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Abstract

Feasibility of designing and synthesizing ‘smart’ and ‘intelligent’ materials using nano‐
structured building blocks has been examined here based on the current status of the 
progress made in this context. The added advantages of using 2D layered/nonlayered 
materials along with phytosomal species derived from natural plants are highlighted 
with special reference to their better programmability along with minimum toxicity in 
biomedical applications. The current developments taking place in their upscaled pro‐
ductions are also included while assessing their upcoming industrial usages in diverse 
fields.

Keywords: materials by design, smart and intelligent materials, hybrid nanomaterials, 
targeted drug and gene deliveries, supramolecular complexes

1. Introduction

The study of crystalline materials, initiated since the beginning of the twentieth century, took 

almost 6–7 decades to mature in the form of microelectronics and microsystems technologies 

creating a wealth of information in form of industrial know‐how (FCM, 2009). Subsequently, 

the discovery of the nanomaterials followed by extensive R&D efforts put in during the last 
few decades resulting in simultaneous developments of production/application technologies 

enabled them to be integrated into the biological systems and is currently offering valuable 
supports to the activities in the area of nanobiotechnology —an interdisciplinary field [1].
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Finding inorganic/organic molecules biocompatible in hybrid nanomaterials syntheses, it was 

natural to explore mimicking the features of some simple living organisms in the pursuit of 

developing ‘smart’ and ‘intelligent’ materials responding to the environmental stimuli to start 

with. Consequently, attempts were made to identify the basic requirements of the materials 
to qualify for being ‘smart’ or ‘intelligent.’ Despite using these terms interchangeably earlier, 

some clarity started emerging particularly after several comprehensive deliberations held on 

this issue in different forums in form of two distinct levels of interactions between materi‐
als and the external stimuli. For instance, the materials that respond to the external stimuli 

by showing appreciable changes in their properties are termed as ‘smart’ leading to fabri‐

cate a variety of sensors and actuators. However, the material becomes ‘intelligent’ once it is 

endowed with the capability of reorganizing itself internally to take care of the changes due to 

external stimuli adaptively, and in such cases, a number of in‐built features must be involved 

internally in a way similar to those in a conventional control system. For instance, the changes 

in material properties arising out of material‐stimuli interactions must be communicated to a 

decision‐making component of the material along with memory functions for taking decisions 

to initiate appropriate actions for countering the changes within a reasonable time period, 

which is an important parameter that may vary under different circumstances [2–5].

Coming back to the discussion of nanostructured materials, it may be noted that the modifica‐

tions introduced into their physico‐chemico‐biological properties are considered as the result 

of the quantum confinement superimposed upon their bulk properties culminating into the 
morphology‐specific features with enhanced activity arising from the exposure of the surface 
residing atomic species with sufficient unsaturated chemical bonds. These nanomaterials are 
subjected to still further modifications via their chemical conjugations involving strong/weak 
interactions in preparing the 1/2/3‐dimensional nanobuilding blocks like nanowires, nano‐

tubes, nanocoils, nanoropes, besides synthetic superlattices, and functional nanocomposites in 
addition to many other functional entities that are still being explored for their resultant struc‐

ture‐activity relationships (SAR) for developing newer materials. Further, the macromolecular 

species involving fullerenes, nanowires, nanotubes, and dendrimers prepared using different 
constituent materials are also being considered for new material discoveries owing to their 

chemical conjugations with a whole host of inorganic, organic, and biomolecular species [6–9].

The established links between the inorganic nanoparticles (NPs) and the biomolecular spe‐

cies using the biopolymeric compounds in different configurations possessing biocompatible, 
biodegradable, and low immunogenic features are currently being used in fabricating nano‐

biocarriers in drug/gene deliveries involving the polysaccharides, proteins, and nucleic acids 

to name a few [6]. For such applications, it is indeed imperative to control their morphol‐

ogy, surface charges, and the release profiles of the loaded therapeutic species. Subsequently, 
numerous bioactive nanomaterials were developed using silk proteins, collagen, gelatin, 

casein, albumin, protein‐mimicking polypeptides, and polysaccharides like chitosan, alginate, 

pullulan, starch and heparin as typical examples. Protein engineered polymeric scaffolds, 
in addition, have been used in developing protein‐polymer hybrids, where polymeriza‐

tion induces multifunctional properties leading to improved performances. Various kinds 

of supramolecular hydrogels with physicochemical properties for drug and gene deliver‐

ies owing to their features like good water‐retention, better drug loading, biodegradability, 
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biocompatibility, stability combined with multiple functionalities including optoelectronic 

properties, bioactivity, self‐healing, and shape‐memory effects were consequently explored 
and put to use. In addition, their stimuli responding gel/sol transitions (reversible) due to 

their noncovalent cross‐linkages–based interactions were considered as promising bioscaf‐

folds in theranostics. Various SAR aspects of these hydrogels with particular reference to 

their applications in bioimaging/detection, therapeutic delivery, and tissue engineering were 

reviewed recently [6–8, 10–18].

The phenomenon of self‐assembly with special reference to the supramolecular assemblies 

using noncovalent intra‐/intermolecular interactions has been invoked in producing the 

micro‐/nanostructures including micelles, membranes, vesicles, and liquid crystals in the 

framework of crystal engineering. Molecular recognition‐based ‘host‐guest’ complexes are 

currently finding increasing applications in the development of molecular sensors and cataly‐

sis. It is important to note that the enhanced reactivity associated with the nanostructured 

materials has always been useful in molecular recognition‐based self‐assemblies providing 

environment for the ensuing chemical reactions. Noncovalent bonds between the reactants and 

‘template’ holding the reactants close to the reactive sites provide the required environment 

for chemistry. Mechanically interlocked molecular architectures of topologically connected 

molecules involving noncovalent bonds in catenanes, rotaxanes, molecular knots, molecular 

rings and ravels are known to mimic the biological systems in form of photo‐electro‐chemical 

systems, catalytic systems, protein designs, and self‐replications. A template molecule sur‐

rounded by functional monomers starts attaching them via intergroup interactions that helps 
in forming an imprinted matrix after polymerization. Subsequent removal of the template 

forms complementary cavities offering selective binding sites for new material synthesis [19].

While developing these numerous types of nanomaterials, a new class of condensed state 

materials was discovered exhibiting properties that surpassed those of the bulk and conven‐

tional nanomaterials. The theoretical studies of these atomically thin two‐dimensional (2D) 

nanomaterials have, in the mean time, uncovered a number of novel features particularly 

arising out of the electron confinement in the third dimension without interlayer interactions 
(monolayer) resulting in extreme mechanical flexibility and optical transparency well suited 
for the fabrication of highly flexible and transparent electronic/optoelectronic devices, and 
the large surface to volume ratio making them appropriate for surface active applications. 

This fascinating field of graphene‐like 2D layered nanomaterials (GLNs) includes a number 
of already explored materials like graphene, hexagonal boron nitride (h‐BN), transition metal 

dichalcogenides (TMDCs), graphitic carbon nitride (g‐C
3
N

4
), layered metal oxides, layered 

double hydroxides (LDHs) besides materials belonging to metal‐organic frameworks (MOFs), 
covalent organic frameworks (COFs), polymers, metals, black phosphorus (BP), silicene, and 
MXenes. Driven by their extraordinary characteristic properties assessed theoretically and 

validated partly in some cases, a large number of synthetic methods including mechanical/

chemical exfoliations, ion‐intercalation and exfoliation, anion‐exchange and exfoliation, chem‐

ical vapor deposition (CVD), and wet‐chemical syntheses have been developed for preparing 

them for numerous applications. These nanomaterials are showing high promises for a vari‐

ety of applications in electronics, optoelectronics, catalysis, energy storage and conversion, 

biomedicine, sensors, and many more [20]. Their other physicochemical properties like strong 
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mechanical strength, unparalleled thermal conductivity, remarkable biocompatibility, and 

ease of surface functionalization make them highly useful in biochemical/medicinal applica‐

tions particularly in biosensors, and nanomedicine comprising of electrochemical biosensors, 

optical biosensors, bioimaging, drug delivery and cancer therapy [21].

In particular, after the discovery of graphene, these 2D layered materials were exfoliated in 

the form of solvent dispersed crystalline few‐/monolayers comprising the covalently bonded 

few atoms forming the crystalline stack, when bundled together with the van der Waals 

forces. For instance, heterostructures formed out of these monolayers of chalcogenides, gra‐

phene, and hBN are currently being examined as building blocks with tailored electronic 

band structures and associated physicochemical properties. Some of these predictions are yet 

to be realized experimentally as cited by many [22–38].

While studying the influence of structural features of these 2D material species, the character‐

istic features of the lamellar and 2D layered/nonlayered materials were found showing addi‐

tional features worth use. It may particularly be noted that these 2D nanosheets not only exhibit 

novel optical and electronic properties due to the confinement of electron states along c‐axis but 
also help in forming a variety of layered nano‐/microsize entities involving differential stresses 
present in their bilayers to enforce numerous kinds of self‐assemblies that are being explored 

in targeted deliveries. Based on these special features of 2D layered and nonlayered thin films 
along with the synthesis of lamellar nanoassemblies, an attempt has been made here in this 
chapter to highlight their syntheses along with their some novel applications already studied.

