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Abstract

Sunlight is essential to almost all forms of life for both  light and heat. Plants need sunlight 
for photosynthesis, and man and animals alike need plants for many vital purposes. The 
sun featured many Millennia ago not only as a deity but also as a therapeutic source, so 
phototherapy  is by no means a recent phenomenon. Niels Finsen’s therapeutic arc lamp 
system in the early 1900s replaced the sun as a therapeutic source. Since then, many light 
sources have been successfully applied for phototherapy, with laser diodes and light-
emitting diodes the most efficient. This chapter will explore what phototherapy is, and 
examine its important role in the fast-developing indication of skin rejuvenation. Systems 
used in phototherapy will be discussed and compared. Photobiological basics and light/
tissue interaction underlying the process will be examined, together with the importance 
of treatment parameters. The wound healing process, on which skin rejuvenation rests, 
will be dissected with a discussion of the optimum wavelengths to photoactivate the skin 
cells, leading to the clinical indications in photorejuvenation.

Keywords: phototherapy, photobiomodulation, low level light therapy (LLLT), 
laser diodes (LDs), light-emitting diodes (LEDs), skin rejuvenation, wound healing, 
mitochondrion

1. Introduction

The authors believe that the first question we need to ask, and answer, is; what is ‘photo-

therapy’? The word is a compound derived from phos, photos, Greek for ‘light’ and from 
modern Latin therapia, from Greek therapeia ‘healing,’ from therapeuein ‘minister to, treat 
medically.’ In its broadest meaning, it is therefore the use of light to treat someone or 
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something. The modern accepted definition is ‘the use of low incident levels of photon 
energy at a particular wavelength, targeting tissue to achieve a clinically useful local or 

systemic effect, but without the creation of heat (athermal) or damage (atraumatic).’ We 
can compare that with ‘photosurgery,’ where heat and damage are deliberately created in 
tissue to achieve the desired clinical result.

Other terms have evolved which can be found in the literature. ‘Photobiomodulation’ was 
recently adopted as a MeSH (Medical Subject Headings) term, part of the US National 
Library of Medicine’s controlled vocabulary thesaurus, which is used for indexing articles 
for MEDLINE, PubMed Central and so on. However, equally useful, and well-used in the 
literature, is the term ‘low level light therapy,’ with its acronym LLLT. This was born in 1988 
with the publication by John Wiley and Sons of Chichester, UK, and authored by Ohshiro and 
Calderhead, of the pivotal and first volume on the clinical use of laser therapy, ‘Low Level 
Laser Therapy; A Practical Introduction’ [1]. The authors of the current chapter like to use 

both terms, with ‘photobiomodulation’ (PBM) being used to describe how low incident levels 
of photon intensity interact with the target at a cellular and subcellular level, and the term 

‘LLLT’ being used to describe the therapeutic application and final result of PBM. Based on 
that, the reader will mostly see LLLT talked about in this chapter.

There are some other inaccurate terms which have been coined, mostly as marketing-driven 

language, which the reader may come across in the literature, including ‘soft laser,’ ‘cold laser,’ 
low power laser’ and so on. One can see how a thermal reaction attracts the name ‘cold 
laser,’ but in actual fact, the lasers used for LLLT, either defocused surgical lasers or laser 

diodes, run very hot and require a lot of cooling, so they are not ‘cold lasers.’ ‘Soft laser’ is 
attractive as it gives the idea of a gently acting laser, but again, inappropriate scientifically 
speaking. It is true that many LLLT systems, laser- or LED-based, deliver output powers in 
milliwatts (mW), so it is tempting to call them ‘low power’ lasers. When we consider these 
misnomers, please realize that the most important consideration for both the scientist and 

the clinician is the therapeutic reaction in the tissue to the incident light that occurs at a 

level below the damage threshold of the target cells to give the PBM effect which delivers 
the LLLT-mediated therapeutic result: the system used to obtain this low level of reaction 

is, however, unimportant. A 50 W CO
2
 laser is not a ‘low power’ laser, but if defocused to a 

10 cm spot size, in the treatment of a nonresponsive leg ulcer, for example, the incident power 
 density, or irradiance, is actually only 635 mW/cm2, under 1 W/cm2. On the other hand, an 

830 nm 60 mW laser diode (LD)-LLLT system can be focused to a 50 µm spot on the retina by 
the human eye. The incident intensity in this case is in excess of 3000 W/cm2. In the first exam-

ple, the ‘high level’ laser, target tissue will not be heated at all: in other words, phototherapy. 
In the second example, the ‘low level laser,’ the retinal tissue will be severely damaged with 
ablation and vaporization: in other words, photosurgery. In short, the ‘level’ in LLLT has 
therefore got nothing to do with the device used to produce the incident light; it is, rather, the 
level of reaction in the target cells which must be below the cellular damage threshold. This 

is illustrated in Figure 1 and the legend thereto.

In 1988, light-emitting diodes (LEDs) were available and were very bright, but they were 
drastically low-powered with an unstable and extremely divergent output. Furthermore, 
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they emitted at a very broad waveband, so it was possible to source a ‘red’ LED, but it 
was very difficult to find a narrow-band 633 nm LED (Figure 2), essential when targeting 

 wavelength-specific chromophores. ‘Chromophore’ is in general the term given to tissue, 
cellular or subcellular targets for incident light energy at specific wavelengths. The clini-
cal efficacy of LEDs at that time was thus extremely limited. Ohshiro and Calderhead had 
to concentrate their research and clinical findings on laser sources, both to some extent 
defocused continuous wave (CW) surgical lasers, for example, 10,600 nm carbon dioxide 
(CO

2
) and 1064 nm neodymium-yttrium aluminum garget (Nd:YAG) lasers, very low-out-

put lasers such as the 632.8 nm helium neon (HeNe) laser, but especially on specific-use 
gallium aluminum arsenide (GaAlAs) laser diodes incorporated in laser therapy sys-

tems, developed by Ohshiro in  conjunction with Matsushita Electronics, and emitting at 

Figure 1. Difference in spectral distribution and relative output power (photon intensity) between an old-generation 
broad bandwidth red light-emitting diode (LED) and the new generation type, emitting in the example shown at 
633 ± 5 nm. With the new generation LEDs, even though they are non-coherent, more than 90% of the photons are 
emitted at the rated wavelength with a very narrow bandwidth, conferring quasimonochromaticity on the beam.
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830 ± 3 nm. Low-level laser therapy thus became LLLT, but with the advent of clinically 
useful LEDs, as will be discussed in Section 3 below, low-level laser therapy became low 

level light therapy but with the acronym left as LLLT [2]. Please see Section 3 below for a 
detailed discussion of what lasers, laser diodes and light-emitting diodes are, and how 
they are used in LLLT.

2. Nothing new under the sun

LLLT is often thought of as ‘new,’ only some three decades old or so, and even the laser 
itself is not long over its half-century, having been first successfully demonstrated by Dr 
Theodore Maiman in 1960 [3]. The use of light in medicine dramatically precedes laser 

treatment by not just centuries, but by millennia. In Ancient Egyptian friezes from around 
4000 BC, the sun is depicted as delivering rays to man, dogs and plants, with each ray 
ending in a little hand, ‘patting’ the target. In addition, in front of the face of the Pharaoh, 
the sun’s ray ends in the ankh, the symbol for life (Figure 3). This illustrates the sun as 

the source of light and life. In addition, it is written in papyrus records that a herb similar 
to parsley was crushed and rubbed onto depigmented skin, probably a form of vitiligo, 

Figure 2. Schematic representation of a cell irradiated with two different irradiances, one low, one high, with the cell’s 
arbitrary damage and survival thresholds indicated, showing changes in the extracellular matrix (ECM) temperature 
on the thermometer images. In (a), as the intensity of the absorbed incident photon energy increases, cellular activity is 

enhanced (photobiomodulated): the result of this is characterized as athermal and atraumatic LLLT. In (b), the continuing 

increase in incident photon intensity raises the level of reaction in the cell, and the internal temperature, beyond the 

damage threshold: although damaged, however, the cell is still alive. This is classed as mid level laser treatment (MLLT) 

following Ohshiro’s classification system [Ohshiro T: A new effect-based classification of laser applications in surgery 
and medicine. Laser Ther, 1996; 8: 233–239]. As the temperatures in the target tissue rise to around 60°C, more intensive 
damage occurs as ECM collagen coagulation begins resulting in necrosis. Temperatures continue to rise with even 
higher intensities until tissue temperatures reach 100°C and the tissue is ablated with the vaporization of cellular and 
extracellular water. This is classed as high level laser treatment, HLLT, or photosurgery.
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which in dark-skinned Ancient Egyptians must have been quite stigmatic. The area was 
then exposed to the full force of the sun, and the activation of the coumarins in the crushed 
parsley by the shortwave blue component of sunshine instigated a very strong photosensi-

tive reaction resulting in severe sunburn. This was followed, at least partly, by postinflam-

matory hyperpigmentation, the much feared PIH following today’s laser treatment, thus 

hopefully repigmenting the depigmented area.

Almost 2 millennia later, Hippocrates of Kos, the ‘Father of Medicine,’ was of the opinion that 
sunshine was one of the fuels of life, because his fellow Greeks, basking in Sunshine most 

of the year round, were of a much better and happier disposition than the barbarians to the 
north, which Hippocrates attributed to the fact that the northerners did not get enough sun.

Treatment using the sun is referred to as heliotherapy, from the Greek Helios, ‘the sun.’ 
However, the definition became a little broader, also involving exposure to specific wavebands, 
not necessarily from the sun. For many years, it was really only the sun that was power-

ful enough, and one of the treatments for ‘melancholia’ involved shutting the patient in a 
room with many windows to let in natural light, with red curtains to increase the ant-melan-

cholic component of sunlight. One famous patient was King George III of the UK (1760–1820), 
who in his later years was believed to suffer from severe ‘melancholia’ and was shut in red- 
curtained rooms for treatment. It is now believed that he actually had a form of the blood 

disease porphyria, so this treatment probably exacerbated his condition and it is probably no 
wonder the poor monarch was known as ‘Mad King George.’

