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Abstract

The damage-based structural seismic performance evaluations are widely used in seis-
mic design and risk evaluation of civil facilities. Due to the large uncertainties rooted in
this procedure, the application of damage quantification results is still a challenge for
researchers and engineers. Uncertainties in damage assessment procedure are important
consideration in performance evaluation and design of structures against earthquakes.
Due to lack of knowledge or incomplete, inaccurate, unclear information in the model-
ing, simulation, and design, there are limitations in using only one framework (proba-
bility theory) to quantify uncertainty in a system because of the impreciseness of data or
knowledge. In this work, a methodology based on the evidence theory is presented for
quantifying the epistemic uncertainty of damage assessment procedure. The proposed
methodology is applied to seismic damage assessment procedure while considering
various sources of uncertainty emanating from experimental force-displacement data
of reinforced concrete column. In order to alleviate the computational difficulties in the
evidence theory-based uncertainty quantification analysis (UQ), a differential evolution-
based computational strategy for efficient calculation of the propagated belief structure
in a system with evidence theory is presented here. Finally, a seismic damage assess-
ment example is investigated to demonstrate the effectiveness of the proposed method.

Keywords: damage model, epistemic uncertainty, uncertainty quantification, evidence
theory, differential evolution algorithm

1. Introduction

With widespreading of the concept and applications of performance-based earthquake engi-

neering (PBEE) and performance-based seismic design (PBSD), the effective measures for

assessing the performance state of structural components or entire structure have been deeply

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



investigated in seismic engineering. In consistence with the different performance assessment

criteria, the evaluation and measurements of damage states for structural components are

divided into three main branches (e.g., displacement-based approach, energy-based mea-

sure and the combination of both). Due to the simplicity and convenience of observation

and description for structural damage states, the displacement-based approach and corres-

ponding damage index (e.g., inelastic displacement, maximum inter story drift ratio, and

ductility demand, etc.) have been widely documented in building seismic evaluation and

retrofit of existing building guidelines [1]. Notwithstanding the prevalent application of

displacement method in damage assessment, the defect of lacking the influence of low

cyclic fatigue of structural components is obvious. The hysteretic energy dissipation is

considered as a more reasonable indicator for seismic structural damage, because it is a

cumulative parameter involved cyclic-plastic deformations in a structure during earth-

quakes [2]. Despite the effectiveness of hysteretic energy, experimental observations dem-

onstrate that the expression of energy would be significantly affected by the exceedance

plastic deformation [3]. And the cumulative laboratory experimental data on structural

members and structures indicate the fact that the structure is damaged by a combination

of the excessive deformation and hysteretic energy. Park–Ang damage model [4], which

takes into account the effects of both the first exceedance failure and cumulative damage

failure in low-cycle-fatigue for a structural component during seismic load, is served as a

baseline for many researches. Due to intrinsic simplicity as well as calibrations against a

significant amount of observed seismic damages, the Park-Ang model and its modified

version have been extensively implemented in seismic performance evaluation of struc-

tures [5–7].

Although the applicability and practicability of using the Park-Ang model and its modified

versions have been supported by many researchers [8, 9], it should be noted that the Park-

Ang-damage-index-based performance evaluation is still a challenging task due to the large

uncertainties associated with the damage model parameters [10]. With the influence of these

uncertainties [11, 12], the evaluation results of structural damage state are always represented

with the empirical interval value (e.g., the minor damage state is represented by 0.25<D<0.4 or

0.11<D<0.4, etc. [13]). Some of these uncertainties stem from factors that are inherently random (or

aleatory) in engineering or scientific analysis (e.g., material properties such as Young’s modulus of

steel; compression strength of concrete). Others arise from a lack of knowledge, ignorance, or

modeling (e.g., simplification of mathematical model of buildings for structural analysis pur-

poses). The large uncertainties associated with the Park-Ang damage model are derived from

limited experimental data and approximate modeling (lack of knowledge) [2, 4, 5, 10]. Consider-

ing the importance of damage model in assessment of damage state for a structure, the epistemic

uncertainty shall be taken into account in seismic damage state assessment with great care. Hence,

it is significant to present a comprehensive uncertainty analysis methodology to quantify the

epistemic uncertainty and obtain more reliable results.

