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Abstract

Bisphenol A (BPA) has been widely used in many industrial and consumer products 
and is known as an endocrine‐disrupting chemical. To find the underlying genetic basis 
and molecular mechanisms of BPA‐associated neurodevelopmental disorders (NDs), 
this chapter addressed the toxicogenomics of BPA with publicly accessed Comparative 
Toxicogenomics Database. The present results indicated that the key cellular components 
(CC) of the nervous system such as neuron, synapse, dendrite and axon are common in 
CC annotation; the commonly found molecular functions are neurotransmitter receptor 
or transducer binding or activity; and the main common biological processes include syn‐
aptic signalling, cognition, learning or memory, behaviour, the development of nervous 
system and brain. Neuroactive ligand‐receptor interaction, dopaminergic, glutamatergic 
and serotonergic synapses, monoamine transport and synaptic vesicle pathway were the 
common pathways. Simultaneously, the BPA‐disease may share the common pathways 
with drug addictions such as cocaine addiction. Unique pathways might also contribute 
to the BPA action in different NDs such as one carbon metabolism and detoxification of 
oxidative stress in Down syndrome. Although GO and pathway results indicate some 
common annotations, the predicted PPI molecular function clusters are quite different 
for each ND. In addition, some of the NDs share the same transcription factors (TFs) and 
miRNAs, which indicate these disorders have the similar expression profiles. Finally, 
chemicals having comparable interacting genes to BPA should be considered.
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1. Introduction

The critical windows of vulnerability during human brain development are mainly from the 

third trimester to at least 2–3 years after birth [1]. Any developmental neurotoxicant exposure 

during this critical window has the possibility to cause various clinical neurodevelopmental 

disorders (NDs) in humans (e.g. autism, anxiety disorder, schizophrenia, dyslexia and epi‐

lepsy). Bisphenol A (BPA), as a proved endocrine‐disrupting chemical, has been widely used as 

the plasticizer in many consumer products made of polycarbonate plastic such as baby bottles, 
tableware, food containers and water bottles. BPA can also be found in breast milk [2, 3]. Infants 

and children were found to have the highest estimated daily intake of BPA per body weight 

[4, 5]. A review by Healy et al. [6] affirmed that the potential for non‐dietary sources make a 
substantial contribution to the total daily BPA exposure in young children and recommended 

risk‐assessment models implement new frameworks, which specifically address exposure and 
hazard in early childhood. Pinson et al. [7] reviewed the human and rodent data on the neu‐

rodevelopmental alterations of BPA, and found that mostly reported effects were social and 
sexual behaviour and cognition that were unique to humans. The related mechanisms reported 

included the disruption of thyroid function, alterations of neurotransmitters levels, calcium 
signalling and neurotoxicity. Given the extensive BPA exposure during the critical windows of 

the brain development and the possible neurodevelopmental alterations, here we explore the 

possible genetic basis and the molecular mechanisms of BPA‐associated NDs.

2. BPA‐gene interactions and neurodevelopmental disorders

Comparative toxicogenomics database (CTD, http://ctdbase.org) is a robust, publicly avail‐
able database that aims to advance understanding about how environmental exposures affect 
human health with manually curated information about chemical‐gene/protein interactions, 
chemical‐disease and gene‐disease relationships, with functional and pathway data to aid in 

the development of hypotheses about the mechanisms underlying environmentally influenced 
diseases [8]. In this work, all BPA‐gene/protein interactions were downloaded from CTD, in 
which BPA‐gene/protein interactions associated to the following 17 NDs were selected as our 
targeted NDs for further analysis according to MESH ID used in CTD—anxiety disorders 

(AD), attention deficit and disruptive behaviour disorders (ADDBD), autism spectrum dis‐

order (ASD), bipolar disorder (BD), developmental disabilities (DD), Down syndrome (DS), 

foetal alcohol spectrum disorders (FASD), intellectual disability (ID), language development 

disorders (LDD), learning disorders (LD), motor skills disorders (MSD), obsessive‐compul‐

sive disorder (OCD), pervasive child development disorders (PCDD), schizophrenia (Sch), 

speech disorders (SD), stereotypic movement disorder (SMD) and Tourette syndrome (TS). 
Thus, BPA‐gene/protein interactions associated to these 17 NDs were collected for further 
analysis.

According to the reference score on relationships between chemicals‐genes, genes‐diseases 

and chemicals‐diseases [9], we found that ID was most likely having the atypical connectivity 

with BPA (Table 1). Inference BPA interacted genes were up to 119. Inference score of more 
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Disease  

name

Inference BPA‐interacted genes (n) Inference  

score

Reference  

count

ID ACBD6, ADK, ADRA2B, AHI1, ALDH5A1, AP4E1, AP4M1, APC, ARL14EP, 

ASCC3, ASCL1, BBS7, BDNF, CA8, CACNA1G, CALCA, CAPN10, 

CASP2, CCBE1, CCNA2, CIC, CNDP1, CNKSR1, COL18A1, DEAF1, 

DISC1, DNMT3A, DOCK8, DYNC1H1, EEF1B2, ELP2, ENTPD1, ERLIN2, 

FAM126A, FASN, FGFR2, FMR1, FOLR1, FRY, GAMT, GNAS, GON4L, 

GRIN2B, HDAC4, HEXA, HIST3H3, INPP4A, INPP5E, KCNA2, KDM5A, 

KDM5C, KDM6B, KIF1BP, KIF7, L2HGDH, LAMA1, LARP7, LETM1, 

LINS1, MAN1B1, MCC, MECP2, MED13L, MEF2C, METTL23, MFSD2A, 

NAGLU, NDST1, NF1, NRXN1, NSD1, PARP1, PAX6, PDHX, PECR, PEX6, 

PMM2, POLR3B, PRKCG, PRKRA, PTCHD1, PTEN, RAB39B, RABL6, 

RALGDS, RGS7, SC5D, SCAPER, SCN8A, SETBP1, SHANK2, SHANK3, 

SIN3A, SLC2A1, SLC31A1, SLC4A10, SNX14, SRD5A3, SRGAP3, STRA6, 

SURF1, SYNGAP1, TAF2, TH, TMCO1, TMEM135, TRMT1, TSEN2, 

TSEN34, TSEN54, TTI2, UBR7, UROC1, VIP, VRK1, WDR45B, WDR62, 

ZBTB40, ZCCHC8 (119)

86.31 51

LD ACHE, APOD, APP, BCL2, CAMKMT, GRIA1, HMOX1, HTR1A, HTR7, 

IL1B, IL1RN, KL, MAPT, MECP2, MICU1, MT1, NF1, PARK2, PDE1B, 

PNOC, POR, PSEN1, RNF135, SIGMAR1, SLC17A6, SLC17A7, SYP, TH, 

TRH, VEGFA (30)

30.96 39

Sch ACOT6, ADAMTS3, ADCY7, ADGRF4, AHI1, AKT1, ALS2CL, APOE, 

AVP, BDNF, BTG1, CAMK2B, CASP4, CCDC137, CCL2, CELF2, CFAP65, 

CHD4, CHI3L1, CLINT1, CNR1, COL3A1, COMT, CP, CPLX1, CPLX2, 

DAO, DGCR2, DISC1, DIXDC1, DLG1, DPYD, DRD1, DRD2, DRD3, DRD4, 

DTNBP1, EDEM2, EIF5, ESAM, FAM3D, FASTKD5, FGFR1, GABRA6, 

GABRB2, GABRD, GAD1, GAD2, GIF, GPR153, GRIK2, GRIK5, GRIN2B, 

GRIN2D, GRM2, GRM3, GSK3A, GSK3B, HCAR2, HLA‐DRB1, HNRNPA3, 

HP, HRH1, HTR2A, HTR6, HTR7, IL1B, IL2RA, IL6, IL6R, INPP5A, KDM2B, 

KDR, KLF12, KPNA1, LAMA1, LAMA2, LGR4, LRP1, MAGI2, MAOB, 

MET, MTHFR, MTOR, ND4, NDUFV2, NKAPL, NOS1, NPRL2, NR3C1, 

NRG1, NRG3, NRGN, NRIP1, NRXN1, NTF3, NTNG1, NTNG2, NTRK1, 

NTSR1, OXTR, PAK2, PCM1, PDE4B, PHB, PIK3CB, PITPNM1, PLCB1, 

PLCL2, PLXNA2, PML, PRODH, PVALB, RB1CC1, RELN, RGS12, RGS4, 

RGS9, RTN4, RTN4R, SAP30BP, SBNO1, SDF4, SELENBP1, SLC26A7, 

SLC6A1, SLC6A3, SLC6A4, SP4, SPATA5, SRSF1, SYN2, SYP, TAAR6, TAC1, 

TEKT5, THBS1, TNF, TP53, TPH1, TRAK1, TRRAP, TSPAN18, UGT1A3, 

VIPR2, VPS35, VPS39, WDR11, ZKSCAN4, ZNF565 (150)

30.91 86

ASD AVPR1A, BDNF, C3ORF58, CEP41, CHD8, CIRBP, CXORF36, DHCR24, 

DIO2, DIO3, DLG4, DLX1, DNMT3A, DNMT3B, DPP6, DPYD, EN2, FOXP1, 

GABRB3, GRIN2B, GTF2I, HEY1, HFE, IL1RAPL1, ITGB3, JARID2, LAMC3, 

LRRN3, LRRTM3, MEF2C, MTNR1A, NRXN1, NRXN2, NTSR1, OXTR, 

PCDH9, PTCHD1, RELN, RYR2, SCN1A, SFSWAP, SHANK3, SIN3A, 

SNTG2, SOX5, SOX9, TBL1X, TET1, TET3, TSHZ3, UPP2 (51)

24.05 29

AD ADORA2A, APP, CARTPT, CHRNA5, CHRNB2, CNR1, CRH, CRHR2, 

CRP, DIXDC1, DNMT1, DRD2, EOMES, FOS, GABRA2, GLO1, GNB1, 

GRM8, HTR7, MAGI2, MDK, MECP2, MIF, NPS, NPY, NPY1R, OXT, PAM, 

SERPINA1, SHANK1, SLC6A3, SLC6A4, TNF, UCN (34)

21.95 52

SMD CRH, MEF2C, TRH (3) 13.04 3

BD AKR1C4, ANK3, BDNF, BHLHE40, CACNA1C, COMT, CPLX1, CPLX2, 

DIXDC1, DRD1, DRD5, GRIK2, GRK3, GSK3A, GSK3B, HTR2A, INS, 

MTHFR, NDUFV2, NR3C1, NTNG1, NTNG2, NTRK1, NTRK2, PDE4B, 

POMC, PVALB, RELN, S100B, SERPINA1, SLC5A3, SLC6A4, SNAP25, SP4, 

TAC1, TACR1, TENM4, TRPC3, TSHB (39)

12.32 31
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than 20 was found for LD, Sch, ASD and AD, whereas it was less than 10 for DS, TS, MSD, 

OCD, ADDBD, LDD, DD, FASD and PCDD. The results showed that it was only two inference 

BPA interacted genes for TS, ADDBD and FASD, and in total, 403 BPA bi‐interacted genes 

were curated. A total of 563 BPA‐mRNA bi‐interactions were found, in which 240 expres‐

sions were down‐regulated, 169 up‐regulated and 153 were altered (not mentioned up or 

down) regulation. Simultaneously, eighty‐one BPA‐protein bi‐interactions, two protein‐BPA 

bi‐interactions and eight BPA‐DNA methylation interactions were reported.

3. Microarray data and differently expressed gene screening

To explore the possible clinical application of the genes curated, we used Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (http: //www. ebi.ac.uk /
arrayexpress) to find the microarray data for peripheral blood, and special tissue gene expres‐

sion profiling in NDs. The differently expressed genes (DEGs) in each ND samples were iden‐

tified. If more than one microarray dataset is found, all the datasets are integrated to perform 
the meta‐analysis for the DEGs. Based on the inference scores and the counts of inference 

BPA‐interacted genes, we only selected ID, LD, Sch, ASD, AD and BD as our target diseases 

for the possible microarray data.