In the context of examining the usability of biopolymeric species in nanomedicines, the self‐

assembled liposomes were found offering special features that are quite useful in the tar‐

geted deliveries, where the hydrophilic/hydrophobic contents embedded in nano‐/microsize 

double‐layer enclosed spherical volumes with very effective protections from the enzymes, 
alkaline solutions, digestive juices, bile, and intestinal flora inside human body as well as free 
radicals. Accordingly, the liposomes are not only noted to check the oxidation and degrada‐

tion of the embedded cores but also retain their double‐layer barrier intact until the contents 

are delivered to the desired site. Discovered in the 1960s, liposomes are known to possess 

versatile features owing to their compositional variability and structural properties leading to 

a number of pharmaceutical, nutraceutical, and cosmeceutical applications, wherein, even the 

herbal extracts like flavonoids, glycosides, and terpenoids have been enclosed and transported 
from the hydrophilic to the lipophilic part of the membrane showing better bioavailability/
efficacy, as noted in case of ginkgo biloba, grape seed, green tea, milk thistle, ginseng, and 
many other herbal families already explored for their applications in therapeutic formulations 

and dietary supplements [6, 7, 11, 18]. Liposomes are currently used in the pharmaceutical 
applications showing promises as intracellular delivery systems for antisense molecules, ribo‐

somes, proteins/peptides, and DNA. Liposomes with enhanced drug delivery and long circu‐

lation times are finally getting clinically accepted as the liposomal drugs exhibiting reduced 
toxicities while retaining enhanced efficacy compared to their free complements [39–41].

Before putting these synthetic materials species to use in the form of nanomedicines, their 
toxicity features must be rigorously evaluated following the recommended standard proce‐

dures. Somehow, the data available in this context are inadequate as the associated toxicity 
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is a complex function of the surface modification causing highly variable solubility of the 
inorganic nanomaterials. Accordingly, the associated toxicity scare is so strong that the regula‐

tory authorities permit no relaxation in allowing for their human trials. Because of the mostly 

unknown nanotoxicological properties of these newer kinds of synthetic nanomaterials, even 

their nonbiological applications are presumably not considered safe, which, to a certain extent, 

has been creating hurdles in developing their further applications [42].

A relatively safer approach of mitigating these toxicity issues could be to use the benign nano‐

materials particularly derived from the plants as phytochemicals. Such nanobuilding blocks 

of natural origin, already studied extensively in the recent past, are not only found adequately 

safe but are also compatible with numerous biomolecular species ensuring more benign inter‐

actions in contrast to those derived from purely synthetic materials of inorganic/organic ori‐

gins. This approach is certainly green in nature while meeting various requirements of hybrid 

nanostructured materials species put to use in form of novel applications. A large variety of 

biomimetic designs are thus becoming feasible to invoke once green phytosomal building 

blocks are put to use in synthesizing new kinds of materials [11].

The recent developments in the field of liposomal encapsulations involving single/multiple 
bilayer nanosize enclosures and graphene‐like few‐/monolayered nanosheets, introduced 

above in very brief, do indicate toward the suitability of using these nanosize thin films as 
building blocks capable of imparting novel features for their applications that will be appreci‐

ated with wider impacts in the times to come. Keeping in view the importance of this growing 

field of nanosize thin film materials, an effort has been made here in this review by assessing 
the current status before attempting to foresee the trends from the angle of developing intel‐
ligent materials in due course of time by employing them in new materials discoveries.

2. Programmable physicochemical properties

The phenomenon of quantum confinement involved in preparing 1‐, 2‐, and 3D nanomateri‐
als has already been validated experimentally before using them in newer applications while 

considering the electrons and the photons together in the form of diverse material building 

blocks designs as highlighted in the following.

2.1. Metal and semiconductor NPs

The plasmon resonance excited in metal NPs in the presence of a dielectric as a function of 

morphology and the metal used, and falling in the visible/IR region, have been exploited in 

electromagnetic enhancement resulting in Raman, fluorescence, and infrared absorption spec‐

troscopies for single molecule detection; tip enhanced Raman spectroscopy, optical circuits, 

high efficiency LEDs, chemical/biochemical sensors, and efficient solar cells due to better light 
confinement in the photoactive material, or achieving resonant internal light scattering. In one 
of the highest efficiency organic solar cells, for instance (P3HT: PCBM bulk HJ), the efficiency 
limitations due to lower cutoff wavelength (∼650 nm/EG∼2.1 eV) was taken care of by enhancing 
optical absorption as reported [43–55].
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Semiconducting NPs, also called quantum dots (QDs), behave like quasi‐atoms with elec‐

trons/holes possessing discrete energy levels, and exhibiting size‐specific absorption and 
luminescence spectra characterized by the material used. QDs are very efficient light emitters 
with photoluminescence quantum efficiency ∼80% and size‐dependent emission characteris‐

tics. For instance, varying the size of CdSe QDs from 3 to 6.5 nm changed the emission from 
470 to 630 nm. A number of optoelectronic devices using QDs are reported including biologi‐
cal tags, white LEDs, OLEDs, and photovoltaic solar cells (PVSCs) with efficiencies exceeding 
Shockley‐Queisser limit [56–61].

2.2. Polymeric NPs

A variety of polymeric NPs involving either dispersion of preformed polymers or the polym‐

erization of monomers have been reported using techniques like solvent evaporation, salting‐

out, dialysis, supercritical fluid technology, microemulsion, miniemulsion, surfactant‐free 
emulsion, and interfacial polymerization, where the actual choice depends on a number of 

factors like particle size, size distribution, and the area of applications as discussed in a recent 

review [62].

Investigations have already correlated the physicochemical properties of the polymeric NPs 

with their biological responses, in which the morphology and surface charges on biodegrad‐

able entities were explored in designing various formulations in a recent review highlighting 

the challenges involved with in vivo trials [63]. Polymeric NPs are known to offer not only 
protection from environmental stimuli but also providing site‐specific deliveries, particu‐

larly in case of charged NPs that are well protected. Parameters like uptake, bioavailability, 

and long‐term therapeutic efficacies are possible to optimize by controlling their electrostatic 
interactions as mentioned below [64].

The study of drug release characteristics of diazepam loaded PLGA NPs confirmed that the 
parameters like sonication time, polymer content, surfactant, ratio of organic to aqueous 

phase, and the amount of drug—all influenced their sustained release [65]. Similarly, surface 

modifications of poly (ethylene glycol)‐b‐poly (ε‐caprolactone) (PEG‐b‐PCL) NPs by 1, 4 and 
8‐residue‐long oligoarginines caused substantial increase in cellular uptake highlighting the 

influence of surface functionalization of polymeric NPs in subcellular targeting [66]. In yet 

another study, core‐shell type NPs, loaded with doxorubicin (DOX), were assessed for their 
in vitro cytotoxicity against breast cancer and human fibroblast cell lines in which AgNPs, 
Ag/PVA and Ag/PVP NPs were found more cytotoxic to MCF‐7 cells than normal fibroblasts, 
as well as DOX‐Ag, DOX‐Ag/PVA, DOX‐Ag/PEG and DOX‐Ag/PVP nanocarriers exhibit‐
ing enhanced cytotoxicity to breast cancer cells [67]. The inorganic NPs embedded polymer 

matrix showed enhanced performance as discussed in a recent review dealing with prepara‐

tion and characterization of cytocompatible multifunctional polymeric NPs by analyzing their 

fluorescence efficiency, the nature of the artificial cell‐membrane structure, and their perfor‐

mance as in‐cell devices [68]. In enzyme replacement therapy of lysosomal storage disorders 

(LSDs), using PLGA NPs modified with 7‐aminoacid glycopeptide (g7) NPs along with high 
MW drug (FITC‐albumin) improved the barrier crossing of albumin while delivering the drug 

to the brain [69].
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2.3. Supramolecular systems

Molecular self‐assembly is exploited in supramolecular formulations for preparing molecular 

assemblies through noncovalent intra‐/intermolecular interactions resulting in the formations 

of micelles, membranes, vesicles, and liquid crystals. Molecular recognition‐based host‐guest 

complexes are now being exploited in molecular sensors and catalysis. It is noteworthy that 

reactive species are found essential for participating in such molecular‐recognition–based 

self‐assemblies providing environment for chemical reactions. Noncovalent bonds between 

the reactants and template holding the reactants near the reactive sites provide the environ‐

ment for chemistry. Mechanically interlocked molecular architectures are formed consisting 

of topologically linked molecules involving noncovalent bonds in molecular architectures like 

catenanes, rotaxanes, molecular knots, rings and ravels. There are a number of these sys‐

tems that mimic the biological processes through photo‐electro‐chemical/catalytic systems, 

protein designs, and self‐replications. In another process of molecular imprinting, a host is 

constructed out of suitable molecules as a template that is subsequently removed leaving 

the guests stabilized through steric interactions besides incorporating hydrogen bonding and 

other interactions.