At the turn of the twentieth century, man’s dependence on the sun as a therapeutic light 
source was broken by the brilliant Danish scientist and clinician, Niels Finsen, who developed 

an artificial light source based on light energy emitted by an electric arc lamp, from which 
all heat had been filtered out. He was particularly successful for his work using this lamp on 
lupus vulgaris, for which he won the Nobel Prize for Medicine in 1903. Finsen did not enjoy 

Figure 3. A portion of a frieze from Egypt’s Tell el-Amarna, showing the Pharaoh Amenhotep IV in the rays of the sun 
(deified as Aten), where the ‘patting’ hands and the ankh symbol at the end of the rays can be clearly seen.
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good health, and died in 1904. However, his vast interest in phototherapy inspired by his 

own experiments into the use of sunshine and particular filtered wavelengths for treating 
his own Niemann-Pick disease [4], lived on, and the Finsen Medal is awarded to outstanding 

contributors to phototherapy up to this day.

More recently, blue light phototherapy (460–490 nm) has been routinely used in the treatment 
of neonate hyperbilirubinemia, that is, jaundice in newborns, in whom the bilirubin in the 
bloodstream has not been sufficiently filtered out by the mother’s placenta.

However, one of the largest examples of a breakthrough for a unique medical light source 
came in 1960, with the successful oscillation of the first ruby laser by Dr Theodore Maiman. 
The major difference between laser energy and other filtered light sources is the coherent 
nature of laser energy, comprising monochromaticity (one single wavelength), temporal and 

spatial phase of the photons in the laser beam, and the ability to collimate a laser beam so it 

can travel large distances with minimal divergence.

Maiman’s laser was based on a ruby crystal, and as the laser medium usually gives its name 

to the laser, it became known as a ruby laser. In the 5 short years from 1660 to 1965, almost all of 
the lasers used today in surgery and medicine were swiftly developed, including the 1046 nm 
neodymium:YAG (and other members of the YAG family), the argon laser (488 and 514.5 nm), 
the 10,600 nm carbon dioxide (CO

2
) laser and the helium neon (HeNe) laser. Visible red and 

near-infrared (near-IR) semiconductor (diode) lasers were also developed. The clinical poten-

tial of this unique pure light source was quickly realized, as was of course the military impli-
cations. Ophthalmology was the first field to explore the use of the laser for retinal disorders 
in the mid-60s, followed quickly by dermatology for removal of cutaneous lesions. Both these 
specialities used the selective but destructive photocoagulative power of the visible light 

lasers, particularly the green 514.5 nm band of the argon laser, and the 694.3 nm band of the 
ruby laser. The CO

2
 laser became a powerful ‘light scalpel’ for comparatively blood-free and 

precise incisional, excisional and ablative indications in a variety of specialities, including 
oto-rhino-laryngologists, neurosurgeons and gynecologists.

However, an interesting anomaly was quickly noted by those using the CO
2
 laser in partic-

ular, in that patients complained of less postoperative pain, shorter-lasting erythema and 

almost equally good wound healing following laser surgery as compared with the cold 
scalpel. It was thought at first that it was the heat generated by the laser that brought about 
this serendipitous occurrence, but it was gradually realized it was the ‘L’ component of 
laser that was the causative element … the light, not the heat. In 1969, Professor Endrè 
Mester practicing in Semmelweis University, Budapest, Hungary, published a pivotal 
paper in Hungarian on the use of the athermal and atraumatic 5 mW HeNe laser to treat 
over 1000 cases of severely recalcitrant crural ulcers, followed by an English overview in 
1971 [5]. Astonishingly, he achieved a cure rate of better than 80%, with less than 2% of the 
patients not responding at all [6]. This was the birth of modern-age phototherapy, so that 

Prof Endre Mester is regarded rightly as the Father of Phototherapy. Finally, something 
new had been found under the sun after all.

Smaller and for-purpose laser sources were developed enabling the delivery of low incident 

levels of photon energy at wavelengths found useful in cellular biomodulation, in particular 
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laser diodes. More recently, a new generation of light-emitting diode was developed by the 
Space Medicine Laboratory in the National Aeronautics and Space Administration (NASA) in 
the USA, and LEDs are taking their place as useful and verified phototherapy light sources. 
All of these will be explored in the next section.

3. Phototherapy devices

The main devices used in modern state-of-the-art phototherapy have already been mentioned 

in the previous sections. These are filtered polychromatic non-laser light sources, such as 
xenon lamps and (more rarely) incandescent lamps; defocused continuous wave surgical 
laser systems, such as the CO

2
 and Nd:YAG laser, although more rarely these days; dedicated 

low-irradiance laser diode-based systems; and made-for-purpose LED-based systems.

3.1. Filtered lamps

There are a number of filtered non-laser light sources available for phototherapy practice, 
based on high-intensity xenon or other continuous-output gas-based lamps. These offer 
greater photon intensities than incandescent lamps and also require much less in the way of 
cooling. The filters are typically in the blue, yellow, red and near-infrared (near-IR) range, 
with bandwidths in tens of nanometers or less. The spectral output from these systems is 

heavy in the near-IR waveband and then tends to trail off through the visible to the UV-A 
band. The pattern of a typical spectral output is seen in Figure 4. The entire output power is 

spread over the entire emitted spectrum. There are two possible methods to filter the light 
to obtain the desired ‘color.’ A narrow bandwidth cut-off/cut-on filter for example, used to 
obtain a small 10–20 nm band at the desired wavelength, for example, around 633 nm which 
is a popular wavelength for activating cellular activity, as will be explained later. The reader 
will however appreciate that this will dramatically reduce the available photon intensity to 

give an irradiance of a very few mW/cm2, given that the output through the entire visible 

waveband from 400 to 700 nm is comparatively low in the first place. Another method is to 
cut-off the unwanted shorter wavelengths. A cut-off filter rated at 630 nm will allow light 
energy all the way from the near-IR components up to around 630 nm, but will cut off all 
wavelengths shorter than that. The emitted light is still a polychromatic waveband and there-

fore not really suitable for any indication requiring wavelength selectivity for the target chro-

mophore. However, many of those who use these lamps find them effective, but very long 
exposure times are needed to achieve the desired final dose in even a few joules per square 
centimeter (J/cm2).

3.2. Defocused surgical lasers

When Ohshiro and Calderhead started researching the field of phototherapeutic indications 
in the late 1970s, the only dedicated low output laser system available was the helium neon 
(HeNe), delivering milliwatt ranges at 632.8 nm. The HeNe laser was the system used by 
Mester in his early papers, and it was these data from Mester that first encouraged Ohshiro 
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and then Calderhead to investigate the potential of the use of low incident levels of light 
energy for first pain attenuation, and then wound healing. Ohshiro had established a pain 
clinic in his Tokyo Clinic, and, in addition to the HeNe laser, he first looked at the 1064 nm 
wavelength of the continuous wave Nd:YAG laser, chosen because of its deeper penetration 
than 632.8 nm, and comparatively low absorption in melanin and blood. In addition, the 
HeNe laser tended to be rather low-powered, necessitating longer treatment times to achieve 

good results.

By defocusing the usual output of his CW Nd:YAG laser, delivered by a selectable variety of 
larger spot sizes, extremely practical and very low incident irradiances of less than 1 W/cm2 

could be delivered with good efficacy for pain attenuation of both acute and chronic pain. To 
compare the Nd:YAG with the HeNe, to produce a useful incident dose or energy density of 
15 J/cm2, an approximately 20 s exposure with the Nd:YAG was needed: over 15 min treat-
ment was needed to get the same dose with a 15 mW/cm2 HeNe.

The defocused CO
2
 laser as a pain attenuation and wound healing device also attracted some 

attention in the late 1980s and early 1990s, but like the Nd:YAG system, they are large and 
expensive devices, and need a great deal of ancillary equipment and adaptation for regular 

Figure 4. Approximate representation of the polychromatic spectral spread of a typical unfiltered continuous operation 
xenon lamp. The envelope of the lamp contains an ultraviolet filter to remove potentially harmful UV wavelengths. The 
majority of the output lies in the near-IR (from approximately 700 nm upwards). Some lamps apply the full spectrum 
in therapeutic practice. Others use cut-off filters to cut out the unwanted shorter wavelengths. However, all longer 
wavelengths are still delivered up to the cut-off point, that is, still polychromatic light, unless a cut-on filter is also 
applied to remove the unwanted longer wavelengths.
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use as phototherapy systems. Furthermore, technology advanced rapidly so that CW Nd:YAG 
lasers were quickly supplanted by more adaptable and versatile Q-switched and long-pulsed 
systems, and CW CO

2
 lasers lost favor in the face of the much more precise superpulsed and 

ultrapulsed systems, followed by the fractionated approach. Having said that, small CW CO
2
 

lasers still occasionally attract attention in the literature for wound healing applications [7], 

although there have been no reports for defocused CO
2
 laser systems for skin rejuvenation.

3.3. Laser diode‐based therapeutic systems

As mentioned, Ohshiro’s Nd:YAG laser was a large and expensive piece of equipment, so he 
worked with an electronics company in Tokyo to develop a much smaller, dedicated semi-

conductor-based laser therapy system for phototherapy. First tried was the gallium arsenide 

(GaAs) diode, but it could not be run at continuous wave without severely overheating, 
so finally the gallium aluminum arsenide diode was developed and found to be ideal. The 
first system to be trialled was a battery-operated 15 mW GaAlAs system, delivering around 
500 mW/cm2, and a controlled study on pain attenuation was published in 1981 comparing the 
efficacy of the GaAlAs diode system with the defocused CW Nd:YAG system in pain entity 
and age-matched patients at the same dose. Despite its small size, the diode laser proved to 

be at least as effective as the Nd:YAG system [8].

