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Abstract

The rapid demand for rare earth elements (REEs) in recent years due to increased use in 
various technological applications, agriculture, etc. has led to increased pollution and 
prevalence of REEs in the environment. Therefore, monitoring for REEs in the aquatic 
environment has become essential including the risk assessment to aquatic organisms. 
Since direct determination of REEs in sediment samples prove difficult at times, due to 
low concentrations available and complex matric effects, separation and enrichment steps 
are sometimes used. In this work, various REEs were determined employing wet acid 
digestion and lithium metaborate fusion in our optimised analytical technique. A com-
parison of the two analytical techniques was also made. The results obtained from the 
optimised ICP-OES radial view technique were in 5% agreement with the ICP-MS results 
from the same samples. The accuracy of the method was checked with the geological ref-
erence material GRE-03 and found to be in reasonable agreement. We demonstrated that 
there is a consistent relationship between the signals of the REEs and nebuliser gas flow 
rates, plasma power and pump speed. The detection limits for all the REEs ranged from 
0.06 mg L-1 Yb to 2.5 mg L-1 Sm using the ICP-OES fusion technique.

Keywords: rare earths elements, spectroscopy optimization, lithium metaborate, fusion 
digestion and sediment
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1. Introduction

Sediment forms the deposit of organic matter, silt, alluvium or sludge that settles at the bot-
tom of a liquid. Water in rivers, wind and glaciers normally transports the sediment. The 

sediment forms the habitat of the aquatic ecosystem. Furthermore, it acts as a sink or source 

for metals that can contribute to biogeochemical processes that occur in the aquatic environ-

ment [1].

The nutrients may be either useful or harmful depending on the concentration. High 

concentrations of non-essential metals including rare earth elements (REEs) are toxic to the 

environment. In environmental impact studies, sediments play a crucial role in monitoring 

contamination levels. The elemental analysis of sediments and soils has become important 

in the environmental studies, particularly for the identification of the contaminants present 
in the matrix and the relative threshold levels of toxicity [2]. River and estuarine sediments 

can be used to assess the pollution level of heavy metals and REEs as the surface sediments 

interact with the water column and record the depositional pollution history.

A major issue in the determination of soil elemental constituents is represented by the refrac-

tory nature of many metals including the REEs. Traditional methods for the analysis of REEs 

in sediments, based on instrumental techniques, require the complete dissolution of samples. 

Typically, this is done through alkaline fusion, microwave digestion and acid digestion on hot 

plates at atmospheric pressure. Following dissolution of samples, the spectrometric measure-

ment is performed using different spectrometric techniques, such as flame atomic absorption 
spectroscopy (FAAS), graphite furnace AAS (GFAAS), neutron activation energy (NAE), X-

ray fluorescence (XRF), inductively coupled plasma optical emission spectrometry (ICP‐OES), 
or ICP mass spectrometry (ICP‐MS). Although the procedures of acid solubilisation are effec-

tive, they are time-consuming and can often result in the loss of the most volatile species [3, 4].

A prerequisite for the determination of rare earth metals and other refractory elements, such as 

chromium, zirconium, barium, titanium, hafnium and strontium, is a complete sample diges-

tion [5, 6]. This is a huge problem in many analytical laboratories as the process consumes 

time and sometimes requires costly equipment. The digestion of rare earth and refractory ele-

ments is commonly achieved using hydrofluoric acid (HF) in combination with mineral acids, 
such as nitric acid (HNO

3
), hydrochloric acid (HCl) and perchloric acid (HClO

4
) [7]. The HF 

is good on breaking up the silica matrix and to liberate all entrapped metals. The acid diges-

tion procedures also often result in incomplete analysis of refractory and rare earth metals. 

In addition, the use of HF is extremely dangerous due to the reactive nature of the acid [8]. Li 

et al. [9] reported the digestion of sediment samples by microwave technique using HNO
3
-

H
2
O

2
-HF reaching detection levels of ng/L on ICP-MS. An alternative technique to the wet 

acid digestion procedure is the fusion method. This is achieved by mixing the sample with 

flux such as lithium, sodium and potassium borate fluxes. Occasionally NaCO
3
, K

2
CO

3
, Na

2
O

2
 

and NaOH fluxes may be used [10, 11]. The use of the flux‐fusion approach is preferred due 
to the following reasons: (i) it is a complete digestion technique; (ii) it is much safer because 

HF is not used; (iii) the dominance of flux in solution results in similar matrix composition 
perfectly homogenous; (iv) it maintains constant grain size, thus the sample obtained will be 
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almost perfectly homogenous; (v) the solutions are stable in dilute nitric acid and (vi) sample 

preparation time is shorter than that of the conventional acid digestions [10, 11].