Numerous molecular systems that have been studied recently include mechanically inter‐

locked systems employing  π / π  charge‐transfer interactions of bipyridinium with dioxyarenes 

and diaminoarenes, crown ether binding with metal/ammonium cations, formations of car‐

boxylic acid dimers and other hydrogen bonding interactions, bi/tri‐pyridines combinations 

with ruthenium, silver, and other metal ions, and complexation of porphyrins and phthalo‐

cyanines around metal ions used by Nature in abundance. Similarly, there are macrocycles 

providing cavities surrounding guest species during chemical modifications for fine‐tuning 
of their features, cyclodextrins, calixerenes, cucurbiturils, and crown ethers; cyclophanes, and 

cryptands; metallocycles with metal ions in the ring formed from angular and linear modules 

including triangles, squares, and pentagons, each bearing functional groups that connect the 

pieces via self‐assembly; and metallo‐macrocycles generated from fused chelate‐rings that 

have been studied for their several possible applications. Further, for introducing suitable 

spacing and conformations relative to each other, a number of structural units have been 

employed including spacers, connecting groups out of polyether chains, bi/tri‐phenyls, and 

simple alkyl chains; NPs, NRs, fullerenes, dendrimers offering nanometer‐sized structure and 
encapsulation units, scaffolds on surfaces for interfacing electrochemical systems with elec‐

trodes. In addition, photochromic and photoisomerizable groups with ability to change their 

shapes and properties upon light exposure, TTF, and quinones capable of being switched 

with redox chemistry or electrochemistry, usage of benzidine derivatives, viologens groups 

and fullerenes in supramolecular electrochemical devices [70–80].

3. Nanomaterial synthesis

Knowing well about the advantages associated with quantum confinement in 1/2/3 dimen‐

sions in nanostructured material species during their preliminary investigations, it became 
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imperative to explore the possibility of synthesizing them in quantity with controlled proper‐

ties in stable form. Some of these aspects of nanostructured material species are examined 

here from the point of view of their industrial applications.

3.1. Synthesis of nanoparticulate materials

The basic scheme of chemical synthesis of metal NPs employs a suitable stabilizing agent 

added to a mixture of metal salt precursor and reducing agent chosen out of several includ‐

ing sodium citrate, sodium borohydride, and alcohols to convert metal ions into metal atoms 

that ultimately form NPs [81–83]. Silver colloidal solution prepared using citrate reduction 

reported in 1982 did contain 20–600 nm NPs, in which pH affected the morphology by chang‐

ing from triangular to spherical/cylindrical shapes after changing the pH from 5.7 to 11.1 

[84–87]. Similarly, polyol‐based synthesis of Ag NPs was reported producing a wide range of 

NPs using precursor along with capping agent [88–91]. Using propylene, and 1,2‐propylene 

glycols or 1,5‐pentanediol as reducing agents and controlling temperature and precursor con‐

centration was also found to influence the morphology of the final product [92].

Alternately, in a different route of photochemical synthesis, light irradiations helped in syn‐

thesizing metal NPs as seen in laser irradiated aqueous solution of metal salt + surfactant 

producing metal NPs besides using laser melting of metal nanospheres to produce nanoplates 

[93–100]. In contrast, green syntheses of metal NPs were reported from metallic electrodes and 

spray pyrolysis‐based synthesis of 10 and 100 nm (average PS) Ag NPs, respectively [101, 102].

Seed crystals‐mediated synthesis reported lately in 2010 produced Ag nanocubes from spher‐

ical/cubic single crystal seeds with the edges ranging from 30 to 200 nm [92, 103–105]. In 

another, very old process of silver mirror reaction, discovered way back in 1835 for depositing 

Ag metal on solid surfaces using Ag(NH
3
)

2
OH reduction by sugar or any aldehyde containing 

compound, has been used for Ag NP synthesis [106].

Precisely controlled morphologies of metal NPs have been realized successfully using tem‐

plate‐assisted synthesis already known to depend to follow the template features, in which 

the surfactant molecules behaved as soft templates in contrast to porous anodic aluminum 

oxide (AAO) membranes as hard templates [107, 108]. Soft template‐assisted synthesis 

has been found producing metal nanowires, nanorods, hollow spheres, and nanoplates by 

exploiting a variety of surfactant compounds including ionic surfactants like cetyltrimethyl 

ammonium bromide, octadecyltrimethylammonium chloride, disodium (2‐ethylhexyl) sulfo‐

succinate, and sodium dodecylsulfate; non ionic surfactants like oleic acid, oleylamine, trioc‐

tylphosphine and trioctylphosphine oxide; and polymer surfactants involving poly (vinyl 

pyrrolidone), poly(vinyl alcohol), and poly(ethylene oxide) as reported extensively [109–141]. 

Template‐assisted synthesis is known to produce well‐dispersed forms due to reduced par‐

ticle aggregation along with mild reaction conditions [142–144].

Unlike above‐mentioned chemical syntheses, lithographic patterning and deposition‐based 
nanofabrication processes involving optical, e‐beam, scanning probe, and multiphoton lith‐

ographies are known to produce precisely controlled nanostructured materials not limited to 

metal species alone [145–147].
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Nanoparticulate material species are well‐known building blocks to assist self‐assembly pro‐

cesses forming micron size nanosheets and other structures. DNA‐assisted self‐assembly of 

metal NPs is another route explored for synthesizing plasmonic NPs into chain, triangular 

shape, 3D lattices, and Janus nanoclusters, in which the interaction of NPs in solutions involv‐

ing attractive and repulsive forces comprising of hydrophobic, electrostatic, hydrogen bond‐

ing and biospecific interactions impacts the self‐assembly to a large extent [148–161].

High‐temperature hydrothermal synthesis of triangular shaped Ru nanoplates (~3 nm thick) 
was reported using RuCl

3
·H

2
O + HCHO + PVP @ 160°C, which changed to irregular shaped 

but with reduced thickness of 1.5nm subsequently by changing the concentration of Ru salt 

and PVP. In case of silver salt, it produced triangular Ag nanoplates with sharp and curved 

corners [162–164].

Recently, the potentials of living microorganisms including bacteria, fungi and plants have 

been examined for the synthesis of NPs like CdS, Ti/Ni, titanate, zirconia, Au, and Ag [165–

171]. It is very important to note that using microorganisms is environmental friendly and 

benign synthesis route providing good control over size distribution of nanostructures. For 

example, Ag nanoparticulates were synthesized using bacteria with size less than 200 nm.

3.2. Physical and chemical syntheses

The physical/chemical methods of preparing NPs include lithography, laser ablation, 

high‐energy irradiation, chemical reduction, electrochemistry, and photochemical reduc‐

tion [172–179].

A number of process parameters that are important to consider in NP synthesis include 

temperature, concentrations, process kinetics describing interactions between metal ion pre‐

cursors and the reducing agent, and adsorption kinetics involving the stabilizing agent and 

the NPs. Consequently, the current emphasis is on designing processes capable of ensuring 

adequately precise control of the size, shape, stability, and physicochemical properties of the 

NPs [180–183].

The conventional methods of NP syntheses, however, are known to involve chemical/physi‐

cal processes that often use toxic materials like organic solvents, reducing agents, and stabiliz‐

ers causing ultimately substantial environmental pollutions, cytotoxicity, and carcinogenicity 

in addition to the toxicity of some of the NPs due to their compositions, size, shape, and 

surface chemistry [184]. However, all these hazardous factors associated with NP syntheses 

are possible to mitigate using biologically mediated production schedules. There is a strong 

emerging interest in developing clean, reliable, biologically compatible, benign, and environ‐

ment‐friendly green processes to synthesize NPs for their numerous applications [185].

3.3. Green synthesis

Green synthesis of NPs involving microorganisms and plants is noted to be safe, inexpen‐

sive, and environment‐friendly as they absorb and accumulate inorganic metal ions from 

their surroundings leading to an unexplored field of useful research [186–189]. A number 
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of biotechnological applications including bioremediation and bioleaching are possible to 

implement by exploiting the efficacy of the microorganisms to interact with the environ‐

ment via their lipid‐based amphipathic membranes enabling a variety of oxidation‐reduction 

mechanisms occurring and promoting these biochemical conversions [190–194]. It has been 

shown that unicellular/multicellular organisms are capable of synthesizing (extra/intracel‐

lular) inorganic micro‐/nano‐sized particulate materials in particular environment of their 

culture promoting coupled oxidation and reduction reactions that needs further investiga‐

tions to understand the processes of nucleation, and subsequent NP growth kinetics and the 

interaction of these processes with metabolic processes of the microorganisms involved [192, 

193, 195–198].

A similar situation is met in case of plants based synthesis of NPs with the advantage of plants 

over other eco‐friendly biologically based systems such as bacteria and fungi that avoid using 

culture preparations and isolation techniques that are involved and expensive. Conversely, 

biosynthesis of NPs using plants/plant‐based extracts is safe with relatively short production 

times, and having a lower cultivation cost compared to other biological systems [199].