Disease  

name

Inference BPA‐interacted genes (n) Inference  

score

Reference  

count

SD GRIN2A, MFSD2A, TTPA (3) 12.24 3

DS CALCA, CXCL8, GATA1, GSTM2, MTHFR, MTR, NTF3, PRDX2, PRDX6, 

RCAN1, S100B, SLC19A1, SOD1, VIP (14)

9.35 10

TS DRD3, SLITRK1 (2) 8.31 2

MSD AKAP5, CAMKMT, FGFR2, OGG1, PTEN, SHANK1 (6) 7.05 6

OCD BDNF, CCKBR, HOXB8, HTR1D, HTR2A, SLC6A4, SLITRK5 (7) 5.95 7

ADDBD DRD4, S100B (2) 4.03 2

LDD BCL11A, DPYD, ERF, FOXP2, GRIN2A, KCNA2, NRXN1, PTEN, SETBP1, 

SHANK3 (10)

3.52 10

DD ARFGAP1, CAMKMT, CBL, CHRNA4, CNTN4, DOCK8, DRD2, KCNQ2, 

KCNT1, LRP2, MECP2, NANS, NTRK2, PMP22, PNKP, PTEN, SHANK3, 

SLC2A1, SLC33A1, SLC4A4, SLC6A8, STAMBP (22)

2.99 24

FASD CAT, NOS1 (2) 2.49 2

PCDD DRD4, MECP2, MKL2 (3) 2.47 3

ID: intellectual disability; LD: learning disorders; Sch: schizophrenia; ASD: autism spectrum disorder; AD: anxiety 
disorders; SMD: stereotypic movement disorder; BD: bipolar disorder; SD: speech disorders; DS: Down syndrome; TS: 
Tourette syndrome; MSD: motor skills disorders; OCD: obsessive‐compulsive disorder; ADDBD: attention deficit and 
disruptive behavior disorders; LDD: language development disorders; DD: developmental disabilities; FASD: foetal 
alcohol spectrum disorders; PCDD: pervasive child development disorders.

Table 1. Selected neurodevelopmental diseases and related BPA‐interacted genes.
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We only found some common genes for BD between CTD and the microarray data. It was in 

the GSE46449 [10] and only four common genes (BDNF, CACNA1C, CPLX2, HTR2A, SP4) 

were found. Therefore, the existing microarray data is not enough for further annotation.

4. Gene function enrichment analysis

The curated genes in CTD for each ND were uploaded to DAVID 6.8 Beta (https://david‐d.ncif‐
crf.gov/tools.jsp). Homo sapiens were used as the background population. The gene ontology 
(GO) and pathway were analysed [11, 12]. Simultaneously, WikiPathways and Reactome of 

EnrichR [13, 14] were used for duplicated pathway prediction. STRING (http://string‐db.org) 
is a database of known and predicted protein‐protein interactions (PPI), and can be used to 

predict the functional associations between proteins [15]. Based on the information provided 

by the STRING database, all genes related to each neurodevelopmental disorder are used 

to construct a PPI network. The functional molecules in the PPI network are subsequently 

identified by the molecular complex detection (MCODE) plugin [16] of Cytoscape [17]. The 

MCODE is a well‐known automated method to find highly interconnected subgraphs as 
molecular complexes or clusters in a PPI network. The proteins in each module will be trans‐

ferred in Genemania app [18] to predict the possible target proteins or biomarkers.

4.1. Intellectual disability

Of the 119 interacted genes, 117 were bi‐interacted. GO analysis with these 117 genes indi‐

cated that BPA bi‐interacted genes are involved in the biological processes (BP) such as cogni‐

tion, the development of nervous system, head, brain, forebrain, pallium, telencephalon and 

embryonic organ (Table 2). Other BPs included learning or memory, behaviour (social, single‐ 

or multi‐organism), intraspecies interaction between organisms, embryonic organ morpho‐

genesis, regulation of synapse structure or activity and neuron apoptotic process. Of the BPs, 

nervous system development was also reported in a recent study on systematic phenomics 

analysis for the genes muted in ID by Kochinke et al. [19]. Some genes possibly involved in the 

cellular component (CC) of somatodendritic compartment and the molecular functions (MF) 

of chromatic binding. Pathway analysis only found MECP2 and associated Rett Syndrome in 
WikiPathways, in which six BPA bi‐interacted genes were involved. This might suggest that 

ID and Rett syndrome possess the same pathway.

PPI analysis found four molecular modules (Figure 1). TSEN2, TSEN34, TSEN54 and VRK1 

were involved in module 1. TSEN2, TSEN34 and TSEN54 are tRNA splicing endonuclease sub‐

units and can interact through physical interaction or co‐expression. VRK1 might interact with 

TSEN2, TSEN34 and TSEN54 through the same pathway, physical interaction or co‐expression. 

CLP1 and TSEN15 can physically interact with TSEN2, TSEN34 and TSEN54 [20–22], therefore, 

BPA has the potential to interact with these two genes. BPA might also interact with WARS and 

WARS2 because of their predicted interaction with TSEN34 [23, 24]. WARS and WARS2 are 

involved in the tryptophan metabolic pathway, which have been reported to appear to provide 

a unifying biochemical basis for ASDs [25]. Tryptophan is a precursor of important compounds, 
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Term Count P value FDR Genes

BP

Cognition 16 2.49E−10 4.53E−07 DEAF1, VIP, MEF2C, PTCHD1, TH, NF1, MECP2, 

PRKCG, NRXN1, PTEN, SHANK2, SHANK3, 

GRIN2B, GNAS, STRA6, SYNGAP1

Learning or 

memory

14 4.79E−09 8.72E−06 DEAF1, VIP, MEF2C, TH, NF1, MECP2, PRKCG, 

NRXN1, PTEN, SHANK2, SHANK3, GRIN2B, 

STRA6, SYNGAP1

Nervous system 

development

39 1.56E−08 2.85E−05 FGFR2, MEF2C, DEAF1, NAGLU, BBS7, NDST1, 

PTCHD1, KCNA2, TH, PAX6, MFSD2A, PTEN, 

BDNF, FOLR1, INPP5E, ADRA2B, CASP2, KIF1BP, 

DISC1, APC, DNMT3A, ALDH5A1, NF1, FMR1, 

MECP2, AHI1, PRKCG, NRXN1, SHANK2, 

SHANK3, FRY, ASCL1, HDAC4, SLC4A10, WDR62, 

SCN8A, SYNGAP1, KDM6B, FAM126A

Head development 22 2.28E−08 4.14E−05 MEF2C, FGFR2, NAGLU, BBS7, NDST1, PTCHD1, 

NF1, TH, PAX6, MECP2, AHI1, MFSD2A, NRXN1, 

PTEN, SHANK3, ASCL1, SLC4A10, WDR62, STRA6, 

CASP2, DISC1, KDM6B

Brain development 21 4.94E−08 0.0001 MEF2C, FGFR2, NAGLU, BBS7, NDST1, PTCHD1, 

NF1, TH, PAX6, MECP2, AHI1, MFSD2A, NRXN1, 

PTEN, SHANK3, ASCL1, SLC4A10, WDR62, CASP2, 

DISC1, KDM6B

Single‐organism 

behaviour

16 9.96E−08 0.0002 DEAF1, VIP, MEF2C, KCNA2, TH, NF1, MECP2, 

PRKCG, NRXN1, PTEN, SHANK2, SHANK3, 

SLC4A10, GRIN2B, STRA6, SYNGAP1

Forebrain 

development

15 2.10E−07 0.0004 FGFR2, MEF2C, NDST1, PTCHD1, NF1, TH, PAX6, 

MFSD2A, PTEN, SHANK3, ASCL1, SLC4A10, 

WDR62, DISC1, KDM6B

Behaviour 18 2.56E−07 0.0005 DEAF1, VIP, MEF2C, NAGLU, PTCHD1, KCNA2, 

TH, NF1, MECP2, PRKCG, NRXN1, PTEN, 

SHANK2, SHANK3, SLC4A10, GRIN2B, STRA6, 

SYNGAP1

Central 

nervous system 

development

22 9.19E−07 0.0017 MEF2C, FGFR2, NAGLU, BBS7, NDST1, PTCHD1, 

ALDH5A1, NF1, TH, PAX6, MECP2, AHI1, 

MFSD2A, NRXN1, PTEN, SHANK3, ASCL1, 

SLC4A10, WDR62, CASP2, DISC1, KDM6B

Social behaviour 7 9.59E−07 0.0017 PTCHD1, TH, MECP2, NRXN1, PTEN, SHANK2, 

SHANK3

Intraspecies 

interaction between 

organisms

7 9.59E−07 0.0017 PTCHD1, TH, MECP2, NRXN1, PTEN, SHANK2, 

SHANK3

Pallium 

development

10 1.74E−06 0.0032 MEF2C, ASCL1, WDR62, NF1, TH, PAX6, MFSD2A, 

PTEN, KDM6B, DISC1

Embryonic organ 

morphogenesis

12 3.27E−06 0.0060 FGFR2, MEF2C, NAGLU, NDST1, BBS7, FOLR1, 

PRKRA, TH, PAX6, AHI1, STRA6, GNAS

Learning 9 4.59E−06 0.0084 DEAF1, NF1, TH, MECP2, STRA6, NRXN1, 

SYNGAP1, SHANK2, SHANK3
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such as serotonin, quinolinic acid and kynurenic acid, which are involved in neurodevelopment 

and synaptogenesis. Decreased tryptophan metabolism may alter brain development, neuro‐

immune activity and mitochondrial function. In module 2, ASCL1, HDAC4, BDNF, KDM6B, 

TH, HIST3H3, PAX6 and SIN3A interacted through co‐localization, co‐expression and physical 

interactions. TH and KDM6B linked other six node proteins through CALCOCO1 [26]. In mod‐

ule 3, LARP7, GAMT and TRMT1 were interacted by physical interactions, co‐expression and 

predicted, pathway or genetic interaction. In this module, CDK9 plays an import role to link the 

three genes mainly by physical interactions [27–29], although there was no direct evidence for 

BPA‐CDK9 interaction. CDK9 might associate with ID by JUN binding [30] or by AFF family 

of RNA‐binding proteins [31]. In module 4, PARP1, FASN and PTEN interact through physical 

interaction, co‐expression, predicted, pathway, genetic interaction and shared protein domains. 

Recent findings have proven that the mTOR pathway is altered in cells with defective DNA 
repair. PARP1 is related to the accumulation of irreparable DNA damage [32], while PTEN is 

a phosphatase to mediate switching off the PI3K/Akt/mTOR signalling pathway, which has 
been reportedly associated with ID [33–35]. FASN (expression of fatty acid synthase) is found 
negatively correlated with PTEN [36], but the in‐between genes were not explored. FASN may 

co‐express with MAST2 [26], PRKDC [26, 37] or BMI1 to physically interact with PTEN.

Term Count P value FDR Genes

Regulation of 

synapse structure or 

activity

11 4.63E−06 0.0084 MEF2C, BDNF, FMR1, NF1, MECP2, NRXN1, 

SYNGAP1, PTEN, SHANK2, SHANK3, DISC1

Multi‐organism 

behaviour

7 5.03E−06 0.0092 PTCHD1, TH, MECP2, NRXN1, PTEN, SHANK2, 

SHANK3

Telencephalon 

development

11 5.17E−06 0.0094 MEF2C, ASCL1, WDR62, NF1, TH, PAX6, MFSD2A, 

PTEN, KDM6B, SHANK3, DISC1

Regulation of 

neuron apoptotic 

process

10 8.61E−06 0.0157 MEF2C, ASCL1, HDAC4, BDNF, NF1, MECP2, 

PRKCG, SYNGAP1, PARP1, CASP2

Neuron apoptotic 

process

10 1.27E−05 0.0231 MEF2C, ASCL1, HDAC4, BDNF, NF1, MECP2, 

PRKCG, SYNGAP1, PARP1, CASP2

Observational 

learning

4 1.58E−05 0.0287 NF1, STRA6, NRXN1, SHANK3

Embryonic organ 

development

13 2.24E−05 0.0408 MEF2C, FGFR2, NAGLU, BBS7, NDST1, FOLR1, 

PRKRA, TH, PAX6, AHI1, GAMT, STRA6, GNAS

CC

Somatodendritic 

compartment

18 1.10E−05 0.0152 VIP, SNX14, KCNA2, FMR1, TH, NF1, PRKCG, 

NRXN1, PMM2, PTEN, SHANK2, SHANK3, ASCL1, 

SLC4A10, GNAS, SYNGAP1, SLC31A1, APC

MF

Chromatin binding 15 1.23E−05 0.0180 TAF2, MEF2C, DNMT3A, FMR1, PAX6, MECP2, 

CIC, HDAC4, ASCL1, VRK1, SIN3A, KDM5A, 

HIST3H3, NSD1, KDM6B

Table 2. GO analysis for the genes related to intellectual disability.
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4.2. Learning disorders

A total of 29 BPA bi‐interacted genes related to LD were found. Some of these genes are 

involved in the BPs such as behaviour, learning or memory, cognition, synaptic‐signalling 

related, cell‐cell signalling related, secretion, neuron death or apoptotic‐related processes 

(Table 3). Simultaneously, some of these genes may participate in the CCs such as synapse, 

presynapse, dendrite, somatodendritic compartment, axon or secretory vesicle. Five KEGG 

pathways might be influenced by BPA (Table 4). Retrograde endocannabinoid signalling, sero‐

tonergic synapse and glutamatergic synapse pathways may be influenced by BPA and involve 
in LD. Nicotine addiction and Alzheimer’s disease may share the same pathway with LD. 