The use of lithium metaborate (LiBO
2
) as flux is similar to the XRF preparation of making 

fused beads, where total dissolution of sample is required. The key objective of this chapter 

is the determination of optimum instrument parameters and sample preparation conditions 

for ICP-OES analysis. Thus, this will facilitate very precise, accurate and rapid measurements 

of rare earth elements in sediment samples. Two different procedures used in this chapter 
for sediments decomposition were open-vessel wet digestion and lithium tetraborate fusion 

techniques [5, 6, 12].

2. Materials and methods

2.1. Sediment sample preparation by fusion for ICP analysis

Upon arriving at the laboratory, the samples are kept frozen to minimise the potential for 

volatisation or biodegradation between sampling and analysis. The preparation of sediment 

Scheme 1. Schematic diagram showing the steps involved in fusion dissolution and analysis steps for a sediment sample 

(Adapted from, Boumans, 1987).
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samples for chemical analysis collected from streams, rivers, ponds, lakes and oceans involves 

some steps to obtain a well‐represented portion. Samples are first screened to remove foreign 
objects and large particulates, dried at 70°C and split to retain a fraction for storage. The 

chemically active fraction of sediment is usually cited as that portion which is smaller than 

63 mm (silt + clay) fraction [13]. All weights were measured on a five‐digit analytical balance 
(Mettler model).

A control sample can be prepared from portions that have been analysed. Thus, such finished 
material should be combined and well mixed into a larger storage container for future use 

as control sample that monitors the extraction process. Recovery test of the control and any 

reference material is evaluated after each run.

2.2. Wet digestion technique

For the wet digestion procedure, a mixture of HCl, HF HNO
3
 and HClO

3
 is added sequentially 

to the sample. All chemicals used for the preparation of standards and reagents were of ana-

lytical pure grade purchased from Merck (South Africa). The ideal sample weight for optimum 

dissolution is between 0.25 and 1.0 g weighed in Teflon beakers. For this procedure, HCl was 
boiled to near dryness. The sample was soaked with 1:1 HF and HNO

3
 for 8 h or overnight at 

room temperature to enhance dissolution and then boiled to near dryness. A 1:1 mixture of 

HNO
3
 and HClO

3
 was boiled until all white dense fumes disappeared and this stage drove off 

all HF remaining. Another boiling of HNO
3
 followed by 10% HNO

3
 v/v to redissolve all salts 

completed the dissolution stage. After cooling, the sample was transferred to 50 ml volumetric 

flask and topped with 10% HNO
3
 v/v. Mixing of the sample was achieved by vigorous shak-

ing, and the clear solution was transferred to a glass vial for ICP-OES analysis [9, 14].

2.3. Lithium metaborate fusion technique

The lithium metaborate dissolution procedure comprises the powdered sample mixed with 

flux of high purity in a desired proportion. The sediments that have organic matter and vola-

tile phases are first ignited to fully oxidise the matter. However, the loss on ignition (LOI) 
can result in some loss of alkali metals; therefore, it was avoided in this study and, again, the 

sediments analysed had minimum volatile matter. The accurately weighed sample and flux 
is heated to approximately 1000°C on an automated fusion fluxer machine. The temperature 
is controlled by the gas flow that can be increased or reduced. The optimum temperature will 
melt and dissolve the sample to a perfectly homogeneous mass. Upon completion of the dis-

solution stage, the molten mixture is poured into heat‐resistant Teflon beakers containing 100 
mL of 10% v/v HNO

3
 or as per dilution of choice for ICP analysis. Alternatively, the molten 

solution is poured into a preheated mould to produce a glass disk for XRF analysis [11].