Various methods explored in biologically synthesizing metal NPs include actinomycetes, 

algae, bacteria, fungus, plants, viruses, and yeast, where each entity has varying degrees of 

biochemical processing capabilities for preparing metallic or metal oxide NPs. Generally, bio‐

logical entities with a potential to accumulate heavy metals offer better chance of synthesizing 
metal NPs [200]. In case of microorganisms, optimization of parameters like nutrients, light, 

pH, temperature, mixing speed, and buffer strength used in their culture could significantly 
enhance the enzyme activity [188, 201, 202].

3.4. Microemulsions synthesis

The most popular approach of synthesizing NPs from microemulsions uses a mix of two or 

more separate microemulsions of the required constituents that participate in nucleations on 

the micellar edges due to supersaturation of the reactants inside causing growth around the 

nucleation sites with the arrival of more reactants from intermicellar exchange. Examination 
of the process details clarified the NP growth starts at the interface, and subsequently moves 
on to the micellar cores with a intermicellar exchange specific rate limiting phenomenon 
occurring over a time duration longer than the times involved in reagents diffusions inside 
the polar domains causing large variation in reaction completion times compared to those 

observed in native aqueous solutions. Controlling this process by modifying the interfacial 

characteristics of the surfactant membrane was exploited subsequently as noted in case of 

BaTiO
3
 using three separate microemulsions [10, 203–206]. NPs were also prepared from 

single microemulsion with stabilized reactant inside the reverse micelles after adding the 

reducing agent to produce the metal NPs. Recently, silver halide and cuprous oxide NPs 

were synthesized using direct reaction of solubilized silver metal with dioctyldimethylam‐

monium halide counter‐ion in reverse micelles, and gamma irradiation of copper nitrate 

micellar solution, respectively, using faster rate of reaction with morphological control in a 

single microemulsion. Despite its versatile nature, limitations were pointed out, for example, 

during synthesizing either ZnTe or incorporating Mn into either ZnTe or CdTe [207–210]. The 
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 parameters that influence the size and polydispersion of the synthesized NPs include—type 
of the solvent employed, surfactant/cosurfactants used, electrolyte, concentration of reagents 

and, molar ratio of water and surfactant as discussed in detail elsewhere [211].

A simple surfactant/water/oil system was found producing many types of self‐assembled 

structures—by changing composition, one could have spheres (reverse micelles or micelles), 

cylinders, interconnected cylinders, and planes called lamellar phases, which could reorganize 

into onion‐type structures [212, 213]. Numerous studies were conducted involving a variety 

of surfactants and system compositions (surfactant/water concentrations) in connection with 

investigating the growth of different NC structures [214]. However, the idea that different 
shapes of synthesized NCs could be due to template effect was found invalid as different 
shapes could be synthesized without changing the template shape, and even no template was 

involved in some cases at all [215, 216]. Most recently, a method was proposed for controlling 

the NP shapes by considering the influence of stacking faults in certain plane as observed 
during the synthesis of silver nanodisks with varying size characterized by HRTEM/SAED 
showing the presence of forbidden 1/3{422} reflections that were proposed to be promoted by 
the stacking faults in [110] plane [217]. From these observations, it could be concluded that 

defect engineering could possibly be used in influencing the shape of NPs as confirmed in 
case of copper system, yielding similar results [129].

Stabilized microemulsions are possible in a supercritical fluid (SCF) by using appropriate 
surfactant leading to smooth transition in solvent quality by pressure and temperature con‐

trol required in nanoparticulate material syntheses [218, 219]. Relevantly, the advantage of 

using SCF‐CO
2
 process was demonstrated after having stabilized the microemulsion (water/

P104/xylene) at higher pressure causing formations of Au NPs via KBH
4
‐based reduction of 

HAuCl
4
, which was not feasible at ambient pressure due to inadequacy of xylene as solvent. 

These gold NPs were recovered by reducing the pressure to release the solvent by precipita‐

tion. In another variant, known as RESOLV (rapid expansion of a supercritical solution into 
a liquid solvent), a stable microemulsion of silver cations was expanded through a nozzle 

into solvent containing reducing agent to produce controlled morphology silver NPs [220]. 

Finally, water‐in‐SCF microemulsions were successfully used in water‐in‐oil microemulsions 

in synthesizing compounds for industrial applications.

The process involves preparing a stable dispersion using appropriate surfactant. In case of 

water‐in‐oil (w/o) microemulsions, the surfactant AOT supplemented with fluorinated cosur‐

factants like PFPE‐PO4 (perfluoropolyether‐phosphate), PFPE‐NH
4
 (ammonium perfluo‐

ropolyether) and F‐pentanol are employed in stabilizing the dispersions in most of the liquid/

supercritical alkanes applied [129, 218, 221–230].

While searching for hydrocarbon‐based surfactants or polymers capable of stabilizing w/

sc‐CO
2
 microemulsions primarily due to economic and environmental benefits, iso‐steric 

acid was found useful in a SCF‐CO
2
 with <10 V/V% hexane solubilizing the reactants inside 

reverse micelles [231]. These microemulsions are formulated in a pressure cell to which the 

second reactant is added using a high‐pressure syringe pump. Hence, the NP reactions that 

take place are similar to those occurring in normal liquid w/o microemulsions as noted in 

microemulsions‐based synthesis of Ag NPs where NP recovery by CO
2
 venting and rapid 

expansion method is possible [220, 227, 229, 230, 232].
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3.5. Pharmacosomes (liposomes)

Besides regular inorganic/ organic NPs, there is another class of nanostructured materials 

involving biomolecules that have been explored well for drug/gene delivery applications, 

and termed as pharmacosomes derived from two terms namely—‘pharmakon = drug’ and 

‘soma = carrier’ representing vesicles (drugs and carrier attached together). These are neutral 
particles with positive and negative charges imparting hydrophilic and hydrophobic features 

(involving polyphenol and phospholipids), in which the drugs are dispersed via lipid inter‐

actions (i.e., electron pair sharing, electrostatic forces, and hydrogen bonds) forming colloids, 

nanomicelles, vesicles and hydrogen bonded hexagonal assemblies. The carboxylic group or 

functional hydrogen atoms in the amino, and hydroxyl radicals of the drug molecules are 

converted into esters with the help of the hydroxyl moiety of the lipid forming prodrugs 

causing reduction in interfacial tension with larger area contacts, and improving bioavail‐

ability in addition to helping transport across the cell membrane, wall, and tissues. These 

prodrugs assemble into single/multiple layers, when in contact with water, forming pharma‐

cosomes [233, 234].

The liposomes are formed by dispersing phospholipids in aqueous media followed by expo‐

sure to high shear rates using microfluidization or colloid mill in addition to mechanical 
dispersion involving sonication, pressure cell or membrane extrusions, freeze thawing, film 
hydration, microemulsion, and dried reconstituted vesicles—all initiating hydrophilic‐hydro‐

phobic interactions between phospholipids and water molecules. Liposomes are character‐

ized by their mean particle size, zeta potential, lamellarity, encapsulation efficiency, in vitro 
drug release, and vesicle stability. Spherical bilayer membranes are the manifestations of the 

favored self‐assembly features of phospholipids, which is although not limited to bilayer for‐

mations alone but also produce colloidal particles from self‐aggregation of the polar lipids. 

Liposomes efficiently entrap even highly unstable compounds including antimicrobials, anti‐
oxidants, flavors and bioactive elements by shielding their functionality [235]. Liposomes are 
the latest additions to the targeted deliveries carrying hydrophilic/hydrophobic contents in 

nano/microsize double‐layer covered spherical volumes providing effective protection from 
the enzymes, alkaline solutions, digestive juices, bile, and intestinal flora inside human body 
as well as free radicals. Liposomes not only check oxidation and degradation but also retain 
the double‐layer barrier undamaged until the contents are delivered to the desired site.

Liposomes, discovered in the 1960s, are versatile nanocarriers owing to their compositional 
variability and structural properties leading to numerous applications in pharmaceutical, 

nutraceutical, and cosmetics sectors, wherein the herbal extracts like flavonoids, glycosides, 
and terpenoids are enclosed and transported from the hydrophilic to the lipophilic part of the 

membrane showing better bioavailability/efficacy, as noted in case of ginkgo biloba, grape 
seed, green tea, milk thistle, ginseng, and many other herbs already explored in therapeutic 

applications and dietary supplements. Liposomes are currently being used in a broad range 
of pharmaceutical applications showing better promises as intracellular delivery systems 
for antisense molecules, ribosomes, proteins/peptides, and DNA. Liposomes with enhanced 
drug delivery and long circulation times are currently getting clinically accepted. Liposomal 
drugs are known to exhibit reduced toxicities while retaining enhanced efficacy compared 
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to the free complements [39–41]. The phospholipid liposomes were reported mimicking red 

blood cells by optimizing concentrations of phosphatidylserine, di‐stearylphosphatidylcho‐

line, and dipalmitoylphosphatidylcholine for a fixed concentration of lecithin and Tween® 
80 using response surface methodology resulting in 112–196 nm particle size with lower 
efficiency encapsulation at lower levels of insulin but increasing at higher levels fulfilling 
the requirement for intravenous drug delivery having biodegradable and biocompatible 

features [236].