The first commercial laser therapy system was jointly developed by Ohshiro and Matsushita 
Electronics (National Panasonic,) and launched as the first of the 830 nm Panalas® systems in 

1981. Ohshiro did not stop thinking about improving both systems and treatment techniques, 
as well as looking at underlying mechanisms. In 1988, Ohshiro launched a new GaAlAs diode 
laser based system, delivering 60 mW, the OhLase-3D1®, and that has evolved to the present 

day. Also in 1988, Ohshiro and Calderhead put all of their thoughts together in having the 
volume already mentioned above, ‘Low-Level Laser Therapy: A Practical Introduction’ pub-

lished by John Wiley and Sons. In the same year, the journal Laser Therapy was announced by 

John Wiley of Chichester, and the International Laser Therapy Association (ILTA) was formed, 
all championing Low-Level Laser Therapy. LLLT was well and truly born and has continued 

to grow and develop up till today. The agreed MeSH term may be  photobiomodulation, but if 

‘LLLT’ is entered into PubMed as a search term, the reader will find over 4400 entries! A very 
large percentage of them are actually on clinical or research facets of LLLT and phototherapy, 

rather than any other laser-associated aspect.

LLLT systems based on laser diodes (LDs) remain extremely popular and are manufactured 
by a number of reputable companies worldwide. Some of them have USA FDA and other 
national regulatory body clearances. Because of the beam geometry of LD chips, the treatment 
area is usually punctal in nature with a spot sizes ranging from less than 1 mm2 to defocused 

systems offering 1 cm2 or so, but not a lot larger than that. Treatment techniques are therefore 
based on point by point approaches. To cover a larger area, quite useful for treating larger 
wounds, for example, an array of LDs could be considered. In reality, GaAlAs diodes run 
quite hot, so good heat sink design is need to keep even single LDs running cool. Too much 
heat in the chip will cause a change in the rated wavelength, and that would not meet the 

criterion of precisely targeting wavelength-dependent chromophores. It is therefore difficult 
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to run arrays of LDs without some form of aggressive cooling. Light-emitting diodes (LEDs), 
on the other hand, do not run so hot and are much easier to cool than LDs. For such planar 

arrays, LEDs are the answer, which leads us into the next subsection.

3.3.1. Enter the light‐emitting diode

When LLLT was dependent on LDs for the light source, as in the many publications appear-

ing in the late 1980s and early 1990s, LEDs were commercially available. However, although 
they were certainly cheap and cheerful, ideal for indicator lamps, traffic signals and Christmas 
trees, they were on the other hand totally inappropriate for medical application because of their 

low and unstable output powers, extreme divergence and wide bandwidths. As said already, 
we could source red LEDs, but not 633 nm LEDs (cf Figure 2 above and legend). Very expen-

sive superluminescent diodes (SLEDs) were available offering almost laser-like bandwidths, but 
even these proved significantly inferior to LD-LLLT systems when compared side by side in con-

trolled animal studies and could still only be applied point by point [9]. All this changed in 1988, 
however, when Professor Harry Whelan and his NASA Space Medicine Colleagues succeeded 
in developing what became known as the ‘NASA LED’ [10]. These LEDs were many-fold more 
powerful than their older generation cousins, typically 5 orders of magnitude more powerful in 
fact; they had much narrower divergence offering high photon intensities; they were remark-

ably stable; and probably the most important development, they were quasimonochromatic, 
offering spectral outputs with more than 95% of the photons at the rated wavelength. In other 
words, although they were still noncoherent, non-laser light sources, they offered laser-like pre-

cision for targeting wavelength-specific chromophores in tissue, cellular and subcellular targets. 
Finally, a real breakthrough had been made to provide a practical, clinically useful new light 

source for phototherapy, capable of being mounted in large area planar arrays. Whelan and his 
colleagues went on in the following 2 years to demonstrate that their new near-IR wavelength 
LEDs were clinically viable in an in vivo wound healing model [11]. In the first few years of the 
New Millennium serious and scientifically proven, LED-based systems were developed first for 
hands-free large area PDT for non-melanoma skin cancers using the 633 nm wavelength [12], 

followed by LED-only acne treatment using the combination of the visible blue 415 and 633 nm 
wavelengths [13], skin rejuvenation and accompanying histochemical and ultrastructural extra-

cellular matrix changes with 830 nm near-IR and 633 nm wavelengths [14], sports medicine and 

pain attenuation with the 830 nm wavelength [15], and so on. LED-LLLT was well and truly 
demonstrated to work, and work well. All of the above wavelengths, with the exception of the 
415 nm wavelength, fell within Karu’s phototherapeutic window for effective cellular photoac-

tivation with visible and near infrared lights sources, laser or non-laser [16]. Thus, it is when the 

reader examines these 4400-plus PubMed results for LLLT, that he or she will find more and 
more very serious papers demonstrating a growing solid body of evidence for both clinical and 

basic research into LED-LLLT among the laser-based literature.

Figure 5 schematically illustrates the differences in the patterns of emission from lasers, laser 
diodes, light-emitting diodes and filtered non-coherent lamps as used in phototherapeutic 
indications, including the rejuvenation of photo- and chronologically aged skin. Figure 6 

shows examples of commercially available laser diode-based, lamp-based and light-emitting 
diode-based systems used worldwide for LLLT.
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Figure 5. LLLT sources compared. Although not used these days, of historical interest is the defocused CW 1064 nm 
Nd:YAG. The optimum method was to couple the beam from the laser into an optical fiber. This could be any length, so 
the laser could be well away from the treatment room, and even several treatment rooms could be serviced with the one 

laser. The beam emerging from the distal end of the fiber is divergent and multimode, giving a uniform intensity across 
the beam. By using different beam sizes, the desired irradiance could be selected. Laser diodes (LDs) by their nature 
emit a defocused elliptical beam. The angle of divergence is high so it is normal to have the beam collimated (just like the 
ubiquitous laser pointer), because an LD is still a laser. The beam can then be focused within the handpiece of the system, 
so that either a convergent beam or a divergent beam can be used to give the ideal irradiance at the tissue, depending 

on the distance between the lens and the target tissue. The divergent beam is inherently safer. LEDs are also highly 
divergent, but emit noncoherent light. The better quality new generation LEDs are, however, quasimonochromatic, 
emitting all of their photon energy more or less at the rated wavelength, and no color filter is required. They can be 
semicollimated to decrease the angle of divergence and increase the irradiance, but they cannot be perfectly focused 

like a laser. They can be mounted in large planar arrays to irradiate a large area of tissue in a hands-free manner. The 

polychromatic lamp type system requires a filter to filter out (cut off) the unrequired shorter wavelengths, leaving only 
the wavelength wanted for treatment. To make this light output as similar as possible to an LED, the filter, however, 
needs to be very precise (i.e., narrow band), and it needs to have a cut on element to remove the unwanted longer heat-

producing IR light. This means that the photon intensity at tissue is rather low, and longer exposures are required to 
give a reasonable dose.
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Figure 6. Examples of current phototherapy systems. Top left: laser diode (LD)-LLLT systems. The upper example shows 
a pen-type probe, near-IR system (Thor Probe, Thor Lasers, UK). This is connected a mains-operated control console. The 
lower example is a battery-operated 830 nm LD-LLLT system (OhLase-3D1 HT1, JMLL, Japan). In both cases, the treated 
area is very small, and the systems are used in a punctal fashion in contact mode, separating the treated points by a few 

millimeters or so. Top right: filtered polychromatic filtered lamp LLLT system (Bioptron, Switzerland). A larger area of 
tissue can be treated in a hands-free manner. The yellow cut-off filter is illustrated here. Bottom: free-standing 830 nm 
LED-LLLT system (HEALITE II, Lutronic, Korea). The large treatment head can be adjusted to treat anybody contour 
from the back, to the face, to an arm or leg, again in a hands-free manner.
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4. Wavelength: the prime parameter in phototherapy

The first law of photobiology states that absorption must occur before there can be any 
 reaction. This might appear to be self-evident, but what actually governs absorption of light 

in a target, and indeed, what decides the chromophore, or target, for that light? The reader 

would be excused for thinking it is the output power of the light source, but it is in fact 
the wavelength. This is particularly critical in phototherapy. Photons travel through space 

in straight lines, but with a sinusoidal waveform. Wavelength is a measurement of how far a 
photon will travel in one complete cycle, and is measured in nanometers (nm), one billionth 

of a meter, or fractions and multiples thereof. Light energy comprises a very small section of 

the very extensive electromagnetic spectrum which runs from ultrashort cosmic rays in fem-

tometers and below all the way to wavelengths of kilometers for electrical energy (Figure 7). 

Knowing the wavelength of an LLLT system lets us understand if we can see the light it emits 
or not (visible or invisible light), and if we can see it, what color it is.

Figure 8 is a composite of three main concepts centered around wavelength. In the central 

part of Figure 8, the visible spectrum (400–700 nm) and a portion of the invisible near-IR 
spectrum can be seen (700–1010 nm), as part of a photospectrographic data set captured from 
polychromatic ‘white’ light which had been shone through a human hand in vivo [17]. The 

wavelength is indicated on the x-axis in nanometers (nm), and the optical density (OD) ranges 
from 3 to 8.5 (logarithmic units) on the y-axis. The higher the OD, the more dense the target is 
to specific wavelengths of the incident light. The upper portion of Figure 8 schematically rep-

resents the relative penetration of selected wavelengths into skin, based on the OD findings 
of the central portion. The shorter wavelength visible light at blue (415 nm), green (532 nm) 
and yellow (590 nm) offers poor penetration into skin in vivo. From 590 nm yellow, it is only 
43 nm to 633 nm red, but penetration increases by almost 3.5 orders of magnitude, more than 
1000 times better than yellow. That is a critical difference in penetration which is highly wave-

length dependent. Deepest penetration is achieved around 830 nm in the near infrared. In 
general, as wavelength increases, tissue penetration also increases.