Basically, the standard fusion process consists of the following three steps: (i) melting the 

sample/flux mixture; (ii) pouring the molten glass into an acid solvent; and (iii) dissolution of 
the molten glass into solution [15, 16]. The three steps play a huge significance in optimisation 
of the fusion technique. If one or more of the steps are not properly adhered to, then incorrect 

results and poor precision is obtained. The sample to flux ratio is essential in making sure that 
the entire sample is thoroughly dissolved in solution but avoiding flux saturation.
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2.4. Fusion instrumentation, borate‐fused fluxes and platinum accessories

The complete fully automated M4 fusion instrument (Corporation Scientific Claisse Inc, 
Canada), a three‐position automatic gas instrument, was used in this study. Different borate 
fluxes were tried and the lithium metaborate (98.5% LiBO

2
–1.5% LiBr) was the best, due to 

higher solubility and faster crystallisation during cooling. The high‐purity borate fluxes are 
fused and consist of homogenous, spherical and vitreous particles, which are water-free and 

non‐hygroscopic. To avoid wetting of the crucibles, a pre‐mixed flux with a non‐wetting agent 
was employed. The halogenated compounds of iodine and bromine were used to make halo 

acids, for example, LiI, LiBr, NaBr, KI and so on, as they produce good releasing agents. 

Claisse’s type crucibles used were of exceptional quality, made of 95% platinum alloyed with 

5% gold. It is highly recommended to mirror‐polish the crucibles to retain flat and smooth 
surfaces to aid easy transfer of the melt into the acid ICP mixture [11]. All the fluxes used and 
platinum ware were purchased from Claisse (Canada).

2.5. Dilution for ICP analysis

The dissolution procedure for flux‐fusion preparation of sediments results in an aqueous solu-

tion that can be analysed in a single analytical session for REEs, major and trace elements. Most 

sediments contain trace amounts of REEs depending on the sampling site and level of pollu-

tion from anthropogenic sources. It is suggested that the minimum or optimum dilution be 

performed to get low detection limits and precise results be employed. The salt content in the 

solution requires a dilution that does not affect the mobility of the sample on the ICP instru-

mentation. Too viscous solution of the alkaline salt tends to deposit salts on the ICP torch and 

clogging of the nebuliser [17]. Different dilutions can be prepared, if the overall goal of gener-

ating enough analyte at an appropriate concentration is fulfilled. A 500 times (nominal) dilu-

tion of sample was considered safe in sediments analysis giving acceptable detection limits.

2.6. ICP‐OES instrumentation

The Spectro Arcos ICP-OES (SPECTRO Analytical Instruments GmbH Boschstrasse 10, 

Germany) equipped with smart analyser software was initialised for about 20 min before 

analysis to get stable plasma. All standard solutions were prepared from high-purity 1000 

mg/L ICP-grade standards. The Spectro Arcos ICP-OES is equipped with charge coupled 

device (CCD) detectors and side-on plasma interface (SPI) or commonly known as radial that 

provides high precision and stability for less sensitive requirements [18]. The sample injec-

tion mode was by continuous nebulisation, and the signal processing or line measurement 

was based on the peak height. Polynomial plotted mode corrected the background. The ICP‐
OES analyses were carried out in controlled room of 20 ± 2°C. The results were verified for 
accuracy by an independent laboratory using ICP-MS (Thermo-Fisher X-Series II quadrupole 

ICP-MS with a New Wave UP213 solid-state laser ablation system). The spot size of the laser 

can be set to various diameters between 10 and 300 microns.

With ICP-OES analysis, the multi-elemental analysis using the simultaneous or sequential opti-

cal systems with radial viewing of the plasma is possible. To generate plasma for excitation, 

the argon gas is supplied to the torch coil and high-frequency electric current is applied to the 
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work coil at the tip of the torch tube. The high-frequency current generated by the electro-

magnetic field ionises the gas. When the excited atoms return to low energy position, emis-

sion rays  (spectrum rays) are released, and the emission rays that correspond to the photon 

wavelength are measured. Samples are nebulised and the resulting aerosol is transported to 

the plasma torch in atomised state. Element‐specific emission spectra are produced by radio-

frequency (RF) inductively coupled plasma. Background correction is required for trace ele-

ment determination. The ICP-OES measurement conditions need optimisation to get the best 

conditions for analysis, such as nebuliser flow rate, pumping speed, auxiliary and coolant 
flow rates and plasma power [19]. Table 1 shows the optimised conditions for ICP-OES mea-

surements equipped with a side-on plasma interface (SPI) or commonly known as radial [18]. 

ICP-OES and ICP-MS analyses are well regarded as appropriate environmental measurement 

techniques in measuring REEs, with the latter being more suitable for ultra‐trace elemental 
levels [20]. Nowadays, due to the higher sensitivity achieved with axially viewed plasma and 

better spectral resolution given by high‐resolution monochromators, it is expected that low 
concentrations of all naturally occurring lanthanides may be directly quantified by ICP‐OES 
analysis [17].

2.7. Integration time

The integration (read) time was optimised using the instrument auto-integration mode. This 

phenomenon will take a snapshot of the intensities of various lines to be measured before the 

Nebuliser type Crossflow

Plasma power 1400 W

Torch Demountable with alumina injector

Torch position 0

Nebuliser flow rate 0.8 L/min

Plasma flow rate 14.0 L/min

Auxiliary flow rate 2.1 L/min

Pump rate 40 rpm

Integration time 28 s

Replicates 3

Viewing height Optimised on SBR

Plasma view orientation Radial

PMT voltage 650 V

Background correction Polynomial

Resolution 8.5 picometre

Detector 29 linear CCD

Table 1. Instrument operating conditions for the spectroscopic analysis of REEs.
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actual readings commence. The trace rare earth elements in sediments require larger integra-

tion time due to their low intensities and thereby increasing sample throughput. Additionally, 

longer read times lower the detection limits by reducing the effects of noise. Higher intensities 
will require shorter read time to reduce memory effects [9, 17].

2.8. Calibration

The calibration standards were prepared by diluting the stock multi-elemental standard solu-

tion 1000 mg L−1 in 10% (v/v) HNO
3
 and 1.5% w/v flux (1.5 g in 100 mL). The calibration 

curves for all the studied elements were in the range of 0.01–1.0 mg L−1. External calibra-

tion strategy is preferred for analysis of larger number of samples whilst standard addition 

method is suitable for small batches of samples. To avoid bias in external calibration method, 

a perfect matrix match of standards and samples is a prerequisite. Affected to a lesser degree 
by changes of the matrix composition or the presence of easily ionisable elements, calibration 

functions with excellent linearity and correlation were obtained, even without the use of an 

internal standard and an ionisation buffer [9, 17].

2.9. Interferences

The emission intensities were obtained for the most sensitive lines minimum of spectral inter-

ference. The REEs have very complex emission spectra and are difficult to measure in the 
presence of one another at very high concentrations using ICP-OES analysis. For this reason, 

ICP-MS analysis is the preferred measurement technique, but it can be very costly. Nebuliser, 

chemical, ionisation and spectral interferences are all present in ICP systems, but spectral 

interferences are most prominent [21].

Spectral interferences are common in ICP analysis and result from the overlapping profiles of 
spectral and interfering lines. The stray light from line emission of high concentration elements 

or particulate matter from atomisation process gives rise to enhanced emission light. This phe-

nomenon gives rise to background emission, which is unwanted signal in analysis. This can be 

 compensated for by subtracting the background emission determined by measuring the emission 

level on the two sides of the analyte peak and subtracting their average from the peak value [22].

Spectral interferences are caused by background emission from continuous or recombina-

tion phenomena, stray light from the line emission of high concentration elements, overlap 

of a spectral line from another element or unresolved overlap of molecular band spectra. 

Background emission and stray light can usually be compensated for by subtracting the back-

ground emission determined by measuring the emission level on the two sides of the analyte 

peak and subtracting their average from the peak value [22].

Figure 1 shows an example of the position of the atomic absorption peak and the background peak, 

as obtained for unidentified element. Spectral overlaps may also be avoided by using an alternate 
wavelength or can be compensated by equations that correct for inter-element contributions.

Nebuliser interferences, commonly known as matrix effects, arise from physical and chem-

ical differences between analytical standards and samples. The inconsistent presence of 
matrix salts, different viscosities and surface tension of the liquid between the samples are 
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common problems of nebuliser interferences. The high salt content used in fusion tech-

nique needs to be diluted to avoid these interferences and match matrix of standards and 

samples. Using a high-solid nebuliser, the use of peristaltic pump can also reduce nebuliser 

interference [23].

2.10. Analytical wavelengths selection

Several criteria were applied for the selection: sensitivity (intensity of the line), selec-

tivity (lack of interferences of other lines) and limits of detection (LOD). All selected 

lines were tested by using individual 0.1 mg L−1 REEs standard solutions in 10% HNO
3
–

LiBO
2
 solution, searching the peak-centre in a first step. The optimised results obtained 

for ICP-OES analysis are shown in Table 2. Wavelength selection is somewhat of an 

individual choice that commonly varies from analyst to analyst and matrix of samples. 

However, there is a developing consensus regarding the wavelengths best suited for a 

target analyte [17, 21].

2.11. Detection limits

Method detection limits (MDL) for each element were calculated and are shown in Table 2. 

For comparison purposes, the LODs obtained using multi-acids and fusion dissolution for 

ICP-OES analyses are also shown. Validation was performed in terms of limits of detec-

tion (LOD), limits of quantification (LOQ), linearity, precision and recovery test. Lacking a 
 suitable certified reference material, trueness was estimated using the recovery rate on forti-
fied  samples. Standards and blanks should be prepared using the same LiBO

2
 strength and 

acids used for the samples and should be spiked with NIST traceable single and multi-ele-

ment  standards. The whole procedure should also be checked with certified reference mate-

rial like the Geostart GRE-03 used in this study to ensure accuracy. The method detection 

Figure 1. The position of the atomic and background absorption peaks that may cause spectral overlaps and contribute 

to inter-element interferences.
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limits (MDLs) were calculated based on relative standard deviation (RSD) of 10 consecutive 

measurements of the matrix blank. The signals to background ratio, background equivalent 

concentration (BEC) and LOD were calculated according to the three equations provided 

below [24–26]:

  SBR =   
[ Int(standard ) − Int(spectral background ) ]

   _______________________________   
Int(spectral  background)    (1)

  BEC =   
C(standard )

 __________ 
SBR

     (2)

   C  
DL

   = 3  ×  RS  D  
b
   ×   BEC ____ 

100
    (3)

where

RSD
b
 is the relative standard deviation of spectral background intensity (10 replicates of 

blanks); C is the concentration of the standard; SBR is the signal to background ratio and BEC 

is the background equivalent concentration.

3. Results and discussion

3.1. Sample‐flux ratio optimisation

The influence of the flux/sample ratio on the concentration of the REEs is illustrated in 
Figure 2. The weight of the sample was examined from 0.100 to 0.300 g. The flux was varied 

Element (ppm) Line (nm) [ICP‐OES] MDL (mg L−1) (Acid digestion) MDL (mg L−1) (Fusion digestion)

La 333.749 1.1 0.3

Ce 418.660 1.6 1.0

Pr 417.939 1.2 1.4

Nd 430.358 2.4 2.1

Sm 360.428 2.8 2.5

Eu 420.505 0.8 0.1

Gd 335.862 1.1 0.7

Tb 231.890 2.3 1.9

Dy 338.502 1.4 0.7

Ho 345.600 0.8 0.3

Er 349.910 0.5 0.2

Tm 313.126 0.5 0.3

Yb 369.419 0.1 0.06

Lu 261.542 0.1 0.04

Y 371.030 0.1 0.08

Table 2. Wavelengths used and detection limits obtained for the use of acid and fusion digestion methods in ICP-OES analysis.
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Figure 2. The effect of percentage of sample in flux (sample/flux ratio) on the concentration of La(II) (A) and Gd(II) and 
Eu(II) and Yb(II) (B) on GRE-03 reference material.
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from 1.00 to 3.00 g. In most fusion techniques, a ratio of 1:10 sample/flux mixture is considered 
optimum for making fused beads. The best concentration of the reference material at differ-

ent sample/flux ratio for lanthanum is 12% or 1:8 ratio. In Figure 2(A), the results are showed 

for lanthanum and 2(B) for gadolinium, europium and ytterbium that were found to be best 
between 12 and 14%. High sample flux ratio may cause the sample not to be fully dissolved 
especially with the presence of refractive elements [16]. The flux content should be enough to 
fully dissolve the sample, but care is needed not to have too much of the flux as it will increase 
deposits on the ICP torch.

3.2. The effect of nebuliser gas flow rate

Figure 3 shows the results obtained for the behaviour of the four elements at selected wave-

lengths as a function of the nebuliser gas flow rate. The rare earth elements not only have 
extremely similar chemical properties but also have inner abundance differences among them 
that provide different responses to applied parameters [27].

The intensities of wavelength of the REEs, whether at first (5.3–6.2 eV) or second (10–12 eV) 
ionisation state, are all similar. The REEs possess soft ionic wavelengths allowing second ioni-

sation potentials [28].

The classification of wavelengths is necessary as the effect of different operating parameters 
on analytical performance depends on them. Each nebuliser has got its own optimum gas 

flow that directly controls the sample uptake en route the plasma. The longer the sample 

interacts in the plasma, the more optical transitions of the elements are possible by it acquir-

Figure 3. The effect of nebuliser gas flow on 0.1 mg L−1 of La(II), Yb(II), Eu(II) and Gd(II) standardised intensity counts, 

with the plasma power kept at 1300 W and pump speed at 35 rpm.
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ing the energy for high energy interactions [29]. High nebuliser gas flow rate gives rise to 
reduced plasma temperature and lowers the atomisation. The low concentration of 0.1 mg L−1 

of the REEs in LiBO
3
–10% v/v HNO

3
 was used for optimisation purposes.

The majority of the REEs studied to date gave best intensities at flow rates less than 0.82 L/min 
with La(II) [333.749] the lowest at 0.74 L/min [17]. An average flow rate at 0.80 L/min was cho-

sen as the optimum nebuliser condition for all the rare earth elements studied.

3.3. The effect of plasma power

Power levels are critical when establishing optimum operating conditions. Higher power 

generates high temperature plasma conditions that lead to increases in intensity for atomisa-

tion and ionisation. The plasma power can have a major effect on the formation of oxides of 
lanthanides as well as in emission intensity and plasma robustness. Robust conditions of the 

plasma have been associated to high applied power by radiofrequency (RF) generator. Figure 4 

shows the results obtained for intensity measurements as a function of the RF power level for 

the four lines: La(II) [333.749], Eu(II) [420.505], Gd(II) [335.862] and Yb(II) [369.419] [17].

The standardised intensity rises with increased power levels due to the high energy of the 

plasma at higher power levels. The high plasma power also increases the background levels 

and sometimes at a rate higher than what the analyte increases. This rise indicates that the 

monitoring of background signal is important. On that instance, the best signal to background 

ratio needs to be established to get the optimum analyte signal and stable plasma. The stan-

dardised intensities rise with increase in RF power as shown in Figure 4. The plasma power 

Figure 4. The effect of applied plasma power on 0.5 mg L−1 of La(II), Yb(II), Eu(II) and Gd(II) standardised intensity 

counts. The nebuliser gas flow rate was kept at 0.80 I/min and pump speed at 35 rpm.

Rare Earth Element74



of 1400 W was chosen as the optimum condition for the analysis of trace rare earth elements 

in a salt matrix of lithium metaborate [17].

3.4. The effect of pump speed

The pump speed affects the uptake of sample and the efficiency of nebulisation that is very crit-
ical to sensitivity. The nebuliser gas pressure and the speed of the peristaltic pump determine 

the volume uptake of sample and both influence the sample transit to the plasma. Large sample 
volumes increase the background level due to poor aerosol formation in the spray chamber.

The type and dimensions of pump tubing have effect on the pumping speed; hence, the 
ideal tubing must be sought [9]. Lower pump speed or using narrow bore pump tubing will 

reduce uptake rate that is better for high %TDS samples and suitable for fusion samples. 
The ideal tubing should be resistant to the solvent in use and to withstand low to high acid 

concentrations.

Figure 5 shows the behaviour of the standardised intensity for the four elements, as a func-

tion of pump speed. The experimental results shown in Figure 5 exhibit the increase in optical 

transitions of La(II), Yb(II) and Eu(II) with increase in pump speed up to about 35 rpm, and 

then a decline was observed. Gd(II) did not show many variations due to the pump speed. 

Once the optimum pump speed has been determined for a specific nebuliser and sample 
matrix, it does not have to be changed on an element-by-element basis. The pump speed of 35 

rpm was considered optimum in this study. However, upon changing the sample matrix and 

type of nebuliser, the pump speed must be verified.

Figure 5. The effect of pump speed on 0.5 mg L−1 of La(II), Yb(II), Eu(II) and Gd(II) standardised intensity counts. The 

nebuliser gas flow rate was kept at 0.80 I/min and plasma power at 1300 W.

Optimisation of Parameters for Spectroscopic Analysis of Rare Earth Elements in Sediment Samples
http://dx.doi.org/10.5772/intechopen.68280

75



3.5. REEs optical transition

The REEs being a unique cluster of elements of atomic number from 57 to 71 increase in 

atomic number with a smooth decrease in ionic radius. This occurrence called lanthanide 

contraction applicable to all trivalent (triple positive charge) atoms makes the chemical prop-

erties of REEs very similar and hence they hold similar optical transitions [30]. The REEs have 

localised electrons that have interesting properties that originate from intraconfigurational 
transitions within the 4f level [31]. Due to high temperatures of the plasma (8000–10,000°C), 

there is a complete energy transfer in the form of emission and scattering of electromagnetic 
radiation. Er3+ and Yb3+ are examples of heavy rare earth elements with weak electron-pho-

non coupling, hence making emission simple because of the low energy involved and stable 

signals produced. The optimised conditions discussed in this chapter showed that different 
conditions give rise to variant optical transitions of the REEs as shown on plasma power 

of 1000–1600 W in Table 3. Detailed transitions of the REEs were outside the scope of this 

chapter.

3.6. Comparison of results in sediment samples

Two sediment samples, labelled VAD-01 and VAD-02 both collected from sampling sites near 

Durban harbour in South Africa, were taken for ICP spectroscopic analysis and the results are 

presented in Table 3.

3.6.1. Samples and reference material

The ICP results for two sediment samples, labelled VAD-01 and VAD-02, are presented in 

Table 3. The certified reference material GRE‐03, a carbonatite from Tanzania rich in rare 
earth metals, was used to test the accuracy and recoveries. It should be noted that the matrix 

of this reference material does not fully match the sediments since we did not find a suitable 
sediment reference material with REEs. However, the reference material provided satisfac-

tory results for the comparison of the three sample preparation techniques, fusion ICP-OES, 

acid ICP-OES and fusion ICP-MS analysis. The results obtained for the sample preparation 

technique provided further evidence that the different sample preparation techniques inves-

tigated were within the confidence limits of the results for reference material.

3.6.2. The comparison of results for two digestive methods investigated

The results obtained for the lithium metaborate fusion and four-acid digestion (HCl, HF, 

HNO
3
 and HClO

3
) procedures are expressed as the mean of three replicates as presented 

in Table 3. The solutions from both methods were analysed using the same conditions of 

the optimised ICP‐OES procedure to determine the efficiency of the methods. The lithium 
 metaborate digested samples were analysed on both ICP-OES and ICP-MS techniques to 

check the effectiveness of the optimised ICP‐OES analysis conditions. The results of the heavy 
rare earth elements in Table 3 from Sm to Lu clearly observed the Oddo-Harkins rule, which 

states that elements with even atomic number are more abundant than the elements with odd 

atomic number.
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Element 

(ppm)

Wavelength 

(nm)

ICP‐OES 

(Fus)

ICP‐OES 

(4‐acids) 

[VAD‐01]

ICP‐MS ICP‐OES 

(Fus)

ICP‐OES 

(4‐acids) 

[VAD‐02]

ICP‐MS ICP‐OES 

(Fus)

ICP‐OES 

(4‐Acids)

ICP‐MS Ref value

(95% confidence 
interval)

La 333.749 26.2 23.4 25.8 31.3 27.3 30.9 2216.7 2078.3 2218.6 2224

±36

Ce 418.660 40.5 35.8 38.7 65.1 56.7 59.8 4352.9 4236.4 4361.8 4354

±29

Pr 417.939 10.9 10.5 11.2 7.2 6.6 7.1 490.3 414.3 488.7 496.6

±8.9

Nd 430.358 1.2 1.0 0.7 31.5 32.8 30.9 1855.9 1847.3 1856.1 1835.9

±33

Sm 360.428 10.7 9.8 8.1 7.0 5.8 7.3 269.7 251.0 276.8 279.4

±4.9

Eu 420.505 0.8 ND 0.3 1.6 1.7 1.6 72.1 68.3 71.9 75.24

±2.0

Gd 335.862 8.3 5.6 9.4 7.9 7.4 7.7 196.6 161.2 193.4 191

±3.6

Tb 321.890 1.1 0.6 1.5 2.2 2.1 1.8 20.4 13.2 20.2 21.65

±0.42

Dy 338.502 5.5 3.8 5.4 8.2 8.2 7.6 92.9 69.7 89.9 92.33

±2.2

Ho 345.600 0.8 ND 0.6 0.7 0.4 0.8 12.1 5.1 12.4 13.53

±0.33

Er 349.910 2.3 1.6 2.4 1.9 1.5 0.7 11.3 10.9 16.8 28.84  

± 0.52

Tm 313.126 ND ND 0.1 0.2 ND 0.1 2.7 2.6 2.9 3.08  

± 0.1

Yb 369.419 2.3 2.0 1.9 4.9 4.2 5.1 16.1 13.5 14.8 15.5

±0.24

Lu 261.542 0.2 ND 0.4 ND ND 0.2 0.9 ND 1.3 1.81

±0.1

Y 371.030 16.3 16.6 18.0 24.1 22.8 25.1 319.5 311.9 317.9 320.6

±5.7

Table 3. Comparison of analytical results obtained for spectroscopic evaluation by fusion ICP-OES, acid ICP-OES and fusion ICP-MS analysis of sediment samples.
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The results obtained for the two samples and a reference material GRE-03 show enhanced 

results on most elements for the fusion method compared to the mineral acid digestion 

method. The acid digestion method does not completely dissolve some of the very resistant 

minerals and REEs, especially in hard rocks. Although the results are so close to that obtained 

in the fusion method, this can be attributed to the easy dissolution of the sediment material. 
The results suggest that the lithium metaborate fusion results in total dissolution of metals 

and is ideal for litho-geochemistry, including major oxides and trace rare earth metals. The 

detection limit of the acid digestion method was also compromised as we did not detect Eu, 

Ho and Lu in sample VAD-01, Tm in sample VAD-02 and Lu in sample GRE-03, but results 

were obtained for the fusion method. Generally, the acid digestion results for the GRE-03 

sample was found to be lower than the certified values because of the difficulty in breaking 
the carbonatite in the sample matrix.

3.6.3. The comparison between ICP‐OES and ICP‐MS

The analytical techniques were performed using the same solution from the lithium metabo-

rate fusion technique. The ICP‐MS technique was found to be more efficient though costly in 
the trace elemental analysis, when compared to the ICP-OES technique. However, when com-

paring the results of ICP-MS with the optimised ICP-OES conditions, the former technique 

was very useful in validating the sediment results.

Most elements showed good agreement when the results are compared with less than 5% dif-

ference on all the samples analysed, including the reference material. For some elements with 

low levels present, such as Gd, Dy, Ho and Yb, the ICP-OES occasionally got slightly higher 

values than the ICP‐MS technique. This observation in results was not significantly high, but 
it can be attributed to some spectral interferences.

The results obtained for the GRE-03 reference material compared well with the reported 

 values listed in the table although the results for Ho, Tm and Lu were all moderately low on 

both instruments.

4. Conclusions

In this study, sample to flux ratio, optimum emission wavelengths, nebuliser flow rate, 
plasma power and pump speed were selected as major parameters to produce an analytical 

protocol for determining REEs in sediments. Of the two digestion procedures attempted, the 
more  successful is obviously the flux‐fusion method due to its ability of complete dissolu-

tion and simplicity due to automated fluxer fusion machine. The lower limit of detection 
was used as the optimisation criterion. The optimum values determined for sample to flux 
ratio, nebuliser gas flow rate, plasma power and pump speed (aspiration rate) were 1:8, 0.8 
L min−1, 1400 W and 35 rpm, respectively. The nebuliser gas flow was the most important 
parameter in the optimisation of the signal intensities. After optimisation of the parameters, 

the performance characteristics of the proposed method were established: linearity, detection 

and quantification limits and accuracy (recovery percentage), with and without addition of 
an internal standard.
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