3.6. Phytosomal nanoparticulate materials

Phytosomes contain herbal drugs and the lipids in stoichiometric ratio in a solvent, wherein, 

the polar functional groups of the substrate and phosphate and ammonium groups of the 

polar heads of the phospholipids form the hydrogen bonds while getting attached to the 
phospholipid polar head and merging with the membrane. For instance, in a phosphatidyl‐

choline and catechin complex, hydrogen bonds are established between hydroxyl groups in 

the phenols of the flavones and phosphate groups of the phosphatidylcholines without any 
change in their fatty acid chains suggesting the protected enclosure of the active components 
into the long aliphatic chains. These interactions form lipophilic envelope shielding the polar 

phospholipid as well as the constituent. The pharmacokinetic studies and the animal/human 

trials have confirmed the enhanced bioavailability and absorption of the lipophilic herbal 
extracts forming micellar constructs in water [237, 238]. Some typical examples are taken here 

to highlight their applications in nanomedicines.

Optimized icaritin phytosomes, prepared by solvent evaporation of icaritin in ethanol (icari‐
tin: phospholipid = 1:3, reaction time ~1 h @50°C) showed enhanced solubility by 1.6 and 5.9 
times in n‐octyl alcohol enabling icaritin and the coprecipitate of icaritin phytosomes in PVP 

to dissolve in vitro better [239]. Curcumin‐phytosome–loaded chitosan microspheres (Cur‐

PS‐CMs) were reported involving curcumin‐phytosomes (Cur‐PSs) in chitosan microspheres 

via gelation (PS = 23.21 ± 6.72 μm, loading efficiency ~2.67%). In vitro curcumin release from 
Cur‐PS‐CMs was slower than that from curcumin‐loaded chitosan microspheres (Cur‐CMs) 

in pH 1.0, 4.0, 6.8, and 7.4 showing 1.67 and 1.07‐fold increase in absorption of curcumin 

compared with Cur‐PSs and Cur‐CMs, respectively. The half‐life of orally administered Cur‐

PS‐CMs was longer than those of Cur‐PSs and Cur‐CMs by ~2 and 1.5‐times, respectively, 

confirming oral absorption with prolonged retention time for sustained delivery of lipophilic 
compounds [240]. The MMC‐soybean phosphatidylcholine complex‐loaded PEG‐lipid‐PLA 
hybrid NPs were reported with Folate functionalization (FA‐PEG‐PE‐PLA NPs@MMC‐SPC) 
for targeted drug delivery and dual‐controlled drug release involving hydrophobic core 

(PLA) loaded with MMC‐SPC, an amphiphilic lipid interface layer (PE), a hydrophilic shell 
(PEG), and a targeting ligand (FA) on the surface, with a spherical shape, and high encapsula‐

tion efficiency (95%). In vitro cytotoxicity and hemolysis assays demonstrated the associated 
cyto‐/hemocompatibility along with significantly prolonged blood circulation time compared 
to that of the free MMC with enhanced cell uptake/cytotoxicity in vitro and superior tumor 

accumulation and therapeutic efficacy in vivo while reducing the systemic toxicity show‐

ing a promising design of the water‐soluble drug‐phospholipid complex‐based targeted drug 
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delivery [241]. Calendula officinalis extract‐based encapsulation of Au‐NPs was examined with 

high efficiency encapsulation of chlorogenic acid and quercetin exhibiting significant anti‐
oxidant and wound‐healing properties as anticipated [242]. Mitomycin C (MMC)‐loaded 

polymer‐lipid hybrid NPs were reported using single‐step assembly of MMC‐soybean phos‐

phatidyhlcholine (SPC) complex and biodegradable PLA for intravenous delivery ensuring 
enhanced efficacy with safety in controlled release of MMC showing a significant accumula‐

tion of MMC in the nuclei with significantly higher anticancer effect compared to PLA‐NP/
MMC or free MMC injection in vitro and in vivo [243]. Curcumin phytosomes were reported 

(solvent evaporation based) to have free flowing powder to enhance curcumin content in dif‐
ferent soft gel formulations employing castor oil/oleic acid, PEG 400, Miglyol 812 along with 
Cremophor EL and KLS P 124 surfactants revealing good stability and spherical curcumin 
phytosomes [244]. Self‐assembled 152.5 ± 3.2 nm NPs of methotrexate (MTX)‐phospholipid 
(PC) complex (MTX‐PC NPs) were reported having drug‐loading efficiency ∼20.7 ± 2.4%, 
and sustained release behavior compared to free MTX and MTX‐loaded liposomes with bet‐

ter promises for cancer therapy compared to traditional drug delivery systems [245]. The 

active lactone form of 10‐hydroxycamptothecin (CPT)‐soybean phosphatidylcholine (SPC) 

self‐assembled NPs (CPT–SPC NPs) was reported showing efficient complexation between 
active lactone and SPC (complexation rate ∼98%; 210.7 ± 6.1 nm diameter, ZP ∼−24.9 ± 3.1 mV, 
and a high drug‐loading content of 16.3 ± 0.5%) comprising of biphasic delivery (initial burst 
followed by sustained release). Animal imaging results indicated excellent tumor targeting in 

HeLa tumor‐bearing nude mice [246].

The phytosomes with bioactive plant‐based molecular species are poorly soluble in flava‐

nones and terpenes. Features like biocompatibility, nontoxicity, easy to administer, reduced 

dosage and enhanced retention time of the liposomes and the phytosomes make potent vehi‐

cles for drug delivery as discussed [247].

Different flavones like naringin, neoeriocitrin and neohesperidin known for their antioxidant 

activity and phenolic content were encapsulated in phospholipid vesicles (glycerosomes, 

hyalurosomes and glycerol containing hyalurosomes) using a high ratio of extract/phospho‐

lipid counteracting the oxidative stress in skin cells. The glycerol containing hyalurosomes 

prevented the oxidative damages and death of both keratinocytes and fibroblasts by promot‐
ing their viability [248]. Berberine (BER)—a natural alternative to synthetic antidiabetic drugs, 
has poor gastrointestinal absorption, and low oral bioavailability limiting its clinical appli‐

cations was loaded in phytosomes as berberine‐phospholipid complex (P‐BER) by solvent 
evaporation method followed by a self‐assembly showing nanosize particles with negative 

surface charge, and excellent drug entrapment efficiency (<85%) and threefold enhanced bio‐

availability causing significant reductions in fasting glucose levels and improving the ability 
of systematic hyperlipidemia metabolism of diabetic mice [249]. The solubility and perme‐

ability study of Standardized Bacopa Extract (SBE) were reported showing improved aque‐

ous solubility compared to the pure SBE (20‐fold), or the physical mixture of SBE and the 
phospholipid (13‐fold). Similarly, in vitro dissolution studies confirmed higher SBE release 
efficiency (>97%) in comparison with the pure SCE (∼42%), or the physical mixture (∼47%). 

The ex vivo studies confirmed improved permeation of SBE (>90%), compared to the pure 
SBE (∼21%), or the physical mixture (∼24%). This kind of drug‐phospholipid complexation 

could be used for solubility enhancement of bioactive phytoconstituents [250].
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3.7. Nonlayered 2D material synthesis

Besides exploring the novel features of 2D layered materials as mentioned earlier, a number of 

nonlayered 2D nanomaterials were also reported recently using 2D nanomaterial templates. 

Some of these include the examples of 2.4‐nm‐thick square hexagonal‐close packed (hcp) gold 

nanosheets (hcp AuSSs) onto GO template followed by secondary growth for even thicker 
layers, Ag onto hcp AuSSs resulting in (100) f‐oriented fcc core‐shell or (110) h/(101) f‐oriented 

hcp/fcc square nanosheets (Au@Ag); and Pt/Pd onto AuSSs inducing transformation from hcp 
to fcc forming core‐shell Au@Pt or Au@Pd nanoplates, to name a few cases already explored. 
Coatings of Pt or Pd onto hcp AuSSs led to fcc Au@Pt or Au@Pd rhombic nanoplates, in which 
the large lattice mismatch between Pt or Pd and Au compared with Ag was believed respon‐

sible for the (101) f‐oriented core‐shell nanoplates. In phase transformations from hcp to fcc, 

the role of ligand exchange was found responsible as noted in case of transformation into (100) 

f‐oriented fcc AuSSs by replacing oleylamine capping with thiol molecules. In another study, 

0.55–0.59 nm thick and ∼1 mm square freestanding a‐Fe
2
O

3
 nanosheets were synthesized using 

CuO nanoplate‐templates. Further, a number of 2D nanostructures including ternary/quater‐

nary chalcogenides like CuInS
2
, CuIn

x
Ga

1‐x
S

2
, Cu

2
ZnSnS

4
, Cu

2‐x
Se and Cu

1.97
S were prepared 

via the cation exchange on CuSe/CuS templates or phase transformations resulting in uniform 

size, shape and thickness. In addition, NiO nanosheets were reported from layered a‐Ni(OH)
2
 

nanosheets through a simple annealing treatment as discussed in cited references [251–260].