The lower section of Figure 8 offers an explanation as to why these wavelength-mediated 
differences in penetration exist. Here are shown the absorption spectra of three of the biologi-
cal chromophores in living skin: melanin normally in the epidermis; blood (oxy- and deoxy-

hemoglobin) in the dermis and water throughout the skin. From this, the strong affinity of 
the shorter visible wavelengths for blood and melanin precludes light at these wavelengths 

reaching much beyond the superficial papillary dermis. If the target for the phototherapy is, 
for example, fibroblasts, then these wavelengths will not reach the target … no absorption, no 
reaction. Red light at 633 nm penetrates much better because it has much less absorption in 
both blood and melanin, and even less so at 830 nm. Beyond 830 nm, water starts to become 
of interest as a chromophore, and penetration into tissue starts to fall off quite rapidly after 
1000 nm. This is why, apart from the now more or less extinct defocused 1064 nm beam of the 
CW Nd:YAG or the very occasional use of defocused CW CO

2
 energy, no phototherapeutic 

light source is reported with a wavelength over 1000 nm.

The blue 415 nm is at the peak of the Soret band and is not only highly absorbed in melanin and 
blood, and it is right at the peak of the absorption spectrum of porphyrin. This wavelength is 
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Figure 7. The electromagnetic spectrum (EM) covers a vast range of energy radiation types extending from the shortest 
cosmic waves (wavelengths measured in femtometers [fm] or shorter), through ultraviolet and visible radiation (nm), 
infrared radiation (µm) to the broadcasting waveband (m) and even mains current and wired telephone transmission 
(km).
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Figure 8. Several aspects illustrating the importance of wavelength in phototherapy. The central image shows 

photospectrometric data measured from penetration through a human hand in vivo. Based on the computer-derived 
trace on that part of the figure, the upper section illustrates relative penetration of selected wavelengths into the skin. 
Coupled with these, the lower section shows the absorption spectra of some biological chromophores, or targets, namely 
melanin, blood and water. Note the wavelength selectivity in these chromophores, and how that helps to determine the 

depth of penetration of different wavelengths into a living target as well as determining the target itself. Please see the 
text for further details.
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popular as part of combination blue and red light (or near-IR) treatment of active inflammatory 
acne vulgaris [18]. The causative bacterium, Propionibacterium acnes, is known to harbor proto-

porphyrin IX (PpIX) and coproporphyrin III when it is active. By selectively targeting these por-

phyrins with light at 415 nm through endogenous photodynamic therapy (PDT), reactive oxygen 
species are rapidly generated within the P. acnes, and they are forced into apoptosis through oxi-
dative stress [19]. With P. acnes damaged and destroyed, the inflammatory cycle of acne vulgaris 
is partially broken. No other wavelength is therefore appropriate for targeting the endogenous 

porphyrins in P. acnes. However, acne is recognized as a multifactorial disease with a strong 

inflammatory component, only partly associated with P. acnes, and both visible red (e.g., 633 nm) 
and near-IR light (e.g., 830 nm) have powerful antiinflammatory properties [20, 21]. If either of 

these wavelength therefore follows the 415 nm treatment some 48 h later, the remaining causes of 
the inflammation are targeted with deep penetration into the dermis, and an all-round approach 
to treating acne with blue and red (or infrared) light has been developed and well-reported [13, 

22]. Here is an example where only a particular wavelength, or wavelengths, can affect a particu-

lar target, and in a multi-targeted disease a combination of wavelengths is therefore effective.

It can thus be stated that, in LLLT, wavelength governs both absorption, and penetration. 

However there is one other important factor which is connected with these two and that is inten-

sity, consider Figure 9a. Two wavelength-specific targets exist in the upper dermis. An LLLT 
system, but with the incorrect wavelength, tries to treat target 1. The wavelength is incorrect, 

there is no absorption, and therefore, there is no reaction. Target 2 is irradiated with the correct 

wavelength, absorption occurs, and a reaction is successfully elicited. This is what the discus-

sion above has been saying. Now look at Figure 9b: the targets are the same, but they are in the 

deeper dermis. An LLLT system irradiates the area over target 3, and the operator knows that the 
wavelength is correct. Unfortunately, there is insufficient photon intensity to get enough photons 
down through the dermis to the target: there is no absorption, hence no reaction. The operator 

therefore takes an LLLT system with a higher photon intensity and treats the area. The photons 

now reach the target 4 and are absorbed, and the desired reaction is achieved. So, although wave-

length is key, if there is insufficient photon intensity from the light source giving low irradiance, 
or a too high angle of divergence diluting the irradiance, then the photon intensity at the target 

will not be sufficient to get the optimum reaction. In theory, one photon can activate one cell, but 
in practice, the cell needs to be bombarded with several photons, that is, multiphoton absorption, 

before the optimum level of reaction is reached. Sometimes having the right wavelength is just 
not enough.

This problem is associated more with LEDs than with LDs, because the photon intensity of 
LDs is many times higher than LEDs, given that LDs are coherent with all photons exactly the 
same wavelength, and in phase, exactly in step in temporally and spatially, like a regiment 
of identically clad soldiers marching in perfect time. The disadvantage of LD-LLLT is that it 

needs to be applied manually, point by point, in the contact mode, whereas LED systems have 
planar arrays which can cover large areas. Another way to ensure that as large a volume of 
 tissue is involved is to maximize the scattering effect in tissue, and wavelength determines 
how well the light will scatter. Longer wavelengths scatter much better than shorter ones, 
in other words 830 nm scatters better than 640 which scatters better than 530 nm: Figure 10 

compares the penetration and scattering power of a 530 laser pointer (5 mW) with that of a 
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Figure 9. (a) The wavelength of light irradiating target 1 is inappropriate resulting in no absorption, therefore no 

reaction. On the other hand, target 2 is irradiated with an appropriate wavelength, and absorption occurs with a reaction. 

(b) The same targets are now deeper in the dermis. The same light source is used again, but the intensity is insufficient 
so not enough photons reach the target: no reaction. When the same light source is used at a higher intensity, the target 
is reached and a reaction is achieved.

Figure 10. A green 530 nm 5 mW laser pointer compared with a red 640 nm 3 mW pointer. (a and b). Proof that green 
light, even laser energy, at 530 nm from a laser pointer neither penetrates deeply into a living finger nor does it scatter, 
even when placed near the thinner part of the fingertip. (c and d) On the other hand, the less powerful red laser light 
penetrates right through the finger and out the other side, even when placed a little bit further down the finger where 
there is bone as well (d). Note the scattering effect, transilluminating the whole lateral width of the finger. Note also the 
red light seen on the hand holding the pointer: that is illustrating powerful backscatter from the irradiated tissue.
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640 nm laser pointer (3 mW). That figure illustrates very well that red light around 633 nm 
is capable of penetrating into living tissue deeper than 1 cm … the thickness of the author’s 
(RGC) finger!

Scattering occurs when photons encounter different optical characteristics in the target and 
are pushed off their straight trajectory. They can be scattered forwards, laterally and backwards: 
actually, with enough photon intensity, it’s a mixture of all three, and it is an excellent way 
to ensure that the largest possible area of tissue is affected by the incident light. In the case of 
laser energy, it is well understood that larger spot sizes minimize lateral and back scattering 
outside of the beam path in tissue and therefore get deeper absorption with more photons. Of 

course, the intrinsic absorption depth depends above everything else on the wavelength, but 

we can make science work for us to maximize that depth, and ensure multiphoton absorption 
in the target.

5. Light and tissue interaction

Unlike the situation in laser surgery, at the incident photon intensities associated with LLLT, 
there is no photothermally mediated effect. All effects take place at athermal, or almost ather-

mal levels, and with no damage to cells or their organelles, or surrounding tissue. The key to 

the efficacy of LLLT in redressing the skin damage cause by the combination of photoaging 
and chronological aging lies in how the target cells, and other tissues, use the energy which is 

delivered to them by the incident photons, following absorption. As stressed in the previous 
section, there has to be absorption so that the little packet of energy carried by each photon 
is passed on to the energy pool of the target cells. The interaction between incident light and 

tissue is therefore at both the subcellular, cellular and tissue levels.

It was mentioned in passing in the previous section on wavelength that visible light and 

near-IR light actually have different primary mechanisms of action when absorption occurs in 
the target tissues. On referring back to Figure 7, there is a column titled ‘Primary response.’ For 
neither visible nor infrared light is photobiomodulation actually the primary response, but 

is rather the end result of the effect following the intermediate reactions associated with the 
primary response. As Karu has postulated [16], the basic stages of the LLLT-mediated reaction 

can be described as follows:

• Absorption (photoreception) occurs (by necessity … no absorption, no reaction) leading to 
the primary response.

• This induces the second stage, signal transduction and amplification.

• And leads to the ultimate stage of photobiomodulation (the photoresponse).

5.1. Visible light: primary photochemical reaction

For visible light, the primary response is photochemical in nature, with the main photore-

ceptor being the end terminal enzyme of the respiratory chain of the cellular mitochondria, 
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cytochrome c oxidase, CCO, well demonstrated by Karu [16, 23]. The mitochondrion is 

arguably the most essential organelle for the cell, indeed for the entire organism, as its 

function is to act as the energy factory for the cell and surrounding tissue. The nucleus may 

be the heart and soul of a cell, but hearts and souls need energy to function, and that’s the 

task of the mitochondrion. Mitochondrial CCO has an action spectrum which runs from 
the yellow through the red waveband (580–700 nm) with the peak around 630–635 nm. 
This made the helium neon (HeNe) laser at 632.8 nm an ideal phototherapy research tool, 
and almost all of Karu’s and others’ research on photobiomodulation in the 1970s to the 
end of the 1990s centered on the HeNe as the light source of choice. Now with quasimono-

chromatic LEDs available as a clinically useful light source, photoeffects of the 633 nm LED 
have also been well reported. The energy released by absorption of the incident photons 

in the CCO starts a photochemical cascade, resulting in the creation of adenosine triphos-

phate (ATP), simply described as follows: ATP synthase (ATPsy) with the coenzyme nico-

tinamide adenine dinucleotide (NAD) is triggered to combine inorganic phosphate (Pi) 
with adenosine diphosphate (ADP) to synthesize adenosine triphosphate (ATP). ATP is the 
fuel of the cell, and the organism. As part of this process, minute amounts of nitric oxide 
(NO) are released, NO being a powerful signaling compound with beneficial properties 
in tissues. In addition, calcium ions (Ca2+) and protons (H+) are also released into the cyto-

sol, two very powerful additional signaling compounds. As the levels of these signaling 
compounds increase in the cytosol, the membrane transport mechanisms, in particular the 

sodium-potassium pump (Na+K+-ATPase), are stimulated into action resulting in interex-

change of materials between the cellular cytosol and the extracellular fluid. At the same 
time, the message reaches the nucleus, and the final stage of photoresponse is reached: the 
cell is fully photoactivated. Photoactivated cells, if damaged or compromised, can repair 

themselves or be repaired; photoaged skin and wounded skin are examples of tissues with 
damaged or compromised cells. If the cells have a function to perform, for example, mac-

rophages or fibroblasts, they will perform their job better and faster. If more of the cells are 
required, mitosis will be stimulated, or others will be recruited in. One, two or all three of 
these things can happen in photoactivated tissues. It is a powerful process.