WikiPathways indicated monoamine transport, synaptic vesicle pathway, MECP2 and associ‐

ated Rett syndrome pathway might also be influenced. Interestingly, some genes involved in 
LD are also found in sudden infant death syndrome (SIDS) susceptibility  pathways. Reactome 

pathway confirmed the serotonergic synapse pathway found in KEGG, and additionally sug‐

gested that organic anion transporters pathway may be influenced by BPA.

Figure 1. Networks for the genes in PPI MCODE molecular modules for ID.
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Term Count P value FDR Genes

BP

Single‐organism 

behaviour

14 2.98E−14 5.29E−11 SLC17A7, APP, HTR1A, PSEN1, PDE1B, GRIA1, 

BCL2, MAPT, NF1, TH, MECP2, IL1B, PARK2, 

TRH

Behaviour 14 2.07E−12 3.67E−09 SLC17A7, APP, HTR1A, PSEN1, PDE1B, GRIA1, 

BCL2, MAPT, NF1, TH, MECP2, IL1B, PARK2, 

TRH

Learning or memory 10 9.30E−11 1.65E−07 SLC17A7, APP, PDE1B, PSEN1, GRIA1, NF1, TH, 

MECP2, IL1B, PARK2

Cognition 10 3.03E−10 5.39E−07 SLC17A7, APP, PDE1B, PSEN1, GRIA1, NF1, TH, 

MECP2, IL1B, PARK2

Chemical synaptic 

transmission

12 2.11E−09 3.75E−06 SYP, SLC17A7, ACHE, HTR1A, PNOC, PSEN1, 

GRIA1, HTR7, NF1, TH, MECP2, PARK2

Trans‐synaptic 

signalling

12 2.11E−09 3.75E−06 SYP, SLC17A7, ACHE, HTR1A, PNOC, PSEN1, 

GRIA1, HTR7, NF1, TH, MECP2, PARK2

Synaptic signalling 12 2.11E−09 3.75E−06 SYP, SLC17A7, ACHE, HTR1A, PNOC, PSEN1, 

GRIA1, HTR7, NF1, TH, MECP2, PARK2

Anterograde trans‐

synaptic signalling

12 2.11E−09 3.75E−06 SYP, SLC17A7, ACHE, HTR1A, PNOC, PSEN1, 

GRIA1, HTR7, NF1, TH, MECP2, PARK2

Secretion by cell 13 2.26E−08 4.02E−05 SLC17A7, ACHE, APP, HTR1A, PSEN1, HMOX1, 

NF1, VEGFA, IL1RN, MECP2, IL1B, PARK2, TRH

Cell‐cell signalling 15 3.65E−08 6.49E−05 ACHE, TH, IL1RN, NF1, MECP2, PARK2, TRH, 

SYP, SLC17A7, HTR1A, PNOC, PSEN1, GRIA1, 

HTR7, IL1B

Secretion 13 9.70E−08 1.73E−04 SLC17A7, ACHE, APP, HTR1A, PSEN1, HMOX1, 

NF1, VEGFA, IL1RN, MECP2, IL1B, PARK2, TRH

Regulation of cell 

communication

19 1.13E−07 2.01E−04 ACHE, KL, NF1, IL1RN, MECP2, PARK2, TRH, 

POR, SYP, APP, CAMKMT, HTR1A, APOD, 

PSEN1, GRIA1, BCL2, HMOX1, VEGFA, IL1B

Regulation of 

signalling

19 1.46E−07 2.60E−04 ACHE, KL, NF1, IL1RN, MECP2, PARK2, TRH, 

POR, SYP, APP, CAMKMT, HTR1A, APOD, 

PSEN1, GRIA1, BCL2, HMOX1, VEGFA, IL1B

System process 16 1.56E−07 2.78E−04 TH, NF1, MECP2, PARK2, SLC17A7, APP, 

HTR1A, PNOC, PSEN1, PDE1B, GRIA1, HTR7, 

BCL2, HMOX1, VEGFA, IL1B

Dicarboxylic acid 

transport

6 1.68E−07 2.98E−04 SLC17A7, SLC17A6, PSEN1, NF1, IL1B, TRH

Organic hydroxy 

compound metabolic 

process

9 2.69E−07 4.79E−04 APP, HTR1A, PDE1B, BCL2, TH, MECP2, IL1B, 

PARK2, POR

Neuron death 8 4.39E−07 7.81E−04 APP, PSEN1, HMOX1, BCL2, NF1, MECP2, 

PARK2, SIGMAR1

Locomotory behaviour 7 6.43E−07 1.14E−03 APP, PDE1B, MAPT, TH, MECP2, PARK2, TRH

Response to hypoxia 8 7.59E−07 1.35E−03 HMOX1, BCL2, VEGFA, NF1, TH, MECP2, IL1B, 

TRH
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Term Count P value FDR Genes

Memory 6 7.93E−07 1.41E−03 SLC17A7, PSEN1, GRIA1, TH, MECP2, IL1B

Regulation of 

neurotransmitter levels
7 8.92E−07 1.59E−03 SLC17A7, ACHE, PDE1B, PSEN1, NF1, TH, 

PARK2

Regulation of neuron 

apoptotic process

7 9.19E−07 1.63E−03 PSEN1, HMOX1, BCL2, NF1, MECP2, PARK2, 

SIGMAR1

Response to decreased 

oxygen levels

8 9.52E−07 1.69E−03 HMOX1, BCL2, VEGFA, NF1, TH, MECP2, IL1B, 

TRH

Neuron apoptotic 

process

7 1.22E−06 2.16E−03 APP, PSEN1, HMOX1, BCL2, NF1, MECP2, 

PARK2

Response to oxygen 

levels

8 1.41E−06 2.51E−03 HMOX1, BCL2, VEGFA, NF1, TH, MECP2, IL1B, 

TRH

Central nervous 

system development

11 1.65E−06 2.93E−03 SLC17A7, APP, APOD, PSEN1, MAPT, BCL2, 

NF1, TH, MECP2, IL1B, PARK2

Nitrogen compound 

transport

10 2.10E−06 3.74E−03 SLC17A7, SLC17A6, PSEN1, NF1, IL1RN, TH, 

MECP2, IL1B, PARK2, TRH

Learning 6 3.41E−06 6.06E−03 APP, PDE1B, NF1, TH, MECP2, PARK2

Response to oxidative 

stress

8 4.34E−06 7.72E−03 APP, APOD, PSEN1, MAPT, HMOX1, BCL2, 

IL1B, PARK2

Regulation of neuron 

death

7 5.01E−06 8.91E−03 PSEN1, HMOX1, BCL2, NF1, MECP2, PARK2, 

SIGMAR1

Chemical homeostasis 11 5.20E−06 9.25E−03 SLC17A7, MICU1, APP, PSEN1, KL, HMOX1, 

BCL2, VEGFA, TH, IL1B, PARK2

CC

Synapse part 13 4.60E−10 5.87E−07 ACHE, TH, NF1, MECP2, PARK2, SIGMAR1, 

SYP, SLC17A7, APP, SLC17A6, PSEN1, GRIA1, 

MAPT

Neuron projection 15 1.09E−09 1.39E−06 TH, NF1, PARK2, SIGMAR1, SYP, SLC17A7, 

APP, HTR1A, SLC17A6, PNOC, APOD, PSEN1, 

GRIA1, MAPT, HTR7

Neuron part 16 4.99E−09 6.37E−06 TH, NF1, PARK2, SIGMAR1, SYP, SLC17A7, 

APP, HTR1A, SLC17A6, PNOC, PDE1B, APOD, 

PSEN1, GRIA1, MAPT, HTR7

Synapse 13 6.19E−09 7.90E−06 ACHE, TH, NF1, MECP2, PARK2, SIGMAR1, 

SYP, SLC17A7, APP, SLC17A6, PSEN1, GRIA1, 

MAPT

Presynapse 9 5.66E−08 7.23E−05 SYP, SLC17A7, APP, SLC17A6, PSEN1, GRIA1, 

NF1, TH, PARK2

Dendrite 10 2.30E−07 2.94E−04 APP, HTR1A, PNOC, APOD, PSEN1, GRIA1, 

HTR7, MAPT, NF1, TH

Somatodendritic 

compartment

11 4.77E−07 6.09E−04 APP, HTR1A, PNOC, APOD, PDE1B, PSEN1, 

GRIA1, HTR7, MAPT, NF1, TH
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Term Count P value FDR Genes

Axon 9 1.38E−06 1.76E−03 SYP, SLC17A7, APP, PNOC, PSEN1, GRIA1, 

MAPT, NF1, TH

Secretory vesicle 9 2.35E−06 3.00E−03 SYP, SLC17A7, APP, SLC17A6, GRIA1, VEGFA, 

TH, IL1B, TRH

MF

Protein domain 

specific binding
10 7.72E−07 1.04E−03 SYP, APP, PSEN1, GRIA1, MAPT, BCL2, TH, 

MECP2, IL1B, PARK2

Table 3. GO analysis for the genes related to learning disorders.

Terms Count P value Genes

KEGG

Nicotine addiction 3 0.0047 SLC17A7, SLC17A6, GRIA1

Alzheimer’s disease 4 0.0088 APP, PSEN1, MAPT, IL1B

Retrograde endocannabinoid signalling 3 0.0278 SLC17A7, SLC17A6, GRIA1

Serotonergic synapse 3 0.0331 APP, HTR1A, HTR7

Glutamatergic synapse 3 0.0348 SLC17A7, SLC17A6, GRIA1

WikiPathways

SIDS susceptibility pathways 6 2.83E−05 MECP2, IL1RN, TH, IL1B, HTR1A, VEGFA

Integrated pancreatic cancer pathway 5 0.0008 APP, ACHE, BCL2, MAPT, VEGFA

Monoamine transport 3 0.0003 ACHE, TH, IL1B

Synaptic vesicle pathway 3 0.0011 SLC17A6, SLC17A7, SYP

Alzheimer’s disease 4 0.0011 APP, IL1B, PSEN1, MAPT

Mecp2 and associated Rett syndrome 3 0.0009 GRIA1, MECP2, NF1

Overview of nanoparticle effects 2 0.0028 BCL2, HMOX1

Reactome

Organic anion transporters 2 0.0215 SLC17A7, SLC17A6

Serotonin receptors 2 0.0321 HTR1A, HTR7

TRAF6‐mediated NF‐kB activation 2 0.0631 APP, RNF135

Interleukin‐1 signalling 2 0.0932 IL1RN, IL1B

Biocart

Generation of amyloid b‐peptide by PS1 2 0.0427 APP, PSEN1

Deregulation of CDK5 in Alzheimer’s 

Disease

2 0.0427 APP, MAPT

Table 4. Pathway analysis for the genes related to learning disorders.
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Only one module was found for LD (Figure 2: LD). In this module, HTR1A, MAPT, TH, 
PARK2 and TRH were interacted by physical interactions, co‐expression, predicted, pathway, 

co‐localization, genetic interactions and shared protein domains. PARK2 is known to play a 

role in neurological development or function and when disturbed can account for LD [38, 39]. 