Hydro/solvo‐thermal syntheses were found useful in preparing a number of nonlayered 2D 

materials as briefly summarized here. A facile solvothermal synthesis of poly (vinylpyrrol‐
idone) (PVP)‐supported single‐layer rhodium (Rh) nanosheets (0.4 nm thick with 500–600 nm 
edge length) was reported recently followed by a generalized method of synthesizing a 

number of metal oxide nanosheets, including TiO
2
, ZnO, Co

3
O

4
, WO

3
, Fe

3
O

4
 and MnO

2
. In 

addition, hydro/solvothermal methods were found useful in synthesizing several nonlayer 

2D nanosheets including ZnSe, ZnS, CeO
2
, In

2
O

3
, SnO

2
, Co

9
Se

8
 and Co

9
S

8
‐oleylamine hybrid. 

The synthesis of ZnSe and ZnS nanosheets was reported by preparing lamellar organic‐inor‐

ganic intermediates [(Zn
2
Se

2
)(n‐propylamine) and (Zn

2
S

2
)(n‐propylamine)], followed by their 

sonicated exfoliation to have freestanding 0.9 and ∼500 nm lateral dimensions of ultrathin 
nanosheets followed by synthesis of CdS nanosheets (300–800 nm lateral dimension and 
∼4 nm thick) using diethylenetriamine (DETA) as the surfactant. In another study, atomically 
thin CeO

2
 sheets with surface pits and ultrathin In

2
O

3
 porous sheets with rich oxygen vacan‐

cies were reported using hydrothermal methods followed by subsequent thermal annealing 

as reported in many publications [260–268].

4. Looking ahead

The novel features of 2D layered/nonlayered materials already explored in micron size sam‐

ples during their preliminary studies are certainly expected to be translated into production 

processes with better yield, reproducibility, and process reliability once the process details 
are fully understood and steps optimized accordingly. The progress made in this context is 

possible to assess as highlighted below.
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4.1. Large‐scale synthesis

While examining the basic science of the nanomaterials, efforts have been made in parallel to 
develop the related technologies as well to support the needs of the growing industries led by 

innovative exploitations. In this context, it is imperative to have an idea about the market size, 

growth trends and support extended by the State Agencies.

With the growing trend vis‐à‐vis the market size of US$ 1.34 billion of gold NPs in 2014, it 
is expected to touch US$ 8 billion by 2022, primarily driven by the innovations supported 
by higher R&D spending, along with growing applications in healthcare and diagnostics. 

The emerging gold NPs market size, particularly in China and India, seems to reach US$ 

2.9 billion by 2022 [269].

The emerging demands of nanoparticulate materials (NPMs) in growing industrial applica‐

tions is further evidenced by the initiatives taken by the European Commission in allocating 
funds for the private‐public partnership programs in manufacturing to meet the industrial 

requirements from various sectors (e.g., FP6/FP7 Projects—€240,000,000; HORIZON 2020 
Program—over €1 billion) that are expected to provide scaled‐up production of nanostruc‐

tured materials (∼100 kg/day) at lower costs [270].

A brief description of various methods that are already explored for volume production 

of NPMs is included here in brief to highlight the limitations that are faced in the industry 

despite fast rising demands from different sectors in general. Those emerging processes that 
have shown potentials for production after further developments of their technologies in near 

future are also included in the discussion.

4.2. Production technologies

NPMs (i.e., molecular sizes to 100 μm in diameter) have been produced by flame involving 
precursors that are sprayed either onto a heated surface or in a hot environment. Oxford 
University developed an electrospray process for semiconductor/metal NPs, and spray gun 

deposited catalysts for CNT growth that are simple and economical examples [271–275].

Alternate technique of producing metal vapors through arc discharge has been exploited 

equally effectively for producing metal, metal‐oxides, and other compounds based NPMs in 
inert/oxygen/reactive gas environment. For taking care of the process reproducibility issues 

arising from the high temperature arcs generating high evaporation rates leading to the for‐

mation of larger size particles from vaporized metal rich carrier gas, the European project 
(BUONAPART‐E) funded a program of upscaling and optimization of NPMs manufacture 
by flame pyrolysis showing preliminary achievement in form of a versatile and reliable unit 
capable of producing 0.1–10 g/h throughput in this context [276–278].

Another production process of metallic NPMs involving gas‐phase condensation, reported 

way back in 1930, uses a vacuum evaporation unit attached to a separate collection chamber 
filled with inert/reactive gas for powder collection ensuring particle formation during rapid 
cooling of the arriving stream of metal atoms initiating nucleation and particle formation 

resulting in broad distribution of PSs as their agglomeration is quite random [275].
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In a combination of ultrasonic irradiation‐assisted chemical reactions followed by precipi‐

tation known as sonochemical synthesis, the molecular species are subjected to chemical 

reactions via energetic acoustic cavitation including formation, growth and collapse of micro‐

bubbles inside the irradiated liquid medium. This method efficiently produces the NPMs 
facilitating preparation of smaller PSs of different shapes at lower costs [279–281].

Milling‐based production of NPMs is known since 1970 with many variants developed for 

preparing nanopowders of crystalline/crystalline or crystalline/amorphous, and atomic 

bonding‐based metal/metal, metal/semiconductor, metal/ceramic, and their combinations 

with the advantage of low temperature working. There are two different routes of mechani‐
cal milling namely—single‐phase powder milling by controlling the competing processes 

of fracturing and cold‐welding, where particles larger than 100 nm are not cold welded, 
and consequently, a reduction in the average PS from 50–100 μm up to 2–20 nm is feasi‐
ble. A severe plastic deformation caused by mechanical attrition at elevated temperature of 
100–200°C gives rise to refinements in internal structures of the particles to produce nm size 
particles. The environmental sensitivity of the milling process is put to use by controlling 

the ambient conditions accordingly for chemical reactions to occur between the environment 

and the milled powders leading to a novel, cost‐effective method of producing a variety of 
nanopowders. Mechanochemical processing (MCP) is another variant of milling used as a 

low temperature chemical reactor, wherein the ball mill accelerates the reaction kinetics in 

the powder mixture as a result of the intimate mixing and refinement of the grain structure 
to nm scale. For this reason, it is useful to employ a proper reactive gas environment of O

2
, 

N
2
, atmospheric air, or precursor. Oxide and nitride of Ti, Fe, V, Zr, W, Hf, Ta and Mo could, 

thus, be converted into NPMs in reactive milling. Similarly, in wet milling, an organic fluid 
is used for transforming the metal powders into nanocrystalline metal‐ceramic composites 

comprising of individual single nanometer sized grains dispersed in a matrix. Of course, it 
is necessary to go for further heat treatment for ascertaining that the reaction is complete. 

The reduction of the process cost and the industrialization of products are achieved by using 

a variety of precursors for producing a large variety of NPMs in the form of oxides, car‐

bonates, sulfates, chlorides, fluorides, hydroxides, and others. Different kinds of ball mills 
including tumbler mills, attrition, shaker mills, vibratory mills, planetary mills, and other 
variants are commercially available for mechanical attrition. A common method in all these 
mills is to place the material powder in a sealed container with the balls of hardened steel 

or tungsten carbide, while mass ratio for the ball to the powder is kept around 5:10 in case 
of a typical 50μm powder. Kinetic energy of balls is a function of their mass and velocity, 
and as a result, steel and tungsten that are high‐density materials are preferred as means of 

milling [282–286].

Recently developed room temperature ionic liquids (RTILs) are being used as reaction media 
for inorganic NPMs mainly by using their preorganized structures to template porous inor‐

ganic nanomaterials and their intrinsic high charges and polarizability in affecting electrostatic 
and steric stabilization. For example, IL templates are used for fabricating mesoporous/super‐

microporous silica, and in synthesizing transition metal NPs including Ir, Au, Ag, Pt, and Pd, 

where the IL acts as a solvent, template, reducing agent and stabilizer. TiO
2
‐based NCs and 

microspheres, and Te‐ and CoPt‐based nanorods, have also been fabricated using ILs [287–295].
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Nanolithographic techniques involving e‐beam/focused ion‐beam writing, proximal probe 

patterning, X‐ray lithography, along with dry/wet etching are found useful in fabricating a 
variety of nanostructured materials. By nanolithography, nanostructures and their arrays are 

possible to fabricate by a directed or constrained growth from one to few nm with the advan‐

tage of producing large quantities of 1D nanostructures using a wide variety of the available 

materials [296–300].