On the other hand, light energy at 830 nm in the near-IR induces a completely different pri-
mary response, which is photophysical in nature rather than photochemical, as pointed out 

by Smith [2]. This comprises vibrational and rotational changes in the electrons of the atoms 

making up the molecules of the membranes of the target cells. This instantly  activates the 

membrane transport mechanisms and intra- and extracellular exchange begins. The cel-
lular energy requirements for this are very high, so the mitochondria are swiftly co-opted 
into action: at the same time, not only the cellular membranes, but also the membranes of 

the cellular organelles including the mitochondria are activated by near-IR wavelengths, 

so a secondary chemical ATP cascade is swiftly induced. Rather than being the primary 
photoresponse as with visible light, it therefore becomes part of the second stage of signal 

transduction and amplification with near-IR light, but the end result is exactly the same 
as for visible light: a photoactivated cell. The same three possible responses exist: repair, 
functional improvement or cell recruitment. Regarding the particularly interesting effect 
of LLLT at both visible and near-IR wavelengths on compromised or damaged cells, they 
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actually and surprisingly respond many times better to LLLT than normal cells do, as has 
been commented on by many researchers [24]. As the cells found in photoaged skin are in 
various states of damage and are compromised to at least some degree, this aspect of the 

reaction to LLLT is of great interest in the photorejuvenation process in all affected cell 
types and extracellular matrix components. Figure 11 schematically summarizes the effect 
of visible and near-IR LLLT on target cells. Figure 12 takes us beyond the photoresponse, 

the endpoint achieved by both visible and near-IR light, and with a flow chart takes us 
through the various processes and complex interactions which have already been elicited 
and which lead to wound healing, as dealt with in a later section together with the antiin-

flammatory response [25]. The chart also shows the steps to pain attenuation which is also 
something that LLLT can achieve, but out with the scope of this chapter although it may 

be of interest to the reader.

Figure 11. Primary and secondary photoresponse of target cells to visible and near-IR light. (A) Visible light penetrates 
through the cell membrane and is absorbed in cytochrome c oxidase in the mitochondrion respiratory chain, initiating 
a photochemical cascade with production of adenosine triphosphate. (B) Near-IR light, on the other hand, is mostly 
absorbed by the membrane itself, immediately initiating the membrane transfer mechanisms through a photophysical 

reaction. This leads to a secondary chemical cascade. See the text for further details (CCO, cytochrome c oxidase; NAD, 
nicotinamide adenine dinucleotide; NAD+, oxidized form of NAD; ATP, adenosine triphosphate; ATPsy, ATP synthase; 
ADP, adenosine diphosphate; Pi, inorganic phosphorus; Ca2+, calcium ion; H+, proton; Na+K+ATPase, sodium-potassium 
pump [cell transport mechanism]).
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5.1.1. Parameters involved in this interaction

The critical parameter has already been discussed above, namely the wavelength. What 
 wavelength is required will depend largely on what targets are to be treated. In the case of 
rejuvenation of photoaged skin, the major target will be the cells in the epidermis and dermis 
whose function is to maintain the integrity of these structures. The next section will look at 
these cells in some detail, with a note regarding which wavelength or wavelengths have been 

Figure 12. What happens after the photoresponse has been achieved and the target cells are photoactivated? This 
flowchart explores the already elicited steps on the pathway to wound healing, including the antiinflammatory effect 
of LLLT. These effects are mostly elicited with 830 nm (from Refs. [25, 26]. Used with permission of the publishers). 
ATPase, adenosine triphosphatase; cAMP, cyclic adenosine monophosphate; ECM, extracellular matrix; Ca2+, 

calcium ion; K2+, potassium ion; H+, proton; FGF, fibroblast growth factor; SOD, superoxide dismutase; SRF, serum 
response factor.
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examined for efficacy in achieving photomodulation in these cells. The other two parameters, 
which are also important, are the irradiance or power density measured in W/cm2, and the 

dose or energy density, measured in J/cm2.

The power density (PD) describes the actual power incident on the tissue per unit area. The 

output power on its own is a good guide to what the system is capable of delivering, but 

it does not become meaningful until the unit area the energy is irradiating is also brought 

into the equation: the area targeted by any system is called the spot size, from which the 
 irradiated area can be calculated. For LD-LLLT systems, the spot size can be rather small 

with the diameter measured in mm, although there are some systems that deliver a defo-

cused spot of 1 cm in diameter or more using an optical fiber delivery system. Typical output 
powers for these systems range from a few mW up to 1000 mW, 1 W. The irradiation pattern 
for LDs is an ellipse, with a longer and a shorter axis, so measuring the area is not as simple 
as that of a circular spot for which the area is calculated using the formula pi (π, 3.142) times 
the square of the radius (r) of the spot in centimeters, written as πr2, expressed in cm2. It is 

important to remember to use the radius, one-half of the diameter, rather than the diameter 

itself. To calculate the PD, the output power in watts is divided by the irradiated area in cm2, 

giving W/cm2, or mW/cm2. In the following example, an LD-LLLT system delivers 1000 mW 
with a spot size of 1 cm: the power is thus 1.0 W and the radius is 5 mm, 0.5 cm, which when 
squared becomes 0.25 multiplied by 3.142, to give the area as 0.786 cm2. Dividing the power 

by the area gives us the PD, 1.27 W/cm2 in this example. The typical range of power densities 
can be from 15 mW/cm2 or lower, up to as high as 5 W/cm2 or even higher. It is possible to go 

up to a PD of 10 W/cm2 without seeing any appreciable rise in the temperature of the irradi-

ated tissue, but the exposure time becomes much shorter as will be discussed under energy 
density below. For elliptical spot sizes treated with an LD-based system, the area of an ellipse 

is calculated by πab, where a is the radius of the longer axis and b the radius of the shorter axis 
(expressed in cm). If the spot size is 2 mm x 1 mm, then the area will be (3.142 × 0.1 × 0.05) = 0
.0157 cm2. A 60 mW LD-LLLT system with that spot size would thus have a power density of 
3.82 W/cm2. These examples give PDs (irradiances) on the high side, but which are still valid 
power densities to achieve athermal LLLT.

Having worked out the power density, the next consideration is how long will this be incident 
on the target tissue, referred to as the exposure time and measured in seconds (s). By multi-
plying the PD by the exposure time, the energy density (ED) or dose is calculated in J/cm2. 

Quite often the energy of a system is stated in J. One joule is 1 W for 1 s, but without the unit 
area irradiated by that energy, the value is totally useless for anyone trying to replicate the 

experiment. The correct way to report any such LLLT experiment is to give all of the param-

eters, namely output power, spot size or irradiated area and the exposure time. Both the PD 
and the ED can then be calculated, and the same parameters can be replicated by anyone 
wishing to conduct the same treatment, with hopefully the same result. Once an ideal dose 

in J/cm2 has been determined, then the irradiation time necessary to achieve that dose can 

be calculated for any system once the PD is known, by dividing the ED in J/cm2 by the PD 

expressed in W. If 60 J/cm2 is determined to be the optimum dose, then for an LLLT system 

delivering 100 mW/cm2, the treatment time will be 60 ÷ 0.1 = 600 s = 10 min. The higher the PD 
of the system, the shorter the irradiation time to achieve the same dose: a 500 mW/cm2 system 
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will take 2 min, and a 3 W/cm2 system will take only 20 s to deliver 60 J/cm2. However, caution 

is required when only the dose (ED) is considered without thinking of the PD. When a dose 
of 60 J/cm2 is achieved over 30 ms with a PD of 2000 W/cm2, the effect will be photosurgical, 
with heat and damage occurring in the tissue. On the other hand, if the same dose (60 J/cm2) 

is delivered with a PD of 100 mW/cm2 over 10 min, the effect will ne athermal and atraumatic, 
in other words LLLT, but the dose is the same. If we use a pharmaceutical analogy, the PD is 

the medicine, and the ED is the dose. As any pharmacist will tell you, if the medicine is not 
correct, there is no use in playing around with the dose.

In the case of LED-based systems, or the filtered lamp type of system, we are often at the mercy 
of the manufacturer regarding the rated irradiance of their system unless we have access to 

the sophisticated type of integrating sphere power meter needed to measure this output. In 

both types of system, a divergent cone of light is delivered: LEDs by their very nature emit a 
divergent ellipse-like cone, whereas the light from the lamp filter is a simple divergent cone. 
This means that the area irradiated by the light will increase as the light source is drawn away 

from the target, thereby reducing the incident PD by an inverse square ratio. This is illustrated 
in Figure 13 comparing a single collimated LD, a single LED an LED panel and several panels 
in an articulated array, ideal for treating contoured biological targets, for example, the face, 
to give uniform intensity over the entire surface. It is therefore important to ascertain at what 

distance the manufacturer has calculated the irradiance (almost always in mW/cm2). One of 

the advantages of LED systems, but which make calculation of the PD extremely difficult 
without actual measurement with a suitable power meter, is the fact that the intersecting LED 
beams create a phenomenon known as photon interference. Figure 13 shows this schemati-

cally. A greater photon intensity is delivered at a distance from the surface of the LEDs in 
the array than actually at the surface of the array, that is, directly in front of the LEDs with 
no distance between them and the target tissue. For this reason, those LED mask-type facial 
photorejuvenation systems available on the market, and some hand-held systems designed to 
be used in contact with the target tissue, are not maximizing the effect of the LEDs mounted 
in the mask or applicator, because the full potential of the LEDs is not being realized by not 
creating a distance between the LEDs and the target tissue. This is not to say that these direct 
contact systems will not have any effect: there will be some absorption, therefore there will be 
a reaction, but it will not be as effective clinically as when the LED array is some centimeters 
from the target tissue. A recent study measured the irradiance of a commercially available 
830 nm LED-LLLT system at various points from adjacent to the LEDs themselves to several 
cm away [26]. At some 10 cm away from the arrays, the actual irradiance in mW/cm2 had 

gradually increased to be significantly higher than that measured at the LEDs themselves, 
because of the photon interference phenomenon, and remained high up to 17 cm from the 
panels before there was any noticeable drop off in intensity. Interestingly in this study, at 
20 cm the measured irradiance was equal to that at 3 cm distance. The photon intensity of LED 
planar arrays is a function of the total area of the active array and the placing of the LEDs. 
From a certain distance between the array and the tissue: the array is not seen by the tissue as 

individual LEDs, but as a fairly homogeneous single irradiator.

When the benefit of photon interference is combined with the powerful scattering effect of red 
and particularly near-IR light in tissue (cf the scattering power of red vs green in Figure 10), 
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an interesting phenomenon has been noted whereby the highest photon intensity in the tar-

get tissue is actually beneath the surface, exactly where it is required, as the cellular targets 
for LED-LLLT lie at the stratum basale in the epidermis and in the dermal matrix. The same 
phenomenon of photon interference does not occur with the filtered light sources as many of 
these incorporate a polarizer in the lens, and therefore, a highly significant drop-off in inten-

sity occurs concomitantly with the increasing distance between the lamp/filter and the target 
tissue, similar to the single LED seen in Figure 12b.

5.2. Cellular targets for light‐tissue interaction

The following Table 1 summarizes the main cellular targets for LLLT, and all can participate in 

some way to help to turn back the skin aging clock during the process of LLLT photorejuvenation.

The majority of these cells are the key players in the wound healing process. What has the 
wound healing process to do with photorejuvenation of skin? The answer is … everything, 
and that will be made clear in the next section.

Figure 13. Different beam patterns above and in tissue compared among an LD and LEDs. (a) LD-based LLLT system 
showing a collimated, coherent beam without too much loss of intensity. Deep penetration is achieved in tissue because 

of the coherent nature of the beam and high photon intensity. Good scattering causes concentrated intensity in the target 
tissue just beneath the skin surface. (b) A single LED with a noncoherent divergent beam, losing in intensity as the beam 

diverges. Poor penetration is achieved with extremely low photon intensity in very superficial skin. (c) An array of 
LEDs showing intersection of each beam causing the photon interference phenomenon, increasing the photon intensity 
as the beams show multiple intersection as they near the tissue. Deeper penetration is achieved in the target because of 

the enhanced photon intensity, with scattering of the red light causing the zone of highest intensity in the target tissue 
beneath the skin surface. (d) Treatment head comprising 5 LED panels, articulated to allow adjustment to follow the 
contour of a curved target, for example, the face. Where the beams from all the panels intersect, a zone of even higher 
photon intensity is created to enhance treatment efficacy.
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Cell Location/function Effective 
wavelength(s)

Photobiomodulation‐boosted activity

Keratinocytes 
[27]

Epidermis:
Stratum basale
Germinative cells (‘mother 
keratinocytes’), producing 
constantly upward-moving 
daughter keratinocytes making 
up the stratum spinosum. Also 
known for plentiful cytokine 
synthesis

590 nm
633 nm
830 nm

590 nm and 633 nm: target CCO in the abundant keratinocyte mitochondria to boost intra-and 
extracellular ATP, Ca2+ and H+. Improve tight cell adhesion in stratum spinosum and enhance 
cellularity of daughter keratinocytes. Improve quality of epidermis through efficient daughter 
keratinocyte production by mother keratinocytes. Synthesize multiple pro- and antiinflammatory 
cytokines, some of which drop down into the dermis and react with fibroblasts, macrophages and 
mast cells
830 nm: act on keratinocyte function via photophysical interaction with membrane. End result 
same as for 590 nm and 633 nm
End result: a fresh-looking and plump epidermis, an essential component in skin 
photorejuvenation

Melanocytes 
[28–30]

Epidermis:
Stratum basale
Melanin-producing dendritic cells 
(in melanosomes), with pigment-
darkening as melanosomes 
proceed out along dendrites 
for incorporation in daughter 
keratinocytes as granules

633 nm
830 nm
415 nm

Both 633 nm and 830 nm have been shown to regulate the tyrosine-tyrosinase oxidation process, 
reduce excess amounts of pigment-darkening tyrosinase and quantities of tyrosinase-related 
proteins (TyRPs) 1 & 2. Normalization of dopa and dopamine, associated with over- and 
underactivity of tyrosinase. Some reports on 830 nm repigmentation of systemic vitiligo lesions
415 nm has shown the potential to help with repigmentation of depigmented areas through 
action on the melanocyte
End result: can be normalization of any abnormal pigment synthesis and over-darkening activity 
as well as the potential to repigment depigmented areas

Fibroblasts 
[14, 30–32]

All layers of the dermis
Most important cells for 
producing and monitoring 
structural components of the 
extracellular matrix (ECM, 
collagen and elastin fibers). Also 
produce and regulate the ECM 
lubricating ground substance

590 nm*
633 nm
830 nm

633 nm, 830 nm: LLLT-irradiated fibroblasts produce better quality collagen (mostly type I), better 
elastin and replenish the ground substance. Photoactivated fibroblasts also more efficiently keep 
homeostasis of the dermal extracellular matrix through balancing levels of lytic enzymes (matrix 
metalloproteinases, MMPs) and protective enzymes (tissue inhibitors of MMPs, TIMPs). LLLT-
treated facial skin showed plump, fibroplasic fibroblasts with good collagen bundles compared 
with unirradiated and sham-irradiated skin
End result: much better structured ECM with plump, well-oriented collagen bundles (better sheer 
strength), and new elastic fibers (better ability for skin to reform after deformation)

Mast cells 
[30, 33, 34]

Exist throughout the ECM, 
usually found clustered around 
blood vessels
Basophilic granulocytes which 
play a role during allergic 
and wound repair activity 
through release of pro- and 
antiinflammatory granules, 
cellular chemotactic agents, 
trophic factors and superoxide 
dismutase (SOD), a powerful 
endogenous antioxidant

830 nm
633 nm 
(lesser extent)

When irradiated during LLLT with 830 nm in particular, mast cells are stimulated to release their 
granules in several stages into the ECM, which normally only happens following wounding or 
as part of an allergic response. First stage is proinflammatory, which peaks and then quenches 
the inflammatory stage of wound healing. Second stage is antiinflammatory to hasten movement 
from the inflammatory stage into proliferative stage, and release of chemotactic factors to recruit 
more reparative cells, plus release of trophic factors to support these cells. Finally mast cells 
release SOD which remains in the ECM and acts as a protective agent against future oxidative 
stress, for example, UV radiation-mediated as part of the extrinsic aging process
End result: mast cell degranulation accelerate the usual wound healing phases, allowing a 
quicker interphase transition between inflammation and proliferation, thus the remodeling stage 
starts earlier and works more efficiently to give good alignment and better orientation of new 
fibers, especially in the Grenz zone just under the dermoepidermal junction
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Cell Location/function Effective 
wavelength(s)

Photobiomodulation‐boosted activity

Macrophages 
[35–38]

Free-floating in the ECM 
throughout all layers of the 
dermis
Phagocytic cells whose task is to 
maintain the cleanliness of the 
ECM by removing all detritus, 
such as denatured fibrous 
fragments, cellular and other 
debris. An important point si that 
during phagocytic action, they 
release fibroblast growth factor 
(FGF), ideal for fibroblasts during 
the proliferative stage of wound 
healing

830 nm
633 nm (lesser 
extent)

LLLT with 830 nm in particular, although 633 nm has also been trialled, has been shown to 
photoactivate macrophages to work harder and faster through more efficient target identification 
and chemotaxis, to internalize their collected debris better and return to their task faster. When 
photoactivated, macrophages were shown to release at least an order of magnitude more FGF, 
thus making the ECM a better and more favorable environment for fibroblasts during the 
proliferative stage
End result: with a cleaner and clearer ECM, the skin condition is maintained better. Fibroblasts 
are able to do their job in a more favorable environment thanks to the presence of trophic factors

Neutrophils 
[39–42]

White blood cells (granulocytes, 
part of the polymorphonuclear 
cell family) found when required 
anywhere in the dermis
First line of defense by the 
immune system against invading 
pathogens. They engulf their 
target and kill it through 
oxidative stress via the release of 
singlet oxygen species. Associated 
with trophic factor release, 
particularly transforming growth 
factor (TGF) α and β

830 nm Neutrophils are normally associated with an attack by invading pathogens or as prophylactic 
protection immediately after wounding. When irradiated with 830 nm, neutrophils are recruited 
into normal skin. Even although there are no pathogens for them to kill, they still release trophic 
factors beneficial to the wound healing process as a whole
End result: more trophic factors added to the ECM to assist other cells during either the wound 
healing process or as part of their normal duties

CCO, cytochrome c oxidase.
*Only from in vitro studies, but very limited in vivo by extremely poor penetration.

Table 1. Target cells for phototherapy, their biological location, the wavelength(s) to which they respond best and a description of their activity when photoactivated.
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5.3. Blood supply as a target for LLLT photorejuvenation

There is no point in encouraging the skin cells to thrum along nicely unless these cells are 

receiving nutrition and oxygen and that is the function of the dermal vasculature. Both 633 
and 830 nm have been associated with supportive activity for the blood vessels in the dermis 
[42–47]. The interaction between blood vessels and LLLT is therefore of equal importance 
to the interaction between LLLT and the skin cells. Because of its deeper penetration, and 
 possibly because it delivers a photophysical primary response to the endothelial cells, 830 nm 
has a good body of literature supporting a strong interaction with the blood supply, deliver-

ing a higher flow rate and volume and thus bring oxygenation and nutrition to the ECM. In 
addition, where there have been circulatory problems, LLLT has restored circulation such as 

in ischemia animal models, and Raynaud’s patients [47, 48]. It has been suggested that the 

LLLT acts directly on the vessel walls, but there is also a reaction involving the parasympa-

thetic system, inducing further extended vasodilation. In one study involving patients with 
the athetotic type of cerebral palsy, patients in a state of sympathetic hypertension with very 

poor blood supply to the peripheral circulation as assessed by real-time fine plate thermog-

raphy received one single 830 nm LLLT session on acupuncture points on the chest. Within 
5 min, thermography revealed increasing body warming which remained highly significant 
in the extremities at 90 min after the single treatment [49].

This effect on the parasympathetic system, our ‘rest and digest’ or ‘rest and relax’ nervous 
system is important as a destressor, as stress is also a contributory factor to the aging of 

the skin. In particular with the 830 nm LED-LLLT system, it is often noted that patients 
quickly fall asleep during photorejuvenation sessions and wake up feeling refreshed. 
Within 5–10 min, a gentle warming of the face is also felt as the microvasculature brings 
more blood to the superficial dermis through vasodilation. The latter is without a doubt 
a physical beneficial phenomenon, whereas the former is more of a psychosomatic ben-

efit. However, if patients feel more relaxed, and in fact, their faces have been treated with 
LLLT photorejuvenation; the importance of the psychosomatic benefits cannot be ignored, 
mostly due to the improved vascular supply following parasympathetic system stimula-

tion by, in particular, 830 nm LLLT.

6. Wound healing: the basis of photorejuvenation

As stated above, the wound healing process underpins good skin rejuvenation. When the 
photoaged and intrinsically aged skin is studied carefully, the onslaught from environmen-

tal factors such as air pollution, ultraviolet-related oxidative stress, smoking for those who 
smoke, or even for those who are forced to exist in a smoky atmosphere, nutritional factors 
and even the water in which we wash our skin and drink takes an enormous toll on the 

ordered structures of the extracellular matrix and the level of activity of the cells populating 
it. Photoaged skin is every bit as compromised as wounded skin, and so one of the optimum 

and most elegant ways to fight this skin damage, most of which is due to sunlight, is to use the 
beneficial side of light through application of LLLT: in other words, apply photorejuvenation.
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When the aims of photorejuvenation are considered carefully, the reader will see clearly 
that the end results of the wound healing process and photorejuvenation are synonymous. 
We need new and well-organized collagen fibers and bundles, efficiently remodeled to give 
 optimum orientation, body and strength to the skin including a nicely linearly oriented Grenz 

zone coursing under the dermoepidermal junction, and adding support to the epidermal 
appearance. We need the degraded elastotic elastic fibers replaced with newly synthesized 
elastin forming new, viable elastic fibers to return the reforming and tightening properties to 
sagging photoaged skin. We need fresh and well-hydrated ground substance, to lubricate and 
oxygenate the components of the ECM. We need toned up and active fibroblasts to deliver all 
three of these goals just mentioned, and to regulate the homeostasis of the ECM supported 
by hard-working macrophages to maintain ECM health through keeping it free of clogging 
debris. Furthermore, above this restored and youthful ECM, we need a clear, luminous epi-
dermis, with good basement membrane function to support and nourish the activities of the 

germinative and other cells in the stratum basale; well-convoluted papillary processes are 
also needed to give as large a supporting area as possible at the dermoepidermal junction, 
and above the epidermis, we need a well-ordered stratum corneum to provide good skin 

barrier function without excess sebum. With application of LLLT, all of these can be achieved 
through the athermal and atraumatic action of LLLT on the target cells, particularly if LLLT 

is used in combination with moisturizing and nutrifying creams and sera with the added 

protection of a daily regimen using a good UVA/B sunscreen.

The wound healing cells have been introduced in Table 1, namely, the mast cells, macro-

phages and neutrophils during the immediately post-wound inflammatory process; the 
 fibroblasts and endotheliocytes (to repair damaged blood vessels or for neovascularization) 
during the proliferative stage; and the transformational cells during the long remodeling 
stage, fibroblast to myofibroblast transformation and fibroblast to fibrocyte dedifferentiation. 
All these cells occur at their different stages, and in different numbers. If we can marry LLLT 
with these potential targets, then we can get more efficient wound healing, and faster, without 
compromising the process in any way. The wavelengths which have shown efficacy for each 
cell type are listed in Table 1. In general, 830 nm near-IR is the favorite, followed by 633 nm 
visible red, and LED-based systems are in the ascendency compared with LD-based systems, 
simply because the LED systems are capable of irradiating a large area in a hands-free man-

ner. If we can get efficient wound healing, then we can most certainly extrapolate the same 
benefits to the indication of phototherapy for photorejuvenation of the aging skin.

A PubMed search using ‘LLLT’ and ‘Wound healing’ brings up over 700 titles in a vast range 
of wound types, and surgical specialities. That is an impressive number. How does LLLT 

affect frank wound healing? In a study by Trelles and colleagues on the application of LED-
LLLT after full face ablative resurfacing with the Er:YAG and CO

2
 laser in 50 patients, 25 

received LLLT after their resurfacing procedure, and 25 received sham treatment [50]. In the 

LLLT group, healing (as defined by full reepithelization and resolution of edema and ery-

thema) occurred in an average of 6.1 days compared with 13.2 days in the non-LLLT group. 
In addition, all the usual side effects associated with full-face ablative resurfacing, edema, 
erythema, bruising and pain were significantly reduced in the LLLT group, with better than 
92% of the LLLT patients being extremely satisfied with the procedure  compared with 55% 
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of the sham-LLLT group. A recent study by Min and Goo examined 830 nm LED-LLLT 
for a variety of skin wounds which had proved recalcitrant to normal healing, including 

severe inflammation, bacterial infection, viral infection, and Bell’s palsy [51]. All cleared up 
in from 1 to 5 weeks with no visible scar formation, even in one case of a severe ischemic 
ulcer with a large defect. In a case report on contact irritant dermatitis caused by a home-

use alpha-hydroxy peel, corticosteroids failed to reduce the inflammation for more than 
5 weeks: 830 nm LED-LLLT in three sessions, 3 days apart, completely controlled it [25]. 

Moreover, 830 nm LED-LLLT has shown significant prophylaxis against hypertrophic scar 
formation postthyroidectomy in a controlled study [52]. To summarize, it can be argued 

that LLLT not only speeds up the wound healing process, but ensures that good quality 
wound healing is achieved, with prophylaxis against unwanted scar formation.

7. Clinical indications of phototherapy in skin rejuvenation

So, finally, having looked at some of the science and technology behind phototherapy, what 
about LLLT for photorejuvenation of the aging and aged skin? First the methods available 
need to be considered. Discussed earlier in this chapter were LD-based systems, LED-based 
systems, and filtered lamp-based systems. It has to be said that LD-based systems deliver 
higher photon intensities than LEDs, which in turn are in general much more intense than 
filtered lamp systems. LDs deliver coherent light at a precise wavelength. LEDs deliver non-
coherent light, but with more than 95% of the photons at the rated wavelength, quasimono-

chromaticity, and with clinically useful photon intensity thanks to their treatment head 

design and photon interference among the LED beams. Filtered lamps deliver polarized light 
at a slightly broader bandwidth than LEDs because of the filter technology, but with rather 
low intensities requiring longer exposure times. Almost all LD-based systems require manual 
application in a point-by-point mode, and even those with some form of stand-based applica-

tor can cover only a small area at a time. LED-based systems have large-areas planar arrays, 
the better systems having multiple articulated panels to enable uniform irradiation of curved 
areas of the body, such as the face: these are applied in a completely hands-free manner, 

covering large areas of the body in one session. Filtered lamp systems are also available with 

stands to hold the lamp in a hands-free manner, but have a smaller treatment area than LED 
systems, and cannot cover curved areas with uniform irradiance.

Based on the statements above, the authors therefore feel that, given the rise of popularity of 
LED-based phototherapy systems in the clinical world and also given the increasing body 
of LED-based evidence in the peer-reviewed literature [25, 53], the optimum phototherapy 

system for photorejuvenation should thus be the large array LED-based system. The wave-

lengths which have achieved the largest coverage in the literature are as follows: 415 nm, 
but only as part of acne phototherapy, so perhaps cannot be included in photorejuvenation; 
633 nm visible red; and 830 nm. Of the latter two, several articles have examined the use of 
the wavelengths in sequential combination for photorejuvenation, with very good results. 
[14, 54, 55]. The regimen as it evolved called for the near-IR 830 nm to be applied first, then 
2–3 days later the 633 nm visible red head was applied. This was repeated over 4 weeks. The 
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dose for the 830 nm component was usually 60 J/cm2, and for the 633 nm was over the 100 J/
cm2 mark. All three studies had a follow-up period, ranging between 8 and 12 weeks during 
which no further treatment was given, subjects being allowed only to wash their faces with 
hypoallergenic soap without any other skin care preparation. In all studies, steady improve-

ment was noted in the skin condition in the weeks after the final treatment. The ultimate 
study in photorejuvenation with LED-LLLT was that by Lee and colleagues [32], in which she 

compared 633 used on its own with 830 used on its own, the 830/633 nm combination and 
a sham treated control group. All subjects had only one-half of their faces treated. Lee not 
only took clinical photography, she also conducted histological, profilometric, ultrastructural 
and immunohistochemical assays to examine what was happening underpinning the very 
good results of her study at 12 weeks after the final treatment session. All the LED-treated 
groups were statistically significantly better than the sham group, and the treated sides were 
improved compared with the untreated sides: in the sham-irradiated group, there was no 

real improvement between the sides. It was anticipated that the combination group would 

show the best results, but in fact it was the 830 nm group who led in most of the assays. Skin 
elasticity at 2 weeks after the final treatment was significantly better for the 830 nm group, as 
was neocollagenesis and elastinogenesis. A strong Grenz zone was seen under a plumper and 
 better organized epidermis, and fibroblasts in transmission electron microscopy were active 
and fibroplasic, surrounded by bundles of good quality collagen fibers. At 2 weeks after the 
final treatment, tissue inhibitors of matrix metalloproteinases (TIMPs) 1 and 2 were seen, sug-

gesting a photoprotective effect, which was not seen in the sham or unirradiated specimens. 
The major finding for the subjects themselves was assessed via patient satisfaction. In all the 
treated groups, this grew significantly from immediately after the final session to 12 weeks 
after the session. The combination 830/633 nm group was significantly superior to the 633 nm 
only group. However, the most surprising finding was the much earlier and better satisfaction 
recorded by the 830 nm group.

So how does LED-LLLT help with rejuvenating the photoaged face? In short, LED-LLLT 
 stimulates all phases of the wound healing process, but without causing any wound. It was 

shown that 830 nm LED in a human subject study in vivo recruited significantly more mast 
cells, macrophages and neutrophils into irradiated tissue 48 h after a single irradiation of one 
arm in all 8 subjects in the study, compared with the unirradiated arms [34]. Moreover, at 

48 h the mast cells had mostly degranulated, compared with no degranulation at all seen 
in the contralateral untreated arm. Similar findings have also been observed in the mouse 
tongue model, although with 633 nm rather than 830 nm [33]. Additionally, ultrastructural 
assessment with transmission electron microscopy showed that the ECM in all the treated 
tissue specimens was in what appeared to be an inflammatory state with abundant interstitial 
spaces and the clear presence of perivascular edema. The findings resembled those after a 
wound, but there was no wound.

The authors surmised that the swift degranulation of the mast cells very soon after 830 nm 
LED-LLLT had dumped a slew of proinflammatory cytokines into the normal tissue during the 
first stage of excellulation of granules which had induced a wound-like response. More mast 
cells and macrophages were then recruited in via chemotactic signals released by the granules, 

together with neutrophils, none of the latter being found in any of the fields in the specimens 
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from the unirradiated arms. In other words, a quasi-wound had been formed with a strong 
inflammatory response, but without heat or damage, and with no grossly visible aspects of 
any of the traditional signs of wounding, calor, rubor or dolor. The wound healing process 

teaches us that, after inflammation, comes proliferation, followed by remodeling. The authors 
concluded that the action of the 830 nm LED-LLLT on mast cells had elucidated the first stage 
toward photorejuvenation by creating the inflammatory response.

It could therefore be argued, based on the findings in the Lee study referenced above, and 
the speedy wound healing in other studies, that the continued regimen of LED LLLT, twice 
weekly over 4 weeks, accelerated the wound healing process underpinning the rejuvenation 
of both the ECM and the epidermis in a stepwise manner, enhancing the fibroblast activity 
in the proliferative stage, and allowing the remodeling stage to be entered earlier. That 

continued improvement seen in the Lee study following the end of the actual treatment in 

all three treatment groups, but particularly in the 830 nm group, was the visible result of the 
remodeling process working on the newly laid down collagen fibers in the dermis during 
the proliferative stage, supported by the fresh elastinogenesis. On the other hand, it took 

time, 12 weeks in fact, to see the optimum results. This shows how important it is to prepare 
patients to be patient when planning photorejuvenation with low level light therapy. LED-LLLT 
certainly works, but it works from the inside out and takes time. However, concomitant use 

of good skin care preparations and establishment of a daily UVA/B sunscreen regimen would 
accelerate results and quite possibly maintain them even longer.

As to the optimum wavelength, in a review on the efficacy of LED-LLLT, Kim and Calderhead 
came down firmly in favor of the 830 nm wavelength [25]. Calderhead and colleagues 
reviewed 830 nm LED-LLLT both in stand-alone and in adjunctive indications and came to 
the same conclusion [56]. In a recent invited review for Clinics in Plastic Surgery, Calderhead 
and Vasily examined the efficacy of LED-LLLT in the aging face, and again pointed to the 
overall efficacy of the 830 nm wavelength [57]. Having said that, 633 nm has shown interest-
ing results on induction of fibroplasia in fibroblasts in a human in vivo model, so cannot be 
 discounted [32]. As long as there is absorption there will be reaction, and remember that the 
key to absorption to achieve effective photorejuvenation is primarily wavelength.

8. Innovations in photorejuvenation

The previous sections in this chapter have dealt mostly with very narrow-band light sources 

in photorejuvenation as part of photomedicine, concentrated on non-coherent but qua-

simonochromatic LEDs and coherent LDs at specific wavelengths. However, one of this 
chapter’s authors (YT) has recently launched exploration into a new concept of potentially 
phototherapeutic light having built up an impressively large body of evidence. Tanaka offers 
an innovative approach to photorejuvenation, namely comparatively broad band near-IR 
with a cut-on/cut-off water filter to exclude certain wavelengths in that IR waveband.

A specific band of near-IR energy (1100–1800 nm together with a water-filter that excludes 
wavelengths 1400–1500 nm) has been demonstrated by Tanaka to induce various biological 
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effects through a broad range of clinical, histological, and biochemical investigations [58–72]. 

Tanaka reported that water-filtered broad-spectrum near-IR can promote up-regulation of 
genes related to type I collagen synthesis, including LARP6 and COL1A1, which achieves 
skin tightening and skin rejuvenation [72]. This exciting development of a specific broad-band 
IR waveband is also associated with deep penetration of the water-filtered waveband into the 
dermal ECM, targeting both cells, subcellular components and the vascular plexus.

Tanaka also reported that water-filtered broad-spectrum near-IR induces long-lasting vaso-

dilation that may prevent vasospasm and be beneficial for ischemic disorders [65]. Near-IR 

also relaxes and weakens dystonic and hypertrophic muscles to reduce wrinkles and myalgia 
[60, 61]. The ability of LLLT at 830 nm to activate the parasympathetic system and counteract 
sympathetic hypertension was noted above as reported by Asagai and colleagues [49], so this 

new approach pioneered by Tanaka may also have far-reaching benefits in the treatment of 
athetotic tonic spasm in profoundly affected cerebral palsy quadriplegic patients. Near-IR 
is an essential tool in cancer detection and imaging and induces drastic non-thermal DNA 
 damage of mitotic cells, which may be beneficial for treating cancer [66, 67]. Activation of stem 
cells by near-IR energy may be useful in regenerative medicine [62, 68, 70, 73].

Although the underlying mechanisms of various biological effects by water-filtered broad-
spectrum near-IR have not been clearly elucidated, the potential of this innovative approach 

may be also significant, and the range of its applications in the medical field is expected to 
be wide [70]. Therefore, further studies in this area are needed to more accurately investigate 

the biological effects of water-filtered broad-spectrum near-IR phototherapy and photoreju-

venation, and to evaluate its potentially large contribution as a new component in the low 

level light therapy armamentarium.

9. Conclusions

The authors of the present chapter are of the clear opinion that LLLT is a valuable tool for 

the aesthetic clinician in rejuvenating the photoaged face, but it is only one such tool. We 
further believe that LED-based systems are the best way to go because of their ease of use and 
hands-free delivery, compared with LD-based devices. We finally believe that 830 nm offers 
very interesting properties compared with other wavelengths, making it the wavelength of 

choice because of its superior depth of penetration, and larger number of cells and targets 

it has been shown to photoactivate. However, the novel indication of Tanaka’s broad-band 

water-filtered near-IR must also be watched extremely closely, since this waveband penetrates 
well into the ECM and beyond and has been proved to target and photoactivate wound heal-
ing cells and the vascular plexi.

A great deal of work remains in exploring the exact mechanisms of LLLT action, although 
many pathways at subcellular and genetic levels have been and are being explored. The 
TGF-β/Smad signaling pathway is the latest to be explored in the collagen synthesis chain 
of events [74], coupled with up-regulation of genes related to type I collagen synthesis, 

including LARP6 and COL1A1 [72], and more will doubtless be uncovered. The more that 
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is known, the better can we use LLLT to target the correct pathways to help turn back the 
skin’s aging clock in photorejuvenation, from the inside out … fighting photodamage with 
reparative  phototherapy. However, ‘No man is an island, entire of itself’ (1624 Meditation 
17, from Devotions Upon Emergent Occasions, John Donne, 1573–1631): in the same way LLLT 
photorejuvenation cannot possible accomplish everything. Combination is without a doubt 
the key, and whereas LLLT as a stand-alone modality has a lot of promise in rejuvenating the 
not-so aged face, when we come to treat the seriously aged face, then LLLT will be an excel-
lent adjunctive modality to the more aggressive laser and energy-based device treatments.

Just to leave the reader with a teasing thought, the authors have often seen the term ‘photoan-

tiaging’ bandied about, when what people are really talking about is photorejuvenation, the 
central subject of this chapter. But what about ‘true photoantiaging’? Suppose we clinicians 
and researchers start to apply pure LLLT, either with near-IR LEDs or broad-band water-fil-
tered near-IR in younger patients in their late teens, for example … would that give us true 
‘photoantiaging’ and remove or at least postpone the necessity for photorejuvenation later in 
life? It is an intriguing thought.

Finally, a group of authors, writing almost 10 years ago in Lasers in Medical Science on their 

years of experience in the use of light in facial rejuvenation, concluded that no single modality 
could accomplish all the complex events required for effective skin rejuvenation, and suggested 
that combination phototherapy was the best approach, amalgamated with other conventional 

modalities, and with an adjunctive epidermal care regimen [75]. There is indeed, nothing new 

under the sun.
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