increasing the elevated level of active, phosphorylated NF-κB, a crucial transcription fac-

tor involved in psoriatic pathogenesis [26]. TNF-α possesses proinflammatory properties; it 
activates the expression of C-reactive protein (which is a part of the acute phase response) 

and several cytokines such as IL-6 (which induces keratinocyte hyperproliferation and T-cell 
proliferation) and IL-23 (which is a potential mediator synthesized from DCs in psoriasis to 

Figure 1. The scheme of cytokine involvement in the pathogenesis of psoriasis and the mechanism of action of biologics.
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stimulate IL-17 production). TNF-α also induces several chemokines including CXCL8/IL-8 
(which recruits neutrophil infiltration) and CCL20 (which recruits myeloid DCs and Th17 
cells). Therefore, TNF-α is an important regulator of the IL-23/Th17 axis in psoriasis. The mul-
tifaceted role of TNF-α has been evaluated in clinical trials of TNF-α antagonists in psoriasis 
patients, revealing their clinical efficacy [27].

TNF-α-targeting agents were approved for rheumatoid arthritis treatment years before 
being approved for psoriasis therapy. Inhibition of TNF-α signaling has been broadly used 
in targeted biological treatment of psoriasis. The three biologics currently approved for 

the treatment of moderate to severe psoriasis are infliximab, adalimumab, and etanercept 
(Table 1). Effective treatment with TNF antagonists downregulates T-cell and DC numbers 
and decreases their cytokine levels [27, 28]. Infliximab, a chimeric monoclonal antibody, 
suppresses TNF-α biologic activity by neutralizing both soluble and membrane-bound 
forms of TNF-α [29]. Blocking this cytokine activity with infliximab has been demonstrated 
to rapidly normalize keratinocyte differentiation and reduce the number of epidermal thick-

ness, epidermal T-cell infiltration, and intracellular adhesion molecules of psoriatic plaques, 
such as e-selectin and VCAM [30–32]. Adalimumab is a fully humanized IgG1 monoclonal 
antibody [33] that binds with high specificity and affinity to human TNF-α. Adalimumab 
has been suggested as an effective treatment for moderate to severe chronic plaque psoriasis 
for up to 12 weeks of therapy [34]. Upon binding to this cytokine, adalimumab neutral-

izes biologic activities by blocking its interaction with the p55 and p75 cell-surface TNF 
receptors to inhibit TNF-involved biologic responses [35]. Etanercept, a fusion protein con-

sisting of the extracellular ligand-binding domain of TNF-α receptors and Fc portion of 
human immunoglobulin G, performs its immune function by neutralizing soluble TNF-α 
and TNF-β (or known as lymphotoxin-α) [36], which also reduces IL-23, and by suppressing 
Th17 downstream molecules, including IL-17, IL-22, CC chemokine ligand (CCL) 20, and 
β-defensin 4 [27]. Particularly, successful treatment was found to be associated with the sup-

pression of genes related to the differentiation and function of Th17 cells. Moreover, inhibi-
tion of the IL-23 and Th17 axis led to downregulation of IFN-γ-related genes associated with 
psoriasis resolution [27, 28]. Furthermore, etanercept can decrease lesional DC expression 

of co-stimulatory molecules in vitro, impairing DC-T-cell interactions and allogenic T-cell 

activation [27].

The clinical advantage of TNF-α suppression is related to blockage of the IL-23/Th17 axis. 
Furthermore, TNF-α and Th17 have been suggested to synergistically stimulate the produc-

tion of several keratinocyte proinflammatory mediators involved in psoriasis [37]. Therefore, 

blocking either or both TNF-α and IL-23-Th17 pathways may affect immunopathogenic mol-
ecules involved in psoriasis.