One of the most popular and maybe the most economical methods of nanolithography is 
template fabrication based suitable for growing nanowires (NWs) using electrodeposition, 

sol‐gel or by vapor‐phase followed by independently controlled NWs after removing from 

the templates. In this process, the ordered nanopore templates are made before filling them 
with the chosen materials, using one of the methods referred before. Electrodeposition of 
metals inside the nanopores is performed in acidic or basic baths that contain metal salts, and 

the metal is deposited on the cathode (working electrode), and for this reason, one end of the 

porous membrane is metallized with Ti and Au or Ag by sputtering or evaporation, and the 
anode is normally graphite or Pt with calomel or Ag/AgCl as reference electrode. The deposi‐

tion conditions (DC or pulsed) affect the polycrystallinity of the nanowires.

High‐temperature anneal (500–600°C) of low temperature sol‐gel processed complex oxide 
NWs was found necessary for the required stoichiometric phase. For instance, taking out the 

alumina template after dipping into sol for some time, it was necessary to dry before anneal to 

produce the proper phase. CVD/PVD methods were also explored for growing semiconduct‐

ing nanotubes, including ordered arrays of CNTs. Plasma‐assisted CVD has shown adequate 

promises to grow aligned nanotubes of complex semiconductor or oxides in alumina tem‐

plates, and in future, this technique will certainly find more applications [301].

Scanning probe microscopy (SPM)‐based lithography has already been established for creat‐

ing nm size patterns on metallic and semiconducting surfaces using lithography masks either 
via chemical route called dip‐pen lithography (DPN) or SPM route based on anodic oxida‐

tion where water meniscus formation from the atmospheric moisture capillary condensation 

between the substrate and the tip plays an important role.

The presence of water meniscus enables the molecules to interact with the substrate for 

forming chemical bonds via controlled molecular transport across the region between 

the tip and the substrate. Another variant employs the meniscus as an electrochemical 

cell where the applied bias produces the metal/semiconductor nanostructures promoting 

nanostructures on the surface for directed assembly of nanoparticles [302–304]. Likewise, 
in anodic oxidation, the water meniscus forms an electrochemical cell, where moisture 

provides ‘nanoreaction vessel’ like environment for anodic oxidation after applying a 

negative bias to the tip with respect to the substrate, wherein the applied electric field 
helps in accelerating the OH‐ ions to the substrate causing a self‐limiting type oxidation 

that terminates automatically at fields below 107 V/cm. The geometrical features of the 
oxidized pattern depend on the applied bias and the radius of curvature of the tip that is 
micromachined for reproducible sizes, shapes and aspect ratios. By controlling all these 

parameters, reproducible lithography of known resolutions is performed as an advantage 

of this technique [305].
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4.3. 2D materials production

With the emerging applications of graphene possessing novel features, systematic efforts 
were made in developing production methods with higher yield and improved quality of 

graphene and other 2D materials nanosheets. For example, the exfoliation efficiency of gra‐

phene nanosheets was improved (e.g., yield >85%; ≤3 layers; lateral size ∼44 μm) using aque‐

ous solutions of (NH
4
)

2
SO

4
, Na

2
SO

4
, and K

2
SO

4
 and exhibiting hole mobility ∼310 cm2/Vs. 

Highly conducting films were brush coated on paper from a graphene ink for fabricating 
all‐solid‐state flexible supercapacitors delivering a high area capacitance of 11.3 mF/cm2 [306]. 

A green production of graphene was reported using saccharin in aqueous solution showing 

that the number of graphene layers decreased with increase in the intercalation potential, 

while yield improved with increase in the exfoliation potential. The defect density in the exfo‐

liated graphene layer was sensitive to the exfoliation potential as it initially increased with 

exfoliation potential and then eventually decreased [307]. Improved performance of exfolia‐

tion arising out melamine additive during graphite electroexfoliation was assigned to the 

hydrophilic force from the basal plane promoting exfoliation besides providing protection 

against further oxidation, leading to high‐yield production of graphene of larger crystallite 

size. This process exhibited better performance in terms of higher uniformity (>80% in <3 lay‐

ered graphene), lower oxidation density (C/O ratio of 26.17), lower defect level (I
D
/IG <0.45), 

and low sheet resistance of 13.5 kΩ/Υ (95% transmittance). A graphene nanocomposite with 
polyvinyl butyral (PVB) exhibited an electrical conductivity of 3.3 × 10−3 S/m for the graphene‐
loading fraction of 0.46vol%. The continuous process for producing graphene was demon‐

strated, with a yield rate of 1.5 g/h [308]. The influence of a number of reducing agents (such 
as 2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO), ascorbic acid, and sodium borohydride) 
was investigated to eliminate HO• radical generated out of water electrolysis responsible 

for defect formation on graphene during electroexfoliation in aqueous ammonium sulfate. 

TEMPO‐assisted exfoliation could produce large graphene sheets (∼5–10 μm average), exhib‐

iting hole mobilities <405 cm2/Vs, very low Raman I
D
/IG ratios (<0.1), and extremely high car‐

bon to oxygen (C/O) ratios (<25.3). High concentration graphene ink in dimethylformamide 
exhibited (6 mg/mL) was found useful in transparent conductive films and flexible superca‐

pacitors [21]. Low defect concentration few‐layer graphene (FLG) sheets were fabricated by 
a two‐step electrochemical intercalation exfoliation, including a graphite foil pretreatment 

in sodium hydroxide solution and a subsequent further exfoliation in sulfuric acid solution. 

During this process, the pretreatment resulted in the expansion of the graphite foil and in 

turn facilitated the final exfoliation in sulfuric acid solution showing I
D
/IG of the FLG sheets 

as low as 0.29 while maintaining relatively high yield (>56%). In addition, the oxygen content 
in the FLG sheets is 8.32% with the C/O ratio of 11.02 [309]. Using in situ optical and electri‐

cal measurements, it was found that that solvent intercalation is the required first step and 
the degree of intercalation controls the thickness of the exfoliated graphene. Electrochemical 
decomposition of water into gas bubbles causes the expansion of graphite controlling the 

functionalization and lateral size of the exfoliated graphene. Both process steps proceed at dif‐

ferent time scales and can be individually addressed through application of pulsed voltages. 

The potential of the presented approach was demonstrated by improving the performance of 

graphene‐based transparent conductors by 30 times [310].
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In a more recent study, graphene production was reported using HNO
3
, NaNO

3
, H

2
SO

4
 and 

H
2
O

2
‐based exfoliation in sodium dodecylbenzene sulfonate as a surfactant [311]. Studying 

the influence of varying parameters like anodic bias (1–10 V), and shear field (400–74,400/s) 
concluded that thicker and more fragmented graphene sheets were formed at higher biases, 

while at potentials as low as 1 V, shear force could cause pronounced exfoliation. This process 
under optimum condition could produce large graphene flakes (∼10 μm) with a high propor‐

tion of single, bilayer, and trilayer graphene and small I
D
/IGratio (0.21–0.32) with only a small 

contribution from carbon‐oxygen species [312]. Biomolecules are also attracting attentions 
as dispersants for 2D materials providing a number of advantages over more conventional, 

synthetic surfactants particularly in case of biomolecules including proteins and peptides, 

nucleotides and nucleic acids (RNA, DNA), polysaccharides, plant extracts and bile salts as 

colloidal dispersants as discussed in a recent review [313].

Graphene quantum dots (GQDs) were examined in terms of their size‐dependent energy stor‐

age efficiency and optical behavior while functioning as an active material in rechargeable 
lithium ion batteries (LIBs). Considering three different SOC’s (<05, <50 and <95%), reversible 
changes were noticed in the UV‐VIS absorption spectra that could be explained by the mecha‐

nism of charging‐discharging involving the influx/out flux of Li‐ions. Some of these results 
could be used for understanding the energetics of Li‐ion intercalation and deintercalation in 
multilayer graphene and related composites [314]. Single‐step synthesis of halogen‐functional‐

ized graphenes (HGs) was reported using electroexfoliation of graphite in aqueous potassium 
halide solutions confirming the variation in the degree of halogenation between 2.32 and 0.26 
atom% in fluorinated graphene (FG) and iodinated graphene (IG), respectively, which were 
attributed to the difference in reactivity of the halogen species generated during the exfolia‐

tion process. Among all HGs, FG has shown the superior electrocatalytic behavior for 2Br−/Br
2
 

redox reaction. The anodic (11.2 mA/cm2) and cathodic (10.7 mA/cm2) peak current densities 

were higher for FG than that of other halogenated graphenes. ZBB flow cell fabricated with FG 
as bromine electrode exhibited enhanced electrochemical performance in terms of efficiency 
(81% of voltaic efficiency and 72% energy efficiency) and durability up to 350 cycles [315].

Comparison of the two routes of liquid phase exfoliation (LPE) and electrochemical exfolia‐

tion (ECE) made it clear the LPE took about 13 days against 3 min for ECE process [316]. A 

simple and fast method of electroexfoliating graphite into graphene oxide (GO) and then its 
rapid reduction to graphene nanosheets (GNs) was reported using microwaves. This elec‐

troexfoliation combined with microwaves reduction offered a low‐cost and efficient route to 
produce high‐quality graphene with high yield [317].