TH links PARK2 by sharing the same pathway [40], in which HOXA4 could co‐express with 

TRHR [41], which could co‐express with MAPT [42]. Serotonin gene (HTR1A) is also involved 

in this module, which is consistent with the serotonergic synapse and serotonin receptors 

pathway in KEGG and Reactome, respectively.

4.3. Schizophrenia

A total of 149 genes related to Sch were found to be BPA bi‐interacted. Significant BPs included 
those found in LD such as behaviour, learning or memory, cognition, synaptic signalling 

related and cell‐cell signalling related. Synaptic transmission‐related, cell communication‐

related and phosphorus metabolic processes were also found (Table 5). Like LD, the genes 

participate in synapse, presynapse, dendrite, somatodendritic compartment and axon cellular 

components. Other CCs include cell body, intrinsic or integral component of plasma mem‐

brane, synaptic membrane and plasma membrane region. Unlike LD with little significant 
MFs found, Sch showed many significant MFs including the activity of signal transducer, neu‐

rotransmitter receptor, transmembrane‐signalling receptor, molecular transducer, glutamate 
receptor and dopamine neurotransmitter receptor, dopamine or catecholamine binding. The 
same as LD, WikiPathways found that BPA could be linked to Sch through Alzheimer’s dis‐

ease, monoamine transport and SIDS susceptibility pathways (Table 6). The KEGG pathways 

such as neuroactive ligand‐receptor interaction, cocaine addiction, dopaminergic synapse, 

cAMP signalling pathway and calcium‐signalling pathway were also found to be significant. 
Reactome pathways included transmission across chemical synapse, amine ligand‐binding 

receptors, neuronal system and signalling by GPCR, PDGF, FGFR4, FGFR3, FGFR1 or EGFR.

Five molecular modules were found for Sch (Figure 3). In module 1, 24 genes were connected 

by predicted, co‐expression, physical interaction, co‐localization, shared protein domains and 

pathway and genetic interactions. Almost all these genes showed co‐expression [43, 44] and 

genetic interactions [45]. Except these 24 genes, GRID2, GRIK3 and GRIK4 might also be influ‐

enced by BPA because of their shared protein domains with GRIK2, GRIK5, GRIN2D, GRM2 

and GRM3 and genetic interactions. KCNJ12 might also be interacted by BPA because of pre‐

dicted, co‐expression, genetic interactions and physical interactions. KCNJ12 has been reported 

may involve in the candidate pathway of Sch [46]. IL6, HP, AKT1, GSK3B, TNF, PIK3CB, and 

TP53 are composites of module 2. AKT/GSK3 pathway in which AKT1 and GSK3B has been 
reportedly associated in Sch [47]. TP53, as a key element in maintaining genomic stability and 

cell apoptosis and having been evidently proved a Sch susceptibility gene, linked TNF, AKT1 

and GSK3B by direct co‐expression, physical interactions and genetic interactions. Other 

genes such as AKT2 and DVL1 in this module might also interact with BPA because of the co‐

expression of AKT2 and PIK3CB [37], and DVL1 and AKT1 [48]. In module 3, SLC6A3, GAD1, 

COMT and RELN were involved through physical interaction, co‐expression, predicted, 

pathway, co‐localization and shared protein domains. LRPAP1, ITGB1, DAB1, PAFAH1B3, 
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Figure 2. Networks for the genes in the PPI MCODE molecular modules for LD, ASD, AD and BD.
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Term Count P value FDR Genes

BP

Synaptic 

signalling

44 2.29E−27 4.33E−24 DRD1, CPLX2, CCL2, CPLX1, SLC6A1, DRD3, GABRB2, 

GRIK2, DRD2, SLC6A3, SLC6A4, DRD4, GRIK5, OXTR, 

TAC1, DTNBP1, AKT1, SYP, PLCL2, GAD2, HRH1, GRIN2B, 

APOE, GRIN2D, CNR1, SYN2, CAMK2B, GAD1, DLG1, 

GABRD, NOS1, NRXN1, NTSR1, LAMA2, GRM3, GRM2, 

GSK3A, HTR7, GSK3B, NTRK1, HTR6, RELN, NRGN, 

HTR2A

Anterograde 

Trans‐synaptic 

signalling

44 2.29E−27 4.33E−24 DRD1, CPLX2, CCL2, CPLX1, SLC6A1, DRD3, GABRB2, 

GRIK2, DRD2, SLC6A3, SLC6A4, DRD4, GRIK5, OXTR, 

TAC1, DTNBP1, AKT1, SYP, PLCL2, GAD2, HRH1, GRIN2B, 

APOE, GRIN2D, CNR1, SYN2, CAMK2B, GAD1, DLG1, 

GABRD, NOS1, NRXN1, NTSR1, LAMA2, GRM3, GRM2, 

GSK3A, HTR7, GSK3B, NTRK1, HTR6, RELN, NRGN, 

HTR2A

Trans‐synaptic 

signalling

44 2.29E−27 4.33E−24 DRD1, CPLX2, CCL2, CPLX1, SLC6A1, DRD3, GABRB2, 

GRIK2, DRD2, SLC6A3, SLC6A4, DRD4, GRIK5, OXTR, 

TAC1, DTNBP1, AKT1, SYP, PLCL2, GAD2, HRH1, GRIN2B, 

APOE, GRIN2D, CNR1, SYN2, CAMK2B, GAD1, DLG1, 

GABRD, NOS1, NRXN1, NTSR1, LAMA2, GRM3, GRM2, 

GSK3A, HTR7, GSK3B, NTRK1, HTR6, RELN, NRGN, 

HTR2A

Chemical 

synaptic 

transmission

44 2.29E−27 4.33E−24 DRD1, CPLX2, CCL2, CPLX1, SLC6A1, DRD3, GABRB2, 

GRIK2, DRD2, SLC6A3, SLC6A4, DRD4, GRIK5, OXTR, 

TAC1, DTNBP1, AKT1, SYP, PLCL2, GAD2, HRH1, GRIN2B, 

APOE, GRIN2D, CNR1, SYN2, CAMK2B, GAD1, DLG1, 

GABRD, NOS1, NRXN1, NTSR1, LAMA2, GRM3, GRM2, 

GSK3A, HTR7, GSK3B, NTRK1, HTR6, RELN, NRGN, 

HTR2A

Cell‐cell 

signalling

62 3.34E−26 6.31E−23 SLC6A1, FAM3D, GRIK2, GABRB2, SLC6A3, SLC6A4, 

GRIK5, VIPR2, LGR4, AKT1, SYP, BDNF, GRIN2B, APOE, 

GRIN2D, IL1B, PLCB1, HCAR2, DISC1, DLG1, AVP, MAGI2, 

NRXN1, NTSR1, GRM3, GRM2, HTR7, HTR6, RELN, NRGN, 

FGFR1, DRD1, CPLX2, CCL2, CPLX1, TNF, DRD3, HLA‐

DRB1, DRD2, DRD4, OXTR, TAC1, DTNBP1, PLCL2, HRH1, 

GAD2, CNR1, SYN2, CAMK2B, VPS35, GAD1, GABRD, 

DIXDC1, IL6, NOS1, NTF3, LAMA2, LRP1, GSK3A, NTRK1, 

GSK3B, HTR2A

Modulation 

of synaptic 

transmission

31 6.10E−24 1.15E−20 CPLX2, DRD1, CCL2, DRD3, SLC6A1, GRIK2, DRD2, DRD4, 

SLC6A4, GRIK5, TAC1, OXTR, DTNBP1, SYP, PLCL2, HRH1, 

APOE, CNR1, CAMK2B, NOS1, NTF3, NRXN1, NTSR1, 

LAMA2, GRM3, GRM2, GSK3B, NTRK1, RELN, NRGN, 

HTR2A

Regulation of cell 

communication

72 2.46E−17 4.64E−14 SLC6A1, FAM3D, GRIK2, SLC6A4, GRIK5, LGR4, SYP, 

AKT1, BDNF, PAK2, APOE, IL1B, PLCB1, NRG1, HCAR2, 

DISC1, ALS2CL, DLG1, AVP, MAGI2, PIK3CB, TP53, 

NRXN1, IL6R, NTSR1, GRM3, GRM2, HTR6, RELN, NRGN, 

ADAMTS3, FGFR1, DRD1, CPLX2, CCL2, TNF, DRD3, HLA‐

DRB1, DRD2, DRD4, COL3A1, PML, TAC1, OXTR, NPRL2, 

DTNBP1, PLCL2, HRH1, RGS12, RB1CC1, CNR1, CAMK2B, 

VPS35, THBS1, CHD4, DIXDC1, IL6, NOS1, NTF3, PHB, 

RTN4R, CHI3L1, KDR, LAMA2, LRP1, GSK3A, NTRK1, 

RGS4, GSK3B, MTOR, RGS9, HTR2A
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Term Count P value FDR Genes

Regulation of 

signalling

72 5.99E−17 2.11E−13 SLC6A1, FAM3D, GRIK2, SLC6A4, GRIK5, LGR4, SYP, AKT1, 

BDNF, PAK2, APOE, IL1B, PLCB1, NRG1, HCAR2, DISC1, 

ALS2CL, DLG1, AVP, MAGI2, PIK3CB, TP53, NRXN1, IL6R, 

NTSR1, GRM3, GRM2, HTR6, RELN, NRGN, ADAMTS3, 

FGFR1, DRD1, CPLX2, CCL2, TNF, DRD3, HLA‐DRB1, 

DRD2, DRD4, COL3A1, PML, TAC1, OXTR, NPRL2, 

DTNBP1, PLCL2, HRH1, RGS12, RB1CC1, CNR1, CAMK2B, 

VPS35, THBS1, CHD4, DIXDC1, IL6, NOS1, NTF3, PHB, 

RTN4R, CHI3L1, KDR, LAMA2, LRP1, GSK3A, NTRK1, 

RGS4, GSK3B, MTOR, RGS9, HTR2A

Single‐organism 

behaviour

27 1.71E−15 3.14E−12 DRD1, DRD3, SLC6A1, DRD2, GRIK2, DRD4, SLC6A4, 

TAC1, OXTR, COMT, HRH1, GRIN2B, GRIN2D, CNR1, IL1B, 

THBS1, PLCB1, AVP, IL6, NOS1, NRXN1, NTSR1, NTRK1, 

RELN, MTOR, NRGN, HTR2A

Positive 

regulation of cell 

communication

48 9.61E−15 1.82E−11 FGFR1, DRD1, CCL2, TNF, DRD3, HLA‐DRB1, GRIK2, DRD2, 

DRD4, COL3A1, PML, OXTR, TAC1, DTNBP1, LGR4, AKT1, 

BDNF, PAK2, RB1CC1, IL1B, VPS35, NRG1, PLCB1, THBS1, 

HCAR2, DISC1, DIXDC1, IL6, NOS1, NTF3, PIK3CB, PHB, TP53, 

CHI3L1, IL6R, NRXN1, NTSR1, KDR, LAMA2, GSK3A, NTRK1, 

GSK3B, HTR6, RELN, NRGN, MTOR, ADAMTS3, HTR2A

Positive 

regulation of 

signalling

48 1.10E−14 2.08E−11 FGFR1, DRD1, CCL2, TNF, DRD3, HLA‐DRB1, GRIK2, DRD2, 

DRD4, COL3A1, PML, OXTR, TAC1, DTNBP1, LGR4, AKT1, 

BDNF, PAK2, RB1CC1, IL1B, VPS35, NRG1, PLCB1, THBS1, 

HCAR2, DISC1, DIXDC1, IL6, NOS1, NTF3, PIK3CB, PHB, TP53, 

CHI3L1, IL6R, NRXN1, NTSR1, KDR, LAMA2, GSK3A, NTRK1, 

GSK3B, HTR6, RELN, NRGN, MTOR, ADAMTS3, HTR2A

Learning or 

memory

21 1.10E−14 2.08E−11 DRD1, DRD3, SLC6A1, DRD2, DRD4, SLC6A4, TAC1, OXTR, 

COMT, NRXN1, NTSR1, HRH1, GRIN2B, CNR1, NTRK1, 

IL1B, RELN, NRGN, MTOR, PLCB1, HTR2A

Behaviour 30 1.11E−14 2.10E−11 DRD1, DRD3, SLC6A1, DRD2, GRIK2, SLC6A3, DRD4, 

SLC6A4, TAC1, OXTR, COMT, HRH1, GRIN2B, GRIN2D, 

CNR1, IL1B, THBS1, PLCB1, NRG1, IL6, AVP, NOS1, TP53, 

NRXN1, NTSR1, NTRK1, RELN, MTOR, NRGN, HTR2A

Cognition 22 1.22E−14 2.31E−11 DRD1, DRD3, SLC6A1, DRD2, DRD4, SLC6A4, TAC1, OXTR, 