Anti-TNF-α therapies for psoriasis are very effective. However, the diverse roles of this cyto-

kine cause various drug-associated adverse effects. Patients treated with these biologic agents 
show an increased incidence of reactivating latent tuberculosis [38] and emerging serious 

infections (such as sepsis and opportunistic infections) [39]. Additionally, some studies have 

linked these anti-TNF drugs, particularly when used in combination with other drugs, to an 

increased risk of malignancies such as lymphoma [40–42].
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Drug name Drug target Agent type Administration Efficacy (% with 
PASI 75)

References Stage of 

development*

Infliximab 
(Remicade)

TNF-α Chimeric TNF-α 
monoclonal 

antibody

2-h i.v. infusion (5 mg/kg) at weeks 0, 2, and 6 and then 
every 8 weeks

75–88 at 10 
weeks

Gottlieb et al. 
[31]; Reich et al. 
[29]; Menter et al. 
[106]

Approved

Adalimumab 

(Humira)

TNF-α Humanized 

TNF-α monoclonal 
antibody

s.c. 80 mg at week 0 and then 40 mg every 2 weeks 53–80 at 12 
weeks

Gordon et al. [34]; 

Menter et al. [35]; 

Saurat et al. [107]

Approved

Etanercept 

(Enbrel)

TNF-α Soluble TNF-α 
receptor-igg fusion 

protein

s.c 50 mg every 2 weeks for 3 months and then 50 mg 
weekly

47–49 at 12 
weeks

Leonardi et al. 
[108]; Papp et al. 

[36]; Tyring et al. 

[109]

Approved

Ustekinumab 

(Stelara, 

CNTO1275)

p40 subunit of 

IL-12/IL-23
Humanized 

p40 monoclonal 

antibody

s.c. (1) 45 mg or (2) 90 mg weekly for 12 weeks (1) 66.7–67.1 or 
(2) 66.4–75.7 at 
12 weeks

Leonardi et al. 
[51]; Papp et al. 

[50]

Approved

Briakinumab 
(ABT-874)

p40 subunit of 

IL-12/IL-23
Humanized 

p40 monoclonal 

antibody

s.c. 200 mg at weeks 0 and 4 and then 100 mg at week 8 80.6–81.9 at 12 
weeks

Gordon et al. [52]; 

Gottlieb et al. [53]; 

Strober et al. [54]

Terminated

Tildrakizumab 

(MK-3222)
p19 subunit of 
IL-23

Humanized p19 
IgG1 monoclonal 
antibody

s.c (1) 5 mg or (2) 25 mg or (3) 100 or (4) 200 mg at weeks 
0 and 4 and then every 12 weeks thereafter

(1) 33.3 or (2) 
64.4 or (3) 66.3 
or (4) 74.4 at 16 
weeks

Papp et al. [58] Phase III 

studies 

ongoing

Guselkumab 

(CNTO1959)
p19 subunit of 
IL-23

Humanized p19 
IgG1 monoclonal 
antibody

s.c (1) 5 mg at weeks 0 and 4 and then every 12 weeks 
thereafter or (2) 15 mg every 8 weeks or (3) 50 at weeks 0 
and 4 and then every 12 weeks thereafter or (4) 100 mg at 
weeks 0 and 4 and then every 12 weeks there after (5) 200 
mg at weeks 0 and 4 and then every 12 weeks thereafter

(1) 44 or (2) 76 
or (3) 81 or (4) 
79 (5) 81 at 16 
weeks

Gordon et al. [59] Finished phase 

III trial

Secukinumab 

(Cosentyx, 

AIN457)

IL-17A Humanized IL-17A 
IgG1 monoclonal 
antibody

s.c. (1) 150 mg or (2) 300 mg at weeks 0, 1, 2, 3, and 4 and 
every 4 weeks

(1) 67–71.6 or 
(2) 77.1–81.6 at 
12 weeks

Langley et al. [68] Approved

*State of development in the United States, as of January 2017.

Table 1. Biologic drugs for moderate to severe psoriasis at 10–16 weeks.
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3.3. IL-12/IL-23

IL-12 and IL-23 are heterodimeric pleiotropic proteins that share a common p40 subunit 
(encoded by IL12B) and are thought to be essential for controlling the differentiation of Th1 
and Th17 cells, respectively. The second distinct subunit of IL-12 is the p35 subunit, and the 
second unique subunit of IL-23 is the p19 subunit (encoded by IL23A). Expression of the 
p19 and p40 subunits was found to be significantly increased in psoriatic skin lesions, while 
the p35 subunit was not [43, 44], suggesting that IL-23 is important in the pathogenesis of 
psoriasis. Further support from clinical trials revealed that the expression of IL-12/IL-23 was 
decreased following psoriasis treatment [45–47]. IL-23 and IL-12 are primarily secreted by 
DCs and macrophages and play a crucial role in psoriatic pathogenesis by regulating Th17 
and Th1 cells, including the activation and differentiation of effector T cells, stimulation of 
keratinocytes, and upregulation of TNF-α expression in psoriatic plaques [43, 48]. IL-23 binds 
to IL-23R, which is correlated with Jak2 and Tyk2. Binding of its receptor stimulates a signal-
ing circuit via STAT3 activation.

Anti-IL-12/IL-23 and anti-IL-23 drugs are highly effective treatments for psoriasis (Table 1) 

[49]. Recently, the only published results from clinical trials describe two agents of the p40 
subunit inhibitors, ustekinumab and briakinumab. Ustekinumab is a human IgG1 monoclo-

nal antibody that neutralizes the shared p40 subunit of IL-12 and IL-23. The agent prevents 
the interaction of IL-23 and IL-12 with their cell-surface receptors, blocking the Th17 and Th1 
signaling cascades. It has been demonstrated to be efficacious for moderate to severe psoriasis 
[50, 51]. Clinical trials showed that another fully human anti-IL-12/IL-23p40 monoclonal anti-
body, briakinumab, was also efficacious for the disease [52–54]. However, after phase III tri-

als, safety results concerning a possible increased risk of major adverse cardiovascular events 
(myocardial infarction, cerebrovascular accident, and cardiac death) with the use of bria-

kinumab let to cessation of its development and withdrawal of the application in 2011 [55, 56].

The structurally related p19 subunit of IL-23 has recently emerged as an attractive target for 
moderate to severe psoriasis treatment, although these drugs have not been FDA approved 

[57]. Several agents targeting the p19 subunit are under investigation in clinical trials. 
Tildrakizumab is a humanized IgG1κ that binds to the unique p19 subunit of IL-23 [58]. This 

agent was effective in treating moderate to severe plaque psoriasis in a phase IIb clinical trial. 
Phase III studies are currently underway. Similarly, phase III trials of another fully human 

IgG1λ monoclonal p19 antibody, guselkumab, are currently a success [59].

3.4. IL-17

IL-17, the main cytokine effector of Th17 cells, is an important cytokine in the pathogenesis of 
psoriasis. Neutrophils, mast cells, and natural killer (NK) cells also produce IL-17. It is thought 
to be a proximal regulator of psoriatic cutaneous inflammation and plays a key role in bridg-

ing the innate and adaptive immune responses. The IL-17 family comprises six subsets of 
homo- and heterodimeric cytokines: IL-17A, IL-17B, IL-17C, IL-D, IL-17E, and IL-17F. IL-17A 
and IL-17F are regarded as the most relevant subtypes in psoriasis. IL-17 is widely thought 
to be a direct regulator that stimulates keratinocyte proliferation and inhibits keratinocyte 

Pathogenic Role of Cytokines and Effect of Their Inhibition in Psoriasis
http://dx.doi.org/10.5772/intechopen.68421

47



differentiation via the antimicrobial protein REG3A, a mediator with antimicrobial functions 
involved in wound repair [60]. IL-17 mRNA and protein levels are upregulated in lesional 
psoriatic plaques and/or blood samples from patients [61, 62]. Lowes et al. [63] demonstrated 

that psoriatic T cells generate large amounts of IL-17 ex vivo, but T cells from the normal 
healthy skin did not produce IL-17 under the same conditions.

Keratinocytes are the main target of IL-17A in psoriasis. The IL-17 receptor (IL-17R; consist-
ing of two IL-17RA subunits complexed with one IL-17RC subunit) is expressed on the sur-

face of keratinocytes throughout the epidermis and on scattered dermal cells (DCs, dermal 
fibroblasts, and endothelial cells) in the psoriatic skin [64]. The interaction between IL-17A 
and its receptor leads to the production of antimicrobial peptides (AMPs); proinflammatory 
cytokines such as IL-1, IL-6, IL-23, and IL-19; chemokines; and mediators of tissue injury [62].

IL-17A stimulates the expression of AMPs, including β-defensin and S100A family members, 
and thus activates the innate immune system [64]. A previous study demonstrated that IL-17A 
activates the production of multiple chemokines, including CCL20, CXCL1, CXCL2, CXCL3, 
CXCL5, and CXCL8/IL-8 [37, 64–66]. In addition to stimulating the recruitment and activation 

of neutrophils, IL-8 acts as a chemotactic factor for NK cells and T cells. CCL20 from human 
keratinocytes may direct the recruitment of CCR6-positive cells to the skin. Most Th17 cells 
express CCR6. Therefore, keratinocytes activate Th17-cell recruitment and increase the pro-

duction of IL-17, promoting a positive feedback loop that maintains the inflammatory disease 
response [65, 67]. Moreover, CCL20 combined with ICAM-1 can facilitate the recruitment of 
DCs and T cells in psoriasis. IL-17A and TNF-α act synergistically on psoriatic keratinocytes, 
causing further production of TNF-α and other proinflammatory mediators.

Several drugs are available or under development that target IL-17 and its pathway. The 
potential role of the IL-17 pathway has been revealed in psoriatic clinical trials, which showed 
dramatic improvement. Secukinumab and ixekizumab are humanized IgG1κ and IgG4 mono-

clonal antibodies that bind and neutralize the IL-17A cytokine. [68, 69]. Secukinumab was 

approved by the FDA for moderate-to-severe treatment psoriasis in January 2015. In phase III 
studies, double-blind, 52-week trials, this agent achieved a PASI75 in 67.0–71.6% of patients 
at a 150-mg dose and 77.1–81.6% of patients with a 300-mg dose (Table 1) [68]. The common 

adverse effects associated with this agent are headache, nasopharyngitis, and upper respira-

tory tract infections, which are similar to those of other biologics. Ixekizumab, a monoclonal 

antibody specific for IL-17A, has been shown to be effective for treating psoriasis [70]. This 

biologic inhibits the expression of cytokines and chemokines involved in the IL-17 pathway 
[71]. Ixekizumab complete responses were observed in 30.8–35.0% of psoriasis patients and 
PASI90 in 59.7–65.3% after 12 weeks [69]. These results agree with recent findings that IL-17-
producing cells are clearly present in the inflammatory infiltrate. Similar to prior biologic 
agents, the most commonly reported side effects were nasopharyngitis and injection site 
reactions. No serious adverse effects were observed [72]. Brodalumab, a unique fully human 
monoclonal antibody targeting the IL-17 receptor A (IL-17RA), is the newest biologic that has 
been FDA approved for psoriasis treatment. It binds with high affinity to IL-17RA and blocks 
the biological activity of IL-17A, IL-17F, and IL-25 (IL-17E), suppressing the downstream effect 
of IL-17 [73, 74]. In phase III trials to treat psoriasis, brodalumab achieved PASI75 in 83–86% 
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of patients with a 210-mg dose and 60–69% of patients with a 140-mg dose and PASI 90 in 
69–70% after 12 weeks [75, 76]. The most common side effects were nasopharyngitis, upper 
respiratory infection, and injection site erythema [74]. Based on published results, drugs tar-

geting IL-17 appear to have highly positive effects in moderate-to-severe psoriasis patients 
with no serious major side effects. Nevertheless, longer-term studies are needed.

3.5. IL-22

IL-22 belongs to the IL-10 family of cytokines, and its receptor (IL-22R) is a complex of two 
chains (IL-10R and IL-22RA1), which are exclusively expressed on epithelial cells such as kera-

tinocytes [77]. Elevated levels of IL-22 mRNA in the lesional skin of psoriasis and serum IL-22 
have been observed [78–80]. Its expression is also decreased after treatment with anti-psoriatic 

agents [80]. IL-22, produced from Th22 and Th17 cells, induces keratinocyte hyperprolifera-

tion, differentiation, migration, and dermal infiltration through STAT3 activation in vivo and 
in vitro [81]. It also mediates proinflammatory cytokine and AMP production [78, 82].

IL-22 in the human skin can stimulate keratinocytes in various ways. Combined with IL-17, 
IL-22 can induce AMP production by keratinocytes [83] and parakeratosis and acanthosis by 

increasing keratinocyte proliferation and inhibit keratinocyte differentiation during part of 
the tissue-remodeling phase of wound repair, which are observed in psoriasis [84].

Zheng et al. [81] reported that IL-23-induced epidermal hyperplasia in a murine model of 
psoriasis was dependent on IL-22, and blocking IL-22 in vivo or genetic deletion resulted in 
downregulation of IL-23-mediated epidermal hyperplasia. Therefore, the important associa-

tion between the IL-23/Th17 axis and IL-22/Th22 is supported by these studies. However, tri-
als of a human monoclonal antibody targeted against IL-22, fezakinumab, were discontinued 
because initial processes revealed that the efficacy endpoint could not be achieved [85]. The 

negative data from these studies suggest that this cytokine is not as critical to psoriasis immu-

nopathogenesis as had initially been considered in earlier studies.

3.6. IL-9

IL-9 is a member of the IL-2 cytokine family. Singh et al. demonstrated markedly elevated 
expression of IL-9 in the lesional skin of psoriasis patients compared to control subjects. They 
found increased IL-9R and IL-9 expression in the psoriatic skin and observed a Th17-related 
inflammatory response after intradermal IL-9 injection in a mouse model [86]. IL-9 is a pro-

inflammatory cytokine that stimulates the production of IL-17, IL-13, IFN-γ, and TNF-α in 
psoriasis. Both Th9 and Th17 cells are sources of IL-9.

3.7. IL-33

Interleukin-33 is a recently discovered mediator of the IL-1 family [87]. IL-33 mRNA is con-

stitutively expressed in several tissues but is predominantly distributed in epithelial cells, 

keratinocytes, fibroblasts, DCs, smooth muscle cells, and macrophages. Interestingly, IL-33 
specifically localizes to the nucleus of endothelial cells along the vessels and epithelial cells of 
tissue exposed to the environment [88–90].
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The IL-33 receptor is selectively expressed on various cell types, including T-helper-cell (Th) 
type 2, mast cells, eosinophils, basophils, dendritic cells, group 2 innate lymphoid cells, kera-

tinocytes, and invariant NKT cells [87, 91–94].

IL-33 can act both as a released cytokine, activating ST2L, and as a nuclear-binding factor, 
regulating gene transcription [95, 96]. Balato et al. [97] showed that IL-33 is present in both 
the nucleus and cytoplasm of psoriatic keratinocytes. The structure of IL-33 has been deter-

mined, and it exhibits the ability to act both as an extracellular cytokine stimulating the ST2L 
receptor and an intracellular factor controlling gene transcription. However, the role of IL-33 
in psoriasis remains unclear.

Many recent studies have shown that IL-33 expression is increased in the lesional skin of 
psoriasis compared to the normal skin [91, 97, 98]. Hueber et al. [99] demonstrated that IL-33 
and ST2 expression are upregulated in human lesional psoriatic plaques compared to the 
perilesional and normal healthy skin. Moreover, IL-33 is strongly expressed in the nuclei of 
keratinocytes in psoriasis, which is considered to be a Th1- and Th17-mediated disease, com-

pared with atopic dermatitis which is a Th2-related disease and lichen planus which is related 
to Th1 cells [96]. We previously demonstrated that IL-17A induces IL-33 expression in normal 
human epidermal keratinocytes, suggesting that IL-17 in the lesional skin of psoriasis can 
induce IL-33 expression in the epidermis [91].

Relatively few studies have demonstrated the pathogenic association between IL-33 and psoria-

sis. Suttle et al. [100] reported decreased IL-33 immunostaining in biopsies in Koebner-positive 
psoriasis patients, which can reflect the release of IL-33 after skin injury by tape stripping. 
Interestingly, the proinflammatory cytokine TNF-α dose- and time-dependently activated 
IL-33 mRNA expression in normal skin cultures ex vivo. Similarly, TNF-α may stimulate the 
gene expression of IL-33 in normal human epidermal sheets and psoriatic skin [101]. Moreover, 
the levels of IL-33 were significantly reduced after TNF-α inhibitor therapy [101, 102].

Furthermore, Mitsui et al. [103] recently found that serum IL-33 levels are significantly ele-

vated in patients with psoriasis and are particularly correlated with serum TNF-α levels; this 
elevation was decreased after anti-TNF-α treatment. They suggested that IL-33 is a general 
indicator of inflammation in psoriasis. In contrast, Tamagawa-Mineoka et al. [104], Balato 
et al. [97], and Talabot-Ayer et al. [105] did not detect serum IL-33 expression in psoriasis 
patients.
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