The traditional probability theory, based on the sufficient statistical information, is used to

model the objective uncertainty (random), which is inherent in physical variability of mate-

rials and environment. Unfortunately, the limited number of experimental data set cannot

support the strong assumption of probability theory, and the process of collecting data is
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always costly and time consuming. These shortcomings lead the assessment result of dam-

age state of structures are not aleatory but epistemic. In the past decades, several alternative

approaches have been developed to deal with epistemic uncertainty. Some of the potential

uncertainty theories are the theory of fuzzy set [14], possibility theory [15], the theory of

interval analysis [16], imprecise probability theory [17], and evidence theory [18, 19].

Among these promising uncertainty representation models, evidence theory with the abil-

ity of handling aleatory and epistemic uncertainty is used for UQ, risk assessment, and

reliability analysis.

With two complementary measures of uncertainty such as belief and plausibility, using

evidence theory to UQ is flexible and effective. In comparison with the calculation of single

probability density function (PDF) in probability theory, the computationally intensive

problem involves computing the bound values over all possible discontinuous sets which

is a main shackle of wide application for evidence theory. In order to break the computa-

tional barriers in the evidence theory-based UQ, the differential-evolution-based interval

optimization is employed to enhance the computational efficiency as described by the

authors [20].

2. Sources of uncertainty in seismic damage assessment

To effectively describe the damage state of structural components or entire structure, the

original Park-Ang damage model and modified model were developed. The original Park-

Ang damage model was presented here to access the uncertainty influence of the evaluation on

the damage state of column components. There are various methods to estimate constants in

Park-Ang damage model in different studies. In addition to diverse combination measures, the

empirical estimation value and calibration value dispersed in a large range. Using the classifi-

cation method proposed by Oberkampf and Helton [21], the aleatory and epistemic uncer-

tainties involved in Park-Ang damage model are listed as:

1. The random uncertainties rooted in experimental materials, e.g., the material composition

of concrete and the strength test results in single compositional material.

2. The objective and subjective uncertainties of experimental condition. e.g., the environmen-

tal factor, the loading error of machine, and measurements error.

3. The subjective uncertainties of fitting measures of parameters in Park-Ang damage model

and mathematical representation of model itself.

In consideration of these aleatory and epistemic uncertainties in Park-Ang damage model, the

quantification influence of uncertainties is indispensable. To achieve this goal, a series of

empirical expressions are summarized. Then, the Structural Performance Database of Pacific

Earthquake Engineering Research Center (PEER) is used to construct the uncertain sources of

parameters of damage assessment models. Using these calibration results of column set, the

parameter uncertainties are represented by the fluctuation of ratio of empirical values and

calibration values.

Epistemic Uncertainty Quantification of Seismic Damage Assessment
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2.1. Park-Ang model and empirical expression of its constants

The Park-Ang damage model [4] combines the first exceedance failure and cumulative damage

failure with a linear expression as:

D ¼ δm=δu þ β

ð

dE=Fyδu ð1Þ

where δm is the maximum deformation under earthquake, δu is the ultimate deformation

under monotonic load,

ð

dE is the cumulative energy under earthquake, β is the energy

coefficient, and Fy is the yield strength. In order to simplify the analysis procedure, the value

of Fy, δu, and β are always assumed as the constants and have nothing to do with the loads

pattern. Following above assumption, the value of damage index D for per-load stage can be

computed by only using the current value of δm and

ð

dE. Furthermore, the damage evolution

of structures and components can be described and this evolution index is supported to

estimate the true damage stage of structure and components.