COMT, NRXN1, NTSR1, DGCR2, HRH1, GRIN2B, CNR1, 

NTRK1, IL1B, RELN, NRGN, MTOR, PLCB1, HTR2A

Neuron‐neuron 

synaptic 

transmission

16 1.33E−14 2.52E−11 DRD1, DRD3, SLC6A1, DRD2, GRIK2, GABRB2, SLC6A3, 

DRD4, SLC6A4, GRIK5, TAC1, OXTR, NRXN1, NTRK1, 

RELN, HTR2A

Response to 

alkaloid

18 1.48E−14 2.79E−11 IL6, AVP, DRD1, TNF, NOS1, SLC6A1, ND4, DRD3, DRD2, 

SLC6A3, DRD4, TAC1, OXTR, CNR1, NTRK1, IL1B, MTOR, 

HTR2A

Positive 

regulation 

of synaptic 

transmission

16 8.02E−14 1.52E−10 DRD1, CCL2, NOS1, DRD2, GRIK2, DRD4, TAC1, OXTR, 

NRXN1, NTSR1, DTNBP1, LAMA2, NTRK1, GSK3B, RELN, 

NRGN

Regulation 

of phosphate 

metabolic process

47 2.16E−13 4.07E−10 FGFR1, DRD1, CCL2, NRG3, TNF, ADCY7, DRD3, GRIK2, 

DRD2, DRD4, PML, NPRL2, VIPR2, DTNBP1, PLCL2, AKT1, 

HRH1, PAK2, APOE, RB1CC1, IL1B, NRG1, PLCB1, THBS1, 

DLG1, IL6, AVP, MAGI2, NOS1, NTF3, PIK3CB, PHB, TP53, 

RTN4R, CHI3L1, IL6R, NTSR1, KDR, GRM3, GRM2, GSK3A, 

RGS4, NTRK1, GSK3B, RELN, MTOR, HTR2A
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Term Count P value FDR Genes

Regulation of 

phosphorus 

metabolic process

47 2.20E−13 4.16E−10 FGFR1, DRD1, CCL2, NRG3, TNF, ADCY7, DRD3, GRIK2, 

DRD2, DRD4, PML, NPRL2, VIPR2, DTNBP1, PLCL2, AKT1, 

HRH1, PAK2, APOE, RB1CC1, IL1B, NRG1, PLCB1, THBS1, 

DLG1, IL6, AVP, MAGI2, NOS1, NTF3, PIK3CB, PHB, TP53, 

RTN4R, CHI3L1, IL6R, NTSR1, KDR, GRM3, GRM2, GSK3A, 

RGS4, NTRK1, GSK3B, RELN, MTOR, HTR2A

Regulation of 

transport

49 8.08E−13 1.53E−09 FGFR1, DRD1, CPLX2, CCL2, CPLX1, TNF, SLC6A1, DRD3, 

HLA‐DRB1, FAM3D, DRD2, DRD4, GRIK5, PML, OXTR, 

TAC1, COMT, EDEM2, DTNBP1, LGR4, AKT1, APOE, 

CNR1, PDE4B, IL1B, CAMK2B, VPS35, NRG1, THBS1, 

HCAR2, DLG1, IL6, AVP, MAGI2, NOS1, NTF3, PIK3CB, 

MAOB, TP53, AHI1, NRXN1, NTSR1, PCM1, LRP1, GSK3A, 

GSK3B, RELN, MTOR, HTR2A

CC

Neuron 

projection
48 3.23E−21 4.54E−18 DRD1, CPLX2, CCL2, CPLX1, SLC6A1, GRIK2, DRD2, 

SLC6A3, SLC6A4, DRD4, GRIK5, TAC1, COMT, DTNBP1, 

HNRNPA3, SYP, GAD2, MTHFR, RGS12, GRIN2B, PVALB, 

APOE, CNR1, PDE4B, CAMK2B, NRG1, DISC1, DLG1, AVP, 

NOS1, MAGI2, RTN4R, NRXN1, NTSR1, LAMA2, GRM3, 

GRM2, LRP1, HTR7, NTRK1, GSK3B, HTR6, RELN, NRGN, 

MTOR, TPH1, KPNA1, HTR2A

Synapse 40 6.12E−19 8.61E−16 CPLX2, DRD1, CCL2, CPLX1, GABRB2, GRIK2, DRD2, 

SLC6A3, DRD4, SLC6A4, GRIK5, COMT, DTNBP1, AKT1, 

SYP, GAD2, MTHFR, RGS12, GRIN2B, PVALB, GRIN2D, 

PDE4B, SYN2, CAMK2B, NRG1, GAD1, DISC1, DLG1, 

GABRD, NOS1, MAGI2, GABRA6, NRXN1, NTSR1, 

LAMA2, GRM3, GRM2, GSK3A, GSK3B, NRGN

Synapse part 36 1.32E−18 1.86E−15 CPLX2, DRD1, CPLX1, GABRB2, DRD2, GRIK2, SLC6A3, 

DRD4, SLC6A4, GRIK5, COMT, DTNBP1, SYP, AKT1, 

GAD2, GRIN2B, PVALB, GRIN2D, PDE4B, SYN2, CAMK2B, 

GAD1, DISC1, DLG1, GABRD, NOS1, MAGI2, GABRA6, 

NRXN1, NTSR1, LAMA2, GRM3, GRM2, GSK3A, GSK3B, 

NRGN

Neuron part 51 3.07E−18 4.33E−15 SLC6A1, GRIK2, SLC6A3, SLC6A4, GRIK5, SYP, GRIN2B, 

PVALB, APOE, PDE4B, NRG1, DISC1, DLG1, AVP, MAGI2, 

NRXN1, NTSR1, GRM3, GRM2, HTR7, HTR6, RELN, 

NRGN, TPH1, KPNA1, CPLX2, DRD1, CPLX1, CCL2, 

DRD2, DRD4, TAC1, COMT, DTNBP1, HNRNPA3, GAD2, 

MTHFR, RGS12, CNR1, SYN2, CAMK2B, GAD1, NOS1, 

RTN4R, LAMA2, LRP1, NTRK1, GSK3B, RGS9, MTOR, 

HTR2A

Dendrite 32 1.49E−17 2.10E−14 CPLX2, DRD1, CCL2, CPLX1, GRIK2, DRD2, DRD4, GRIK5, 

COMT, DTNBP1, RGS12, APOE, PDE4B, CAMK2B, NRG1, 

AVP, NOS1, MAGI2, NTSR1, LAMA2, GRM3, GRM2, LRP1, 

GSK3B, NTRK1, HTR7, HTR6, RELN, NRGN, MTOR, 

KPNA1, HTR2A

Somatodendritic 

compartment

37 2.66E−17 3.74E−14 DRD1, CPLX2, CCL2, CPLX1, GRIK2, DRD2, SLC6A3, 

DRD4, GRIK5, TAC1, COMT, DTNBP1, RGS12, PVALB, 

APOE, PDE4B, CAMK2B, NRG1, AVP, NOS1, MAGI2, 

RTN4R, NRXN1, NTSR1, LAMA2, GRM3, GRM2, LRP1, 

HTR7, GSK3B, NTRK1, HTR6, RELN, NRGN, MTOR, 

KPNA1, HTR2A
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Term Count P value FDR Genes

Axon 29 7.56E−16 1.10E−12 CPLX2, DRD1, CCL2, CPLX1, SLC6A1, DRD2, GRIK2, 

SLC6A3, DRD4, GRIK5, TAC1, COMT, DTNBP1, SYP, 

GAD2, PVALB, CNR1, NRG1, DISC1, DLG1, RTN4R, 

NRXN1, NTSR1, GRM3, GRM2, GSK3B, NTRK1, NRGN, 

HTR2A

Postsynapse 25 4.28E−14 6.02E−11 GABRD, DRD1, NOS1, MAGI2, GABRB2, GRIK2, DRD2, 

GABRA6, DRD4, GRIK5, COMT, NTSR1, DTNBP1, AKT1, 

LAMA2, GRM3, GRIN2B, GSK3A, GRIN2D, GSK3B, PDE4B, 

CAMK2B, NRGN, DISC1, DLG1

Cell body 26 2.58E−11 3.63E−08 CPLX2, DRD1, CPLX1, CCL2, DRD2, GRIK2, SLC6A3, 

DRD4, GRIK5, TAC1, COMT, RGS12, PVALB, APOE, 

CAMK2B, NRG1, DISC1, RTN4R, NRXN1, NTSR1, LRP1, 

NTRK1, GSK3B, MTOR, NRGN, HTR2A

Presynapse 20 2.97E−11 4.19E−08 CPLX2, CPLX1, DRD2, GRIK2, SLC6A3, DRD4, SLC6A4, 

GRIK5, NRXN1, NTSR1, DTNBP1, SYP, GAD2, GRM3, 

GRM2, PVALB, PDE4B, SYN2, GAD1, DISC1

Intrinsic 

component 

of plasma 

membrane

45 1.08E−10 1.52E−07 FGFR1, DRD1, NRG3, TNF, SLC6A1, DRD3, HLA‐DRB1, 

GABRB2, GRIK2, DRD2, PLXNA2, SLC6A3, SLC6A4, DRD4, 

GRIK5, OXTR, VIPR2, LGR4, HRH1, GRIN2B, GRIN2D, 

CNR1, NRG1, DLG1, GABRD, IL6, GABRA6, PHB, MET, 

NTNG1, RTN4R, IL6R, NRXN1, NTSR1, TSPAN18, KDR, 

GRM3, GRM2, LRP1, SLC26A7, HTR7, NTRK1, HTR6, CP, 

HTR2A

Integral 

component 

of plasma 

membrane

43 4.17E−10 5.87E−07 FGFR1, DRD1, TNF, NRG3, SLC6A1, HLA‐DRB1, DRD3, 

GABRB2, GRIK2, DRD2, PLXNA2, SLC6A3, SLC6A4, DRD4, 

GRIK5, OXTR, VIPR2, LGR4, HRH1, GRIN2B, GRIN2D, 

CNR1, NRG1, DLG1, GABRD, IL6, GABRA6, PHB, MET, 

RTN4R, IL6R, NRXN1, NTSR1, TSPAN18, KDR, GRM3, 

GRM2, LRP1, SLC26A7, HTR7, NTRK1, HTR6, HTR2A

Neuronal cell 

body

23 4.45E−10 6.27E−07 DRD1, CPLX2, CCL2, CPLX1, GRIK2, DRD2, SLC6A3, 

DRD4, GRIK5, RTN4R, TAC1, NRXN1, NTSR1, LRP1, 

RGS12, PVALB, APOE, GSK3B, NTRK1, CAMK2B, NRGN, 

MTOR, HTR2A

Axon part 16 4.61E−09 6.49E−06 DRD1, CPLX2, CCL2, CPLX1, DRD2, GRIK2, DRD4, RTN4R, 

GRIK5, NRXN1, NTSR1, DTNBP1, SYP, PVALB, NRG1, 

DLG1

Dendritic spine 12 2.08E−08 2.93E−05 LAMA2, DRD1, GRM3, NOS1, DRD2, GSK3B, PDE4B, 

DRD4, COMT, NRGN, NTSR1, DTNBP1

Neuron spine 12 2.46E−08 3.47E−05 LAMA2, DRD1, GRM3, NOS1, DRD2, GSK3B, PDE4B, 

DRD4, COMT, NRGN, NTSR1, DTNBP1

Synaptic 

membrane

16 4.23E−08 5.96E−05 GABRD, GRIK2, GABRB2, GABRA6, GRIK5, NRXN1, 

COMT, DTNBP1, SYP, GRM3, GAD2, GRM2, GRIN2B, 

GRIN2D, DISC1, DLG1

Excitatory 

synapse

13 8.32E−08 1.17E−04 SYP, GRM3, MAGI2, NOS1, DRD2, GRIK2, PDE4B, GRIK5, 

CAMK2B, NRGN, DTNBP1, DISC1, DLG1

Plasma 

membrane region

28 1.94E−07 2.73E−04 DRD1, DRD2, GRIK2, GABRB2, SLC6A3, GRIK5, OXTR, 

COMT, DTNBP1, SYP, GAD2, GRIN2B, GRIN2D, NRG1, 

DISC1, DLG1, GABRD, NOS1, GABRA6, MET, GIF, NRXN1, 

IL6R, GRM3, GRM2, SLC26A7, RGS9, HTR2A
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Term Count P value FDR Genes

Axon terminus 11 2.90E−07 4.08E−04 SYP, DRD1, CPLX2, CPLX1, CCL2, PVALB, DRD2, GRIK2, 

DRD4, GRIK5, NTSR1

MF

Signal transducer 

activity

46 2.55E−11 3.79E−08 FGFR1, DRD1, NRG3, DRD3, HLA‐DRB1, GABRB2, GRIK2, 

DRD2, PLXNA2, ADGRF4, DRD4, GRIK5, OXTR, NR3C1, 

VIPR2, LGR4, PLCL2, TAAR6, HRH1, RGS12, GRIN2B, 

PAK2, GRIN2D, CNR1, PLCB1, NRG1, HCAR2, GABRD, 

AVP, MAGI2, IL2RA, GABRA6, MET, RTN4R, IL6R, 

NRXN1, NTSR1, KDR, GPR153, GRM3, GRM2, HTR7, 

NTRK1, HTR6, RGS9, HTR2A

Neurotransmitter 
receptor activity

12 8.07E−10 1.20E−06 DRD1, GRIN2B, DRD3, DRD2, GRIK2, HTR7, GRIN2D, 

GABRA6, HTR6, DRD4, GRIK5, HTR2A

Transmembrane 

receptor activity

37 2.01E−09 2.98E−06 FGFR1, DRD1, HLA‐DRB1, DRD3, GABRB2, GRIK2, 

PLXNA2, DRD2, ADGRF4, DRD4, GRIK5, OXTR, VIPR2, 

LGR4, TAAR6, HRH1, GRIN2B, GRIN2D, CNR1, HCAR2, 

DLG1, GABRD, IL2RA, GABRA6, MET, RTN4R, IL6R, 

NRXN1, NTSR1, KDR, GPR153, GRM3, GRM2, NTRK1, 

HTR7, HTR6, HTR2A

Transmembrane 

signalling 

receptor activity

36 2.61E−09 3.87E−06 FGFR1, DRD1, HLA‐DRB1, DRD3, GABRB2, GRIK2, 

PLXNA2, DRD2, ADGRF4, DRD4, GRIK5, OXTR, VIPR2, 

LGR4, HRH1, TAAR6, GRIN2B, GRIN2D, CNR1, HCAR2, 

GABRD, IL2RA, GABRA6, MET, RTN4R, IL6R, NRXN1, 

NTSR1, KDR, GPR153, GRM3, GRM2, NTRK1, HTR7, HTR6, 

HTR2A

Signalling 

receptor activity

37 5.46E−09 8.09E−06 FGFR1, DRD1, HLA‐DRB1, DRD3, GABRB2, GRIK2, 

PLXNA2, DRD2, ADGRF4, DRD4, GRIK5, OXTR, NR3C1, 

VIPR2, LGR4, HRH1, TAAR6, GRIN2B, GRIN2D, CNR1, 

HCAR2, GABRD, IL2RA, GABRA6, MET, RTN4R, IL6R, 

NRXN1, NTSR1, KDR, GPR153, GRM3, GRM2, NTRK1, 

HTR7, HTR6, HTR2A

Molecular 

transducer 

activity

39 4.31E−08 6.38E−05 FGFR1, DRD1, HLA‐DRB1, DRD3, GABRB2, GRIK2, 

PLXNA2, DRD2, ADGRF4, DRD4, GRIK5, OXTR, NR3C1, 

VIPR2, LGR4, TAAR6, HRH1, GRIN2B, GRIN2D, CNR1, 

HCAR2, DLG1, GABRD, IL2RA, GABRA6, MET, RTN4R, 

IL6R, NRXN1, NTSR1, KDR, GPR153, GRM3, LRP1, GRM2, 

NTRK1, HTR7, HTR6, HTR2A

Receptor activity 39 4.31E−08 6.38E−05 FGFR1, DRD1, HLA‐DRB1, DRD3, GABRB2, GRIK2, 

PLXNA2, DRD2, ADGRF4, DRD4, GRIK5, OXTR, NR3C1, 

VIPR2, LGR4, TAAR6, HRH1, GRIN2B, GRIN2D, CNR1, 

HCAR2, DLG1, GABRD, IL2RA, GABRA6, MET, RTN4R, 

IL6R, NRXN1, NTSR1, KDR, GPR153, GRM3, LRP1, GRM2, 

NTRK1, HTR7, HTR6, HTR2A

Receptor binding 34 4.69E−07 6.95E−04 CCL2, NRG3, TNF, FAM3D, DRD3, DRD2, SLC6A3, 

COL3A1, TAC1, PLCL2, BDNF, APOE, TRAK1, IL1B, VPS35, 

DAO, NRG1, THBS1, DLG1, IL6, AVP, MAGI2, NTF3, PHB, 

TP53, IL6R, NRXN1, KDR, NRIP1, LAMA2, LAMA1, LRP1, 

NTRK1, RELN

Dopamine 

binding

5 1.93E−06 2.85E−03 DRD1, DRD3, DRD2, SLC6A3, DRD4

Glutamate 

receptor activity

6 3.67E−06 5.44E−03 GRM3, GRM2, GRIN2B, GRIK2, GRIN2D, GRIK5

Bisphenol A Exposure and Health Risks108



Term Count P value FDR Genes

Drug binding 9 8.84E−06 1.31E−02 DRD1, IL2RA, DRD3, DRD2, SLC6A3, CNR1, SLC6A4, 

DRD4, HTR2A

Catecholamine 

binding

5 1.03E−05 1.52E−02 DRD1, DRD3, DRD2, SLC6A3, DRD4

Dopamine 

neurotransmitter 
receptor activity

4 2.39E−05 3.54E−02 DRD1, DRD3, DRD2, DRD4

Table 5. GO analysis for the genes related to schizophrenia.

Term Count P value Genes

KEGG

Neuroactive ligand‐

receptor interaction

23 2.33E−08 GABRD, DRD1, DRD3, GABRB2, GRIK2, DRD2, GABRA6, 

DRD4, GRIK5, OXTR, NR3C1, NTSR1, VIPR2, HRH1, GRM3, 

TAAR6, GRM2, GRIN2B, GRIN2D, CNR1, HTR7, HTR6, 

HTR2A

Cocaine addiction 10 2.35E−05 DRD1, GRM3, BDNF, GRM2, GRIN2B, DRD2, SLC6A3, 

GRIN2D, MAOB, RGS9

Dopaminergic synapse 13 2.28E−04 DRD1, DRD3, DRD2, SLC6A3, MAOB, DRD4, COMT, AKT1, 

GRIN2B, GSK3A, GSK3B, CAMK2B, PLCB1

cAMP signalling 

pathway

14 4.17E−03 DRD1, ADCY7, PIK3CB, DRD2, OXTR, VIPR2, AKT1, BDNF, 

GRIN2B, GRIN2D, PDE4B, HTR6, CAMK2B, HCAR2

Calcium signalling 

pathway

12 4.66E−02 DRD1, HRH1, NOS1, ADCY7, HTR7, GRIN2D, HTR6, OXTR, 

CAMK2B, NTSR1, PLCB1, HTR2A

WikiPathways

Monoamine GPCRs 8 3.30E−05 HTR6, HRH1, HTR7, HTR2A, DRD1, DRD2, DRD3, DRD4

Circadian rhythm‐

related genes

15 9.90E−05 NTRK1, GSK3B, TPH1, PML, SLC6A4, IL6, HTR7, NRIP1, 

AVP, DRD1, DRD2, TP53, DRD3, LGR4, DRD4

SIDS susceptibility 

pathways

12 8.30E−04 IL6, TPH1, VIPR2, BDNF, IL1B, HTR2A, AVP, TAC1, NR3C1, 

TNF, IL6R, SLC6A4

Spinal cord injury 10 9.54E−04 RTN4R, IL6, BDNF, IL1B, PLXNA2, CCL2, NOS1, TP53, TNF, 

RTN4

Alzheimer’s disease 10 9.54E−04 GSK3B, LRP1, IL1B, APOE, NOS1, PLCB1, TP53, TNF, 

GRIN2B, GRIN2D

Vitamin B12 

metabolism

7 9.54E−04 IL6, GIF, IL1B, MTHFR, CCL2, APOE, TNF

Monoamine transport 6 8.30E−04 IL1B, NOS1, SLC6A1, TNF, SLC6A3, SLC6A4

Hypothetical network 

for drug addiction

6 8.30E−04 CAMK2B, DRD1, DRD2, GRIN2B, DRD4, GRIN2D

Reactome

Transmission across 

chemical synapses

17 7.71E−07 CAMK2B, GABRB2, GABRA6, GRIK5, GAD1, GAD2, GRIK2, 

SLC6A1, COMT, ADCY7, GRIN2B, SYN2, CPLX1, SLC6A3, 

GRIN2D, DLG1, PLCB1
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Term Count P value Genes

Amine ligand‐binding 

receptors

9 2.36E−06 HTR6, HRH1, HTR7, TAAR6, HTR2A, DRD1, DRD2, DRD3, 

DRD4

Neuronal system 17 3.63E−05 CAMK2B, GABRB2, GABRA6, GRIK5, GAD1, GAD2, GRIK2, 

SLC6A1, COMT, ADCY7, GRIN2B, SYN2, CPLX1, SLC6A3, 

GRIN2D, DLG1, PLCB1

Signalling by GPCR 35 2.07E−04 CAMK2B, OXTR, VIPR2, PIK3CB, HTR2A, PHB, ADCY7, 

HCAR2, RGS4, GRM3, GRM2, HTR6, HRH1, HTR7, CNR1, 

PDE4B, AKT1, CCL2, DRD1, TAC1, DRD2, RGS9, DRD3, 

DRD4, NTSR1, TAAR6, NRG1, GRIN2B, GRIN2D, NRG3, 

IL2RA, RGS12, AVP, PLCB1, FGFR1

Signal Transduction 53 2.07E−04 GSK3B, GSK3A, OXTR, VIPR2, TRRAP, HTR2A, PIK3CB, 

NR3C1, TNF, GRM3, RGS4, GRM2, HTR6, HTR7, KDR, 

PDE4B, AKT1, VPS35, IL6R, RGS9, TAAR6, NRG1, NRG3, 

AVP, PLCB1, TP53, CAMK2B, LRP1, PHB, ADCY7, THBS1, 

RTN4, HCAR2, HRH1, CNR1, CCL2, APOE, DRD1, DRD2, 

TAC1, DRD3, PAK2, DRD4, NTSR1, NTRK1, GRIN2B, MTOR, 

GRIN2D, IL6, IL2RA, RGS12, LGR4, FGFR1

Class A/1 (Rhodopsin‐
like receptors)

16 2.07E−04 OXTR, TAAR6, HTR2A, HCAR2, HTR6, HRH1, HTR7, CNR1, 

CCL2, AVP, DRD1, DRD2, TAC1, DRD3, NTSR1, DRD4

GPCR ligand binding 18 6.14E−04 OXTR, TAAR6, HTR2A, HCAR2, GRM3, GRM2, HTR6, 

HRH1, HTR7, CNR1, CCL2, DRD1, AVP, DRD2, TAC1, DRD3, 

DRD4, NTSR1

Signalling by PDGF 15 1.72E−03 CAMK2B, GSK3B, GSK3A, NRG1, PHB, PIK3CB, ADCY7, 

GRIN2B, THBS1, MTOR, GRIN2D, NRG3, IL2RA, AKT1, 

FGFR1

Downstream signalling 

of activated FGFR4

14 1.72E−03 CAMK2B, GSK3B, GSK3A, NRG1, PHB, PIK3CB, ADCY7, 

GRIN2B, MTOR, GRIN2D, NRG3, IL2RA, AKT1, FGFR1

Downstream signalling 

of activated FGFR3

14 1.72E−03 CAMK2B, GSK3B, GSK3A, NRG1, PHB, PIK3CB, ADCY7, 

GRIN2B, MTOR, GRIN2D, NRG3, IL2RA, AKT1, FGFR1

Signalling by FGFR4 14 1.72E−03 CAMK2B, GSK3B, GSK3A, NRG1, PHB, PIK3CB, ADCY7, 

GRIN2B, MTOR, GRIN2D, NRG3, IL2RA, AKT1, FGFR1

Downstream signalling 

of activated FGFR2

14 1.72E−03 CAMK2B, GSK3B, GSK3A, NRG1, PHB, PIK3CB, ADCY7, 

GRIN2B, MTOR, GRIN2D, NRG3, IL2RA, AKT1, FGFR1

Signalling by FGFR3 14 1.72E−03 CAMK2B, GSK3B, GSK3A, NRG1, PHB, PIK3CB, ADCY7, 

GRIN2B, MTOR, GRIN2D, NRG3, IL2RA, AKT1, FGFR1

Downstream signalling 

of activated FGFR1

14 1.72E−03 CAMK2B, GSK3B, GSK3A, NRG1, PHB, PIK3CB, ADCY7, 

GRIN2B, MTOR, GRIN2D, NRG3, IL2RA, AKT1, FGFR1

NGF signalling via 

TRKA from the plasma 

membrane

15 1.72E−03 NTRK1, CAMK2B, GSK3B, GSK3A, NRG1, PHB, PIK3CB, 

ADCY7, GRIN2B, MTOR, GRIN2D, NRG3, IL2RA, AKT1, 

FGFR1

Signalling by FGFR1 14 1.80E−03 CAMK2B, GSK3B, GSK3A, NRG1, PHB, PIK3CB, ADCY7, 

GRIN2B, MTOR, GRIN2D, NRG3, IL2RA, AKT1, FGFR1

DAP12 signalling 14 2.09E−03 CAMK2B, GSK3B, GSK3A, NRG1, PHB, PIK3CB, ADCY7, 

GRIN2B, MTOR, GRIN2D, NRG3, IL2RA, AKT1, FGFR1

Downstream signal 

transduction

14 2.00E−03 CAMK2B, GSK3B, GSK3A, NRG1, PHB, PIK3CB, ADCY7, 

GRIN2B, MTOR, GRIN2D, NRG3, IL2RA, AKT1, FGFR1
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PAFAH1B2, VLDLR, MAP1B and SNCA might interact with BPA because of their involve‐

ment in the same pathway with RELN [40]. LRTOMT and COMTD1 might also be the candi‐

date interacted genes with BPA because of their shared protein domains. In module 4, 10 genes 

are involved. Co‐expression and physical interactions are the main interaction modes for these 

genes. HCRTR1, ZDHHC23, CLIC6 and MUC20 are the possible candidate genes influenced 
by BPA mainly because of their physical and genetic interactions. In module 5, TSPAN18, 

NKAPL and ZKSCAN4 were connected by physical interactions, co‐expression, co‐localiza‐

tion and shared protein domains. NKAP, ZSCAN9, ZSCAN16‐related genes could also be the 

candidate interacted genes of BPA because of the shared protein domains or co‐expression.

4.4. Autism spectrum disorders

We found 51 ASD genes that could biinteract with BPA. These genes are partly involved in 

the BPs such as organism development, system development, synapse organization, behav‐

iour, learning or memory, regulation of synapse structure or activity, multicellular organis‐

mal process, nervous system development, membrane potential, cellular process and cell‐cell 

signalling‐related processes. Involved CC was synaptic membrane, and MFs included neuro‐

ligin family protein binding and chromatin binding. The KEGG pathways such as neuroactive 

ligand‐receptor interaction and cocaine addiction were found as Sch. Like ID and LD, MECP2 

and associated Rett syndrome (WikiPathways) was also found in ASD. PRC2 methylates 
histones and DNA, non‐integrin membrane‐ECM interactions, and gastrin‐CREB‐signalling 

pathway via PKC and MAPK were the main pathways found in Reactome.

Two molecular modules were found for ASD (Figure 2: ASD‐1, ASD‐2). In module 1, TET3, 
SIN3A, DNMT3A and DNMT3B were connected to each other by physical interactions, 

co‐expression, predicted, pathway, co‐localization, genetic interactions and shared protein 

domains. HDAC2 and MORF4L1 might be the candidate genes interacted with BPA because 

of their predicted interaction with SIN3A [24]. DNMT3L and MYB are another two main 

genes in this module because of their direct or indirect interactions with other genes. AVPR1A, 

OXTR and NTSR1 composite the module 2 through physical interactions, co‐expression, path‐

way, co‐localization and shared protein domains. OXT and NTS are another two main genes 

in this module; they share the same pathway with OXTR, NTSR1, AVPR1A and some other 

genes [40] and, thus, might be influenced by BPA.

Term Count P value Genes

Neurotransmitter 
receptor ainding 

and downstream 

transmission in the 

postsynaptic cell

10 7.83E−04 CAMK2B, GABRB2, DLG1, GABRA6, GRIK5, GRIK2, PLCB1, 

ADCY7, GRIN2B, GRIN2D

Signalling by EGFR 14 2.51E−03 CAMK2B, GSK3B, GSK3A, NRG1, PHB, PIK3CB, ADCY7, 

GRIN2B, MTOR, GRIN2D, NRG3, IL2RA,AKT1,FGFR1

Table 6. Pathway analysis for the genes related to schizophrenia.
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Figure 3. Networks for the genes in the PPI MCODE molecular modules for Sch.
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4.5. Anxiety disorders

A total of 34 genes associated with AD were found bi‐interacted with BPA. GO analysis for 

these genes indicated that behaviour, learning or memory, cognition, monoamine transport, 

chemical synaptic transmission, cell‐cell signalling, anterograde trans‐synaptic signalling and 

neurological system process were all significant BPs such as LD, Sch and ASD. Interestingly, 
blood circulation, circulatory system process and regulation of blood pressure were found 

significant for AD. Like ID, LD, Sch and ASD, significant CCs included neuron part, neuron 
projection, somatodendritic compartment, synapse part, axon, synapse, dendrite, cell body, 
presynapse and neuronal cell body. Significant MFs included receptor binding, neuropeptide 
hormone activity and G‐protein–coupled receptor binding. The significant KEGG pathways 
were as those found in LD. Neuroactive ligand‐receptor interaction, alcoholism, cAMP signal‐

ling pathway, serotonergic and dopaminergic synapse, Rap1 signalling pathway and retro‐

grade endocannabinoid signalling are the potential KEGG pathways that might be influenced 
by BPA in AD. For WikiPathways, monoamine transport was again found related to BPA bi‐

interacted genes in AD. Other significant pathways included circadian rhythm‐related genes, 
nicotine activity on dopaminergic neurons, corticotropin‐releasing, GPCRs, cytosine methyla‐

tion, myometrial relaxation and contraction pathways and estrogen‐signalling pathway. In 

Reactome pathways, GPCR related, Class A/1, Class B/2, G alpha–related signalling events and 
peptide ligand‐binding receptors were found possibly involved in the BPA‐AD interactions.

Only one molecular module was found for AD, in which UCN, ADORA2A, CRH, NPS, CRHR2, 

NPY, NPY1R, APP, HTR7, CNR1, GRM8, SLC6A3, DRD2 and CARTPT were involved 

(Figure 2: AD). The interaction modes for these genes included predicted, physical interac‐

tions, shared protein domains, co‐expression and co‐localization. The genes in this module 

are all involved in neuroactive ligand‐receptor interaction (KEGG pathway) which is consis‐

tent with the Reactome pathways of GPCR signalling and G alpha signalling events.

4.6. Bipolar disorder

A total of 39 genes were found bi‐interacted with BPA for BD. The BPs, CCs and MFs were quite 

the same as AD. Neuroactive ligand‐receptor interaction, dopaminergic synapse, calcium‐signal‐

ling pathway, neurotrophin‐signalling pathway, synaptic vesicle cycle, insulin secretion, mor‐

phine signalling pathway, MAPK signalling pathway, glutamatergic synapse and serotonergic 

synapse were found in KEGG pathways. Like LD and Sch, SIDS susceptibility pathways was also 

found significant for BD. GPCR‐related pathways such as monoamine GPCRs in WikiPathways 
and GPCR ligand binding in Reactome were found to be involved in BPA‐BD as in BPA‐AD.

One molecular module was found for BD (Figure 2: BD), in which D1, NTRK1, DRD5, PVALB, 
NTRK2, HTR2A, COMT and INS were involved. Shared protein domains, co‐localization and 

co‐expression were the main interactions in this module. COMTD1 and LRTOMT might also 

be influenced by BPA because of their shared protein domains with COMT.

4.7. Other neurodevelopmental disorders

A total of 14 genes were found for bi‐interacted BPA in DS. GO analysis indicated cellular oxi‐

dant detoxification‐related BPs significant for these genes, and the MF of antioxidant activity 
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was found significant consistently. The pathway analysis showed that KEGG pathway like 
one carbon pool by folate, and some pathways related to folate, one carbon or water‐soluble 

vitamins metabolism in WikiPathways or Reactome pathways. Detoxification of reactive oxy‐

gen species and cellular responses to stress were also found significant in Reactome pathways. 
Consistent with the results of GO and pathway analyses, PPI interaction showed two differ‐

ent molecular modules, one with SLC19A1, MTR and MTHFR, and the other with SOD1, 

PRDX2 and PRDX6. It is clear that the module 1 is related to the clustering function of folate 

and other water‐soluble vitamins metabolism, and the module 2 is for the detoxification of 
reactive oxygen species. Folate pathway has been regarded as involved in the pathogenesis 

of DS. Simultaneously, BPA exposure has the potential effects on the human phenotypes and 
altering DNA methylation [49, 50], which could be counteracted by the supplementation of 

methyl donors such as folate, choline, betaine and vitamin B12 [50]. Detoxification of reactive 
oxygen species and cellular responses to stress are important to maintain the mitochondrial 

function, which has been associated with the aetiology of early‐onset dementia in patients 

with DS [51, 52].

For other NDs, less reference count or low inference score was found. But the limited results 

of GO and pathway analyses showed similar BPs, CCs, MFs and pathways with the above 

mentioned NDs in some extent.

5. Gene regulation

Transcription factors (TFs) and microRNAs (miRNAs), the largest families of transacting, 

share a common regulatory logic and represent the most numerous gene regulatory factors 

in multicellular genomes [53, 54]. The library of ENCODE and ChEA Consensus TFs from 

ChIP‐X in EnrichR (http://amp.pharm.mssm.edu/Enrichr/ [13, 14]) were used for the pos‐

sible TFs and related networks. The TargetScan library in EnrichR was used for the possible 

miRNA interaction. Here we only analysed the genes of ID, LD, Sch, ASD, LD, SMD, BD and 

SD whose inference score all over 10.

For the TFs, it was only ID, ASD, AD and BD that were found significant TFs (Table 7). USF2, 

MAX, SPI1, SMAD4, POU5F1, PPARD, MYC and RUNX1 were found significant for ID. The 
regulated genes for each of these TFs are shown in Table 7. The direct evidences for the USF2 

linked to ID were the regulating role of USF2 on FMR1 of Fragile X mental retardation [55, 56]. 

SUZ12 was found common in ASD, AD and BD, and REST was found in both ASD and BD. 

SUZ12, as a component of the polycomb repressive complex, was shown to interact with some 

of long non‐coding RNAs like AK055040 to involve in neural development and brain function 

[57]. REST is a key TF that represses expression of genes involved in neurogenesis and neuro‐

nal function in non‐neural and immature neural cell types [58].

Some miRNAs were found in Sch, ASD, AD and BD (Table 8). MIR‐218 and MIR‐485‐3p were 

significant in both Sch and AD. It has been reported that miR‐218 is involved in Sch [59], and 

miR‐485‐3p is associated with obsessive‐compulsive disorder, a type of AD [60]. MIR‐380‐3p 

was found significant in both ASD and BD, but no direct evidence in human studies.
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Term Overlap Adjusted 

P‐value

Combined 

score

Genes

ID

USF2 16/965 0.0050 9.01 PECR, FMR1, PMM2, HEXA, PTEN, TRMT1, WDR62, 

ZBTB40, MED13L, AP4M1, NAGLU, CAPN10, FASN, 

SC5D, MAN1B1, RALGDS

MAX 27/2073 0.0049 8.74 HDAC4, KDM5A, HEXA, PTEN, ADK, WDR62, 

TSEN2, ZBTB40, AP4M1, EEF1B2, NAGLU, CASP2, 

SC5D, RALGDS, PARP1, PMM2, SRD5A3, ELP2, 

VRK1, TRMT1, TTI2, METTL23, AHI1, POLR3B, FASN, 

L2HGDH, MAN1B1

SPI1 17/1056 0.0050 8.46 KDM5A, KDM6B, TSEN34, DOCK8, DNMT3A, 

AP4E1, ELP2, VRK1, ERLIN2, TSEN54, TMCO1, 

EEF1B2, METTL23, AHI1, POLR3B, CAPN10, PEX6

SMAD4 11/584 0.0152 6.85 INPP4A, PDHX, SETBP1, DOCK8, PAX6, SRGAP3, 

FRY, MCC, GRIN2B, FGFR2, SHANK2

POU5F1 7/261 0.0167 6.31 EEF1B2, ENTPD1, UBR7, FASN, PAX6, FGFR2, 

ZBTB40

PPARD 7/285 0.0232 5.83 TMEM135, POLR3B, SLC31A1, PMM2, NF1, TSEN2, 

TTI2

MYC 18/1515 0.0416 4.47 ACBD6, PARP1, PMM2, SRD5A3, PTEN, ADK, 

SLC2A1, ELP2, TRMT1, TSEN2, AP4M1, EEF1B2, 

METTL23, POLR3B, NAGLU, FASN, MAN1B1, 

RALGDS

RUNX1 16/1294 0.0426 4.46 DOCK8, PTEN, SLC2A1, ELP2, FRY, KIF7, TSEN54, 

TMCO1, LETM1, NAGLU, DEAF1, CAPN10, NSD1, 

GNAS, SC5D, RALGDS

ASD

SUZ12 15/1684 0.0009 10.75 DLX1, RYR2, OXTR, TSHZ3, BDNF, EN2, DIO3, 

NRXN2, AVPR1A, GRIN2B, DPP6, RELN, LRRTM3, 

SOX9, NTSR1

TCF3 9/1006 0.0323 5.60 LRRTM3, ITGB3, DNMT3A, DNMT3B, NRXN2, 

TBL1X, JARID2, FOXP1, SCN1A

REST 10/1280 0.0323 5.38 GABRB3, RYR2, DPP6, RELN, LRRN3, BDNF, NRXN1, 

DNMT3A, NRXN2, C3ORF58

AD

SUZ12 13/1684 0.0001 14.64 GABRA2, EOMES, UCN, APP, CHRNA5, OXT, 

SLC6A4, HTR7, ADORA2A, CNR1, NPY, GRM8, 

DRD2

BD

REST 10/1280 0.0073 8.07 POMC, SNAP25, NTRK2, RELN, TRPC3, BDNF, 

GRIK2, DRD1, CPLX2, DRD5

SUZ12 10/1684 0.0331 5.13 NTNG1, NTRK2, RELN, TENM4, BDNF, GRIK2, 

TAC1, CPLX2, DRD5, SLC6A4

Table 7. Transcription factors for the BPA‐interacted genes involved in the neurodevelopmental disorders.
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6. Comparable chemicals

The CTD provides a way to group chemicals based upon their biological effects, instead of 
their physical or structural properties, which provides a novel way to view and classify 

genes and chemicals and will help advance testable hypotheses about environmental chemi‐

cal‐gene disease networks [61]. Comparable chemicals were curated for the possible shar‐

ing with many of the networks common to BPA in neurodevelopmental disorders (Table 9). 

Tetrachlorodibenzodioxin, benzo(a)pyrene, vehicle emissions and dibutyle phthalate, as the 

common environmental pollutants, were found interacting with 312, 269, 204 and 159 of the 403 

BPA bi‐interacted genes in the NDs, respectively. Drugs such as valproic acid, acetaminophen, 

Term Overlap Adjusted 

P‐value

Combined 

score

Genes

Sch

MIR‐485‐3P 7/155 0.0171 7.68 ADAMTS3, CNR1, NRXN1, MAGI2, GAD2, CPLX2, 

NR3C1

MIR‐218 11/402 0.0171 7.60 KLF12, RELN, HTR7, NRXN1, MAGI2, GRIK2, 

TAC1, NR3C1, SLC6A1, RTN4, LGR4

ASD

MIR‐380‐3P 5/103 0.0008 13.50 MEF2C, LRRTM3, BDNF, NRXN1, IL1RAPL1

MIR‐524 8/437 0.0009 12.82 DLX1, MEF2C, LRRTM3, PCDH9, IL1RAPL1, 

TBL1X, SOX9, FOXP1

MIR‐368 3/40 0.0061 9.16 DLX1, MEF2C, BDNF

MIR‐302C 5/243 0.0120 7.57 GABRB3, DLX1, PCDH9, TBL1X, FOXP1

MIR‐518C 4/149 0.0143 7.07 PCDH9, ITGB3, DNMT3A, NRXN2

MIR‐373 4/227 0.0483 5.01 GABRB3, DLG4, EN2, SOX9

MIR‐191 2/29 0.0483 4.45 BDNF, FOXP1

AD

MIR‐218 5/402 0.0232 7.15 MECP2, HTR7, MAGI2, GNB1, NPY1R

MIR‐498 3/114 0.0232 6.98 MECP2, CRH, PAM

MIR‐101 4/257 0.0232 6.83 APP, MAGI2, GNB1, FOS

MIR‐141, 

MIR‐200A

4/310 0.0325 6.07 MECP2, CNR1, DIXDC1, DRD2

MIR‐485‐3P 3/155 0.0336 5.97 CNR1, MAGI2, GNB1

BD

MIR‐494 4/164 0.0251 6.71 SP4, GRIK2, CACNA1C, TAC1

MIR‐410 3/93 0.0317 6.41 NTRK2, SP4, NR3C1

MIR‐380‐3P 3/103 0.0317 6.27 SNAP25, BDNF, SP4

Table 8. miRNA for the BPA bi‐interacted genes in neurodevelopmental disorders.
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cyclosporine, pirinixic acid, tretinoin and tetradecanoylphorbol Acetate were found interacted 

with 316, 269, 247, 187, 201, 193 and 146 of the 403 BPA bi‐interacted genes, respectively. Dietary 

pollutant aflatoxin B1, pesticide atrazine, and occupational exposure like copper sulphate, 
ammonium chloride and silicon dioxide and even estrogen estradiol could interact with the 

genes of those BPA bi‐interacted within the NDs.

7. Future trends and conclusion

With the existed data libraries (mainly CTD, GO, pathway, TFs and miRNA relate databases), 

bioinformatics softwares (Cytoscape, MCODE and Genemania) or web‐based tools (STRING, 

GEO, ArrayExpress, David and EnrichR), BPs, CCs, MFs, signal pathways and gene regula‐

tion in the BPA‐gene‐disease networks were presented. These data integration and curation 

Chemical CAS RN Similarity index CIGs CIGs for NDs

Tetrachlorodibenzodioxin 1746‐01‐6 0.5582 12,047 312

Valproic acid 99‐66‐1 0.5035 10,936 316

Benzo(a)pyrene 50‐32‐8 0.4511 9511 269

Acetaminophen 103‐90‐2 0.4093 8435 247

Aflatoxin B1 1162‐65‐8 0.3851 8140 252

Cyclosporine 59865‐13‐3 0.3566 7234 187

Nanotubes, carbon 0.3498 7134 199

Vehicle emissions 0.3458 7156 204

Pirinixic acid 50892‐23‐4 0.3305 6663 201

Estradiol 50‐28‐2 0.2930 5864 202

Copper Sulfate 7758‐98‐7 0.2785 5598 145

(6‐(4‐(2‐Piperidin‐1‐ylethoxy)phenyl))‐3‐

pyridin‐4‐ylpyrazolo(1,5‐a)pyrimidine

0.2583 5186 186

4‐(5‐Benzo(1,3)dioxol‐5‐yl‐4‐pyridin‐2‐yl‐1H‐

imidazol‐2‐yl)benzamide

0.2582 5185 183

Ethinyl estradiol 57‐63‐6 0.2535 5101 153

Tretinoin 302‐79‐4 0.2428 4835 193

Tetradecanoylphorbol acetate 16561‐29‐8 0.2315 4530 146

Atrazine 1912‐24‐9 0.2293 4559 175

Ammonium chloride 12125‐02‐9 0.2273 4509 215

Dibutyl phthalate 84‐74‐2 0.2262 4427 159

Silicon dioxide 7631‐86‐9 0.2224 4441 157

CIGs: common interacting genes; NDs: neurodevelopmental disorders.

Table 9. Chemicals having comparable sets of interacting genes to bisphenol A.
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yielded insight into the actions of BPA and provide a basis for developing hypotheses about 

the molecular mechanisms underlying the aetiology of the neurodevelopmental disorder ID, 

LD, Sch, ASD, AD and BD, although most of the other neurodevelopmental disorders showed 

no enough information to make a conclusion. The nervous system–related CCs such as neu‐

ron related, synapse related, dendrite and axon related are common in CC annotation; the 

commonly found MFs are neurotransmitter receptor binding or activity, signal transducer 
or receptor binding or activity; and the main commonly involved BPs include synaptic sig‐

nalling, cognition, learning or memory, behaviour, the development of nervous system and 

brain, and the regulation of the related BPs. Neuroactive ligand‐receptor interaction, dopami‐

nergic, glutamatergic and serotonergic synapse, monoamine transport, synaptic vesicle path‐

way may involve in the action of BPA in the neurodevelopmental disorders. Simultaneously, 

the BPA disease may share the common pathways with drug addictions (cocaine addiction, 

nicotine addiction and alcoholism), or other types of neurological diseases (Alzheimer’s dis‐

ease, Rett syndrome and sudden infant death syndrome). Unique pathways might also con‐

tribute to the BPA action in different NDs like one carbon metabolism and detoxification of 
oxidative stress–related pathways in Down syndrome. Although GO and pathway results 

indicate some common characteristics, the predicted PPI molecular function clusters are quite 

different for each ND. In addition, some of the NDs share the same TFs and miRNAs, which 
indicate these disorders have the similar expression profiles. What needs to be emphasized 
that the BPA‐gene‐disease networks might be influenced by some of the comparable chemi‐
cals such as environmental pollutants, drugs, dietary pollutants or occupational exposure, 

which share the same interacted genes with BPA.

The integrated and curated biological processes and pathways shall shed light on the future 

studies to find the possible BPA interacted or influenced genes. This will contribute to com‐

plete the BPA‐disease networks, which surely help to screen the potential biomarker of 

BPA‐induced neurodevelopmental diseases. However, it should be noted that most of the 

evidences were from curation of the cell or animal experiments. Simultaneously, the biin‐

teraction mode for BPA‐gene interaction was adopted for the precise network. Therefore, 

the future study design should consider the human subjects. Given the sample shortage, the 
peripheral blood instead of the brain tissue should be preferred in the future. This will con‐

tribute to the clinical diagnosis or intervention. Finally, our results should be carefully inter‐

preted because the results might be changed with the increasing abundance of the enrichment 

of BPA bi‐interacted genes.
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