A rapid electroexfoliation of natural Bi
2
Se

3
 and Bi

2
Te

3
 crystals in aqueous media was reported to 

prepare single‐/few‐layer nanosheets representing a simple, reagent‐free, and scalable method 

for the fabrication of single‐/few‐layer nanosheets of these materials [318]. 2D TMDCs with 

relatively lower toxicity, higher stability in aqueous environments, and adhering well to the 

biological materials such as proteins are currently being considered promising for biosensing, 

cell imaging, diagnostics, and therapeutics. Preparation and exfoliation of 2D TMDCs show‐

ing heavily dependent features on the number of layers and lateral size were described using 

their liquid exfoliation from their bulk materials along with the protocols for functionalizing or 

Nanoscaled Films and Layers210



modifying them [319]. Group‐VI TMDCs including MoS
2
 and WSe

2
 being semiconductors with 

sizable energy band gaps offer themselves as building blocks for new generation optoelectron‐

ics particularly involving their specificity and tunability of their band gaps based on strong 
light‐matter interactions between TMDC crystal and specific photons triggering complex phe‐

nomena like photoscattering, photoexcitation, photodestruction, photophysical modification, 
photochemical reaction, and photooxidation. Subsequently, photoelectric conversion devices 

enabled by laser excitation and the functionality extension and performance improvement in 

the TMDs materials via laser modification were comprehensively reviewed [320]. A green and 

cost‐effective production process of 2D MoS
2
 was reported using sonication milling (CUM) to 

exfoliate natural molybdenite powders to achieve few‐layer MoS
2
 (FL‐MoS

2
) nanosheets in N‐

methyl‐2‐pyrrolidone (NMP) with polyvinylpyrrolidone (PVP) molecules with the synergistic 

effect of sonication and sand milling enhancing the exfoliation efficiency, and the precursor of 
natural molybdenite powders minimizing the cost. The influence of various factors on exfolia‐

tion was studied by varying initial concentration of natural molybdenite powder (15–55 g/L), 
ultrasonic power (200–350 W), rotation speed of sand mill (1500–2250 rpm), exfoliation time 
(0.5–6 h), and the molar ratio of PVP unit to MoS

2
 (0–1). Under the optimal condition, the yield 

and exfoliation rate reached as high as 21.6% (in 6 h) and 1.42 g/Lh, respectively. This process 
could, thus, be considered as a low‐cost, green, and efficient method of producing FL‐MoS

2
 

nanosheets from natural molybdenite powders [321].

4.4. Future perspectives

From the exceptionally faster developments taking place in the domain of 2D nanomaterials, 

one can easily assess about the future R&D activities in synthesizing and using still more 

varied combinations of ultrathin 2D nanomaterials in times to come as highlighted below.

For example, noble metals/alloys that are known as robust industrial catalyst are expected 

to perform better once converted into single‐/few‐layer forms. Similarly, the metal organic 
frameworks (MOFs) materials, currently found useful in gas storage, separations, and cataly‐

sis due to their tunable structures/functions, larger surface areas, and highly ordered pores, 

are, though, not used in electronic devices owing to their poor electrical conductivity and dif‐

ficult film‐forming ability, but once these shortcomings are taken care of, their device integra‐

tion would open newer avenues [20].

2D TMDCs including ternary and quaternary compounds besides already known binaries 

like MoS
2
, WS

2
, MoSe

2
, and WSe

2
 are expected to offer novel applications in electronics, opto‐

electronics, electrocatalysis, and energy storage, even though, some of them are yet to be 

synthesized.

Reversible conversion from one crystal phase into the other in 2D materials is another area 

of potential uses offered by the phase‐engineered nanomaterials. For instance, some TMDCs 
including MoS

2
, and WS

2
 exist in either of the two main crystal phases namely—2H and 

1T. It is interesting to note that MoS
2
 is semiconducting and metallic in 2H and 1T phase, 

respectively, with phase reversal caused by butyl lithium intercalation. The metallic phases of 

MoS
2
 and WS

2
 have better conductivity, whereas 2H phases exhibit enhanced electrocatalytic 
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actions in hydrogen evolution and supercapacitors [322–325]. Similar features are anticipated 

in case of noble metals prepared in different crystal phases. For example, Au crystallizing in 
face‐centered cubic (fcc) phase was also synthesized in hexagonal 2H and 4H‐phases that 

were transformed back to fcc and thus could be used for tuning its optical, catalytic, and plas‐

monic properties accordingly [341].

Practical implementations of H‐termination along with van der Waals epitaxy in adjusting 

not only the band gaps, and stability, but also other properties of germanane are currently 

being considered as additional scope in future. For instance, germanane is converted into 

germoxanene after replacing H by OH‐group and attaching different ligands to polysiloxene 
shifting the photoluminescence features along with band gap positions. Germanane is pos‐

sible to restack with other materials using different intercalation techniques like electrochemi‐
cal (alkali metals insertions between few layers), organic, and similar other zero‐valent metal 

intercalation resulting in novel properties. Highly anisotropic properties caused due to elec‐

tron‐hole localization in transverse direction of germanane monolayer combined with their 

direct band gaps make them usable in a number of electronic applications including transis‐

tors, solar cells, and cooling layers. Additionally, combined use of topotactic deintercalation 

with exfoliations has been found better options of synthesis, though implemented only in lim‐

ited number of Zintl phase compounds. Such layered materials include polygermanane, poly‐

silanes, siloxenes, and spinels along with others like CaSi
2
, CaGaSi, CaZn

2
Sb

2
, and Ca

11
GaSb

9
 

that are expected to exhibit new and better material features in the form of 2D‐hydrogenated/
oxygenated semiconductors with precisely tuned electronic properties. These newer fami‐

lies of 2D materials, when used in heterostacks comprising of layers with different physical 
characteristics and further modified by restacking, are expected to offer newer engineered 
architectures for specific applications. The process of synthesizing flat materials endowed 
with exceptionally high charge carrier mobility transport established at molecular scales is 

expected to introduce significant changes in the electron device designs employing ‘atom by 
atom’ or ‘group by group’ substitutional alterations in realizing p‐n junctions at the desired 

locations in near future providing better options of touch screens, supercapacitors, batteries, 
fuel cells, sensors, high frequency circuits, and flexible electronics [26, 326–332].

Using 2D exfoliated nanosheets appears better suited for realizing the five types of heteroin‐

terfaces for their device applications. For instance, layer‐after‐layer deposition of two differ‐

ent nanomaterials in a vertical heterostructure is an example of type I heterointerface already 

demonstrated in TMDCs, h‐BN, or topological insulators on graphene or in situ epitaxial 

growth of vertical CuS/TiS
2
 type heterostructures [260, 333–336]. Similarly, type II hetero‐

interface was reported in case of combinations of WSe
2
/WS

2
, MoSe

2
/MoS

2
, and MoSe

2
/WSe

2
, 

wherein the growth of one type of nanosheet was made to start from the edge of the other 

forming an in‐plane 2D heterojunction [268, 337–339]. Type III is similarly realized using a 

vertical growth of aligned ultrathin 2D nanosheet arrays on another ultrathin 2D nanoma‐

terial substrate to form hierarchical heterostructures. Unlike these three afore‐mentioned 

heterointerfaces, it is also feasible using the crystal‐phase concept of heterointerfaces repre‐

senting another kind using the same chemical compound but with different crystal phases. 
Type IV heterointerface may thus be prepared using a partially converted crystal phase in 

a MoS
2
 nanosheet by changing a part of it from its 2H phase into 1T phase resulting in an 
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in‐plane 2H‐1T heterointerface. Further, type V heterointerface involving superlattices is also 
conceivable using binary, ternary, or multiple phase patterns in ultrathin 2D noble metal 
nanostructures. The phase engineered Au‐nanosheets in fcc, 2H, and 4H phases, already syn‐

thesized using wet‐chemical methods and validated, are good candidates for crystal‐phase 

superlattices with the help of self‐assembly or lithography. Besides binary phase heterostruc‐

tures, ternary phase comprising of 2H‐fcc‐4H might also be explored for similar applications 

using ultrathin 2D Au nanostructures having promising applications in catalysis, waveguide, 

surface enhanced Raman spectroscopy, and many others [256–259, 340, 341].

5. Conclusions

Adding 2D materials species with the nanoparticulate inorganic, organic, and biomolecular 

species and invoking different aspects of molecular recognition‐based self‐assemblies and 
self‐organized formations of supramolecular hierarchical complexes seems to be a feasible 

way of improving the smart features of a large variety of nanomaterials in addition to paving 

the way for introducing the intelligent features in them in due course of time. Appropriate 

combinations of biomolecular species endowed already with the intelligent features are going 

to make this transition from ‘smart’ to ‘intelligent’ materials faster and easier as they possess 

the basic traits required for their participation in the functioning of living organisms. Other 
inorganic and organic building blocks once conjugated appropriately would certainly help 

in accelerating various components of intelligence discussed earlier. Further, the phytosomal 

building blocks when combined with 2D materials would certainly provide more insight into 

controlling the physico‐chemico‐biological properties of the resultant nanomaterial species 

with additional assurance of their green nature as compared to other species especially in the 

domain of applications involving human health care.
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