In the last two decades of the twentieth century, a set of experimental results were conducted

and some illuminate-, empirical-, or mechanical-based expression of Fy, δu, and β were succes-

sively generated. Park et al. [4] computed the value of β as given in Eq. (2):

β¼ð�0:447þ 0:073l=dþ 0:24n0 þ 0:314ρtÞ· 0:7
ρ
ω ð2Þ

where l and d denote the length span and effective height of cross section, n0 is the axial load

ratio, ρt is the longitude tension steel ratio (%), and ρw is the confinement ratio (%). Kunnath

et al. [5] used 260 beams and columns data to fit the value of β as given in Eq. (3):

β¼ ½0:37n0 þ 0:36ðkp � 0:2Þ2�0:9pw ð3Þ

where kp ¼ ρt f y=0:85f c is normalized steel ratio and ρw is confinement ratio. Similarly, δu can be

determined with statistical approach or fundamental method using the mechanics of concrete

and steel. Using the typical statistical measure, Park [6] evaluated the ultimate displacement as:

δu ¼ 0:52ðl=dÞ0:93ρ�0:27ρ0:48
ω

n�0:48
0 f�0:15

c · δy ð4Þ

where ρ is normalized steel ratio and δy is the yield displacement of components that can be

computed with [4] and other factors are same as above. Compared to above statistical calcula-

tion model, EU 8 [22] and Fardis and Biskinis [23] presented two different models with the

mechanics of concrete and steel:

δu ¼
1

γel

0:016ð0:3Þn0
maxð0:01,ω0Þ

maxð0:01,ωÞ
f c

� �0:225

min 9,
l

h

� �� �0:35

25
αρsx

fyw
f c

� �

· l ð5Þ

δu ¼ αstð1� 0:4αcycÞð1þ 0:5αslÞð0:3Þ
n0 maxð0:01,ω0Þ

maxð0:01,ωÞ
f c

� �0:175 l

h

� �0:4

25
αρs

fyw
f c

� �

· l ð6Þ
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where γel is coefficient of primary and secondary elements, ω0 and ω are mechanical steel ratio

of compression and tension reinforcement, respectively, h is cross-section height, α is confine-

ment effective factor, ρsx is confinement steel ratio, fyw is yield strength of stirrup, and αst, αcyc,

and αsl are coefficients for type of steel, loading, and anchorage slip. For the yield strength of

concrete components, the expression is given by Panagiotakos and Fardis [24]:

Fy ¼
bd3

l
φy Ec

k2y

2
0:5ð1þ δ0Þ �

ky

3

� �

þ
Es

2
ð1� kyÞρþ ðky � δ0Þρ0 þ

ρv

6
ð1� δ0Þ

h i

( )

ð1� δ0Þ ð7Þ

Conventionally, the damage index D can be obtained by using above expressions to obtain the

nominal value of Park-Ang constants. Owing to limited statistical data and incomplete knowl-

edge of mathematical model to predict these constants, the large convergence is reported as in

[4–6, 23, 24]. Furthermore, these uncertainties will influence the quantification result of Park-

Ang damage index. In order to verify the impact of damage quantification result derived from

uncertainty of Park-Ang model constants, we present the structural performance database of

PEER [25] to calibrate these constants and determine the uncertainty fluctuation range of each

constant.

2.2. Comparison between the calibration results and empirical results

In this work, the calibration set is selected from the structural performance database of PEER

and the selection criteria are such as (1) the cross section of column is rectangle; (2) the column is

loaded cyclically until failure and the corresponding failure model is dominated by flexure; (3)

the longitude bars in column should not be spliced and the column should experience more than

two hysteretic cycles. In conformity with these criteria, 185 specimens are selected. Using these

column load-displacement data, the performance points on the backbone curve of column under

cyclic load are calibrated.

Similar to the most studies [23], the ultimate deformation under monotonic load δu is defined

as a distinct reduction on the negative stiffness slope of backbone curve and 80% of maximum

strength which is always assumed as Fu. Unfortunately, the missing monotonic load experi-

ments oblige us to employ the statistical relationship of ultimate displacement under cyclic

load and monotonic load to characterize the ultimate displacement. Herein, the failure dis-

placement under typical load histories is assumed as 60% of their ultimate deformation capac-

ity, which is firstly observed by Panagiotakos and Fardis [24]. For yield force, we defined that

the value is 75% of the maximum force. Following above definitions, the energy coefficient β is

computed with the assumption that damage index D is 1 at the ultimate state. In light with

above definitions, the performance point is marked on the backbone of columns as depicted in

Figure 1.

As shown in Figure 1, the column backbone curves are divided into two categories: one with

obvious ultimate state point (the 80% maximum force) like in Figure 1a, the other with the

largest displacement in backbone curve (e.g., Figure 1b). In order to yield the uncertainty

distribution of empirical model, the attention is concentrated on the first category. Using the

selected force-displacement data, the comparison of empirical model results and calibration

results is given in Figure 2.

Epistemic Uncertainty Quantification of Seismic Damage Assessment
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As shown in Figure 2, the predicted and experimental values are scattered in a wide range,

and this means the researchers should carefully handle the uncertainty derived from the

empirical model in the process of evaluating damage state with Park-Ang model. Employing

the parameter ε to represent the variability of predicted model deviation, the experimental

value Vexp can be expressed as Vexp = Vpre · ε. Taking into account the major fluctuation range

of ε and the number of experimental samples, the ε which is located in the interval [1/3, 3] is

selected and the range of data points which located less than 1/3 or more than 3 are discarded.

In the light of above rules, the uncertainty source of β, δu, and Fy consists of 83, 111, and 173

specimen, respectively.

Along with classical concept, probability theory plays a key role in the UQ of physical model,

and the distribution type is determined by the hypothesis test and related parameter are

calibrated by enough experimental data. However, the limited data of experimental set and

large variation restricted the ability of probability theory. As a generalized UQ measure,

evidence theory is compatible with both aleatory and epistemic uncertainties. So, the evidence

theory is adopted in this work to handle the epistemic uncertainty rooted in parameters of

Park-Ang damage model.

Figure 1. Performance point of backbone curve with obvious ultimate state point (a) and with the largest displacement

point (b).

Figure 2. Comparison of predicted results and experimental results of β, δu and Fy.
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3. Evidence theory and differential evolution-based UQ for seismic

damage assessment

3.1. Basic of the evidence theory

Evidence theory is a theoretical framework for reasoning with partial and unreliable informa-

tion. It was proposed by Dempster [18] and further improved by Shafer [19]. Compared to the

classical uncertain model theory, it offers the possibility to explicitly represent doubt and

conflict. As the most basic concept of the evidence theory, the fame of discernmentΩ is defined

as a set of mutually exclusive elementary propositions. Due to limited information, the prop-

ositions can be scattered, nested, or partially overlapped. Thus, the mutually exclusive elemen-

tary propositions construct the power set F = 2Ω. Given the measureable sample space (Ω, F),
the basic belief assignment (BBA) on F, m is a mapping F! [0, 1] that satisfies the following

axioms:

mðAÞ ≥ 0 mð∅Þ ¼ 0
X

mðAÞ ¼ 1 for each A ⊆ Ω : ð8Þ

An element A∈F for which m(A) > 0 is named a focal element. Corresponding to the scattered,

nested, or partially overlapped propositions in F, it seems more reasonable to make use only of

this available information to produce two uncertain measures, the Belief (Bel) and the Plausi-

bility (Pl) functions (Figure 3).

Similar to the additive rule in probability, belief and plausibility measures of proposition A can

be calculated from following formula:

BelðAÞ ¼
X

B⊆A
mðBÞ for all B⊆ 2Ω ð9Þ

PlðAÞ ¼
X

B ∩A 6¼∅
mðBÞ for all B ⊆ 2Ω ð10Þ

whereA represents different elements in F. In terms of two complementary setsA andÃ, the sum
of belief and plausible function is not required to be one. But the weaker rule Pl(A)+Bel(Ã)=1 is

satisfied, and this expression is completely different from probability distribution function p in

probability theory, that is, p(A)+p(Ã)=1. As the most remarkable distinction from probability

theory, evidence theory allows evidence stemming from different sources and employs the rules

of combination to aggregate [26]. One of the most important combination rules is Dempster’s

rule which has following formulation. Given two independent BBA m(B1) and m(B2), the

Dempster’s rule can be expressed as:

Figure 3. Belief function (Bel) and Plausibility function (Pl) of proposition A.
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mðAÞ ¼

X
B1 ∩B2¼A

mðB1ÞmðB2Þ

ð1� KÞ
for all A 6¼ ∅ ð11Þ

where K ¼

X

B1 ∩B2¼∅

mðB1ÞmðB2Þ can be viewed as contradiction or conflict among the informa-

tion given by the independent knowledge sources.

3.2. Evidence theory-based UQ of seismic damage assessment using differential evolution

3.2.1. Evidence-based uncertainty representation

For the purpose of UQ, the first step is the uncertainty representation of parameters using

evidence theory, in which separate belief structures for each uncertain parameter should be

constructed. In this work, we adopt a general methodology as described previously by

Salehghaffari et al. [27] to obtain necessary information from available data and express the

uncertain variables in the mathematical framework of evidence theory.

According to Salehghaffari et al. [27], two principle steps are involved in this methodology: (1)

representation of uncertain parameters in several intervals through drawing bar charts by

using all available data or directly from expert opinions and (2) identification of three relation-

ships between all adjacent intervals and construction of the associated BBA structure. To

further illustrate this, assuming that D1 and D2 represent the number of data points within

two adjacent intervals I1 and I2, respectively, and D1 > D2, three relationships of two adjacent

intervals can be identified as agreement ðD2=D1 ≥ 0:8Þ, conflict ð0:5 ≤D2=D1 < 0:8Þ, and igno-

rance ðD2=D1 < 0:5Þ (see Figure 4), the corresponding belief structure and BBA value for these

three relationships are calculated by Eqs. (12)–(14), respectively.

mð{I} ¼ {I1, I2}Þ ¼ ðD1 þD2Þ=DT ð12Þ

mð{I1}Þ ¼ D1=DT ; mð{I2}Þ ¼ D2=DT ð13Þ

Figure 4. Three relationships of uncertain intervals.
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mð{I1}Þ ¼ D1=DT , mð{I1, I2}Þ ¼ D2=DT ð14Þ

where DT denotes the total number of data points, following this approach, a reasonable BBA

structure of uncertain parameter is constructed based on available data and knowledge, a

more detailed illustration of uncertainty representation in intervals with assigned BBA value

is referred in Salehghaffari et al. [27].

Employing this strategy, the uncertainty of Park-Ang model parameters can be properly

represented with the evidence theory. In Figure 5, we use εA(β), εB(β), and ε(Fy) to denote the

variability of the predicted models in Refs. [4, 5] for energy constant β and the one in Ref. [24] for

yielding force Fy of columns. The εC(δu), εD(δu), and εE(δu) in Figure 6 represent the fluctuation of

the empirical model for ultimate displacement under monotonic loading in Refs. [6, 22, 23].

Figure 6. Evidential uncertainty description of ε(δu).

Figure 5. Evidential uncertainty description of ε(β) and ε(Fy).
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3.2.2. Uncertainty propagation using differential evolution

In evidence theory community, uncertainty variable is usually expressed to be a series of focal

element intervals based on limited information and the joint frame of discernment is composed of

the Cartesian products of uncertain intervals, then, the BBAvalue of each element of joint frame of

discernment is also the Cartesian product of BBA value assigned on the corresponding interval.

Given two independent uncertain parameters u1 ∈ U1 and u2 ∈ U2, and corresponding focal

element C1 and C2, the joint BBA structure of this problem is defined as:

C¼C1 ⊗C2, ∀u∈U ∀u1 ∈U1 ∀u2 ∈U2 ð15Þ

mðCÞ ¼ mðC1ÞmðC2Þ ð16Þ

where the symbol ⊗ denotes the Cartesian products. Using Eqs. (15) and (16), the joint

uncertainty input of system can be seemed as the multidimensional hypercube. Therefore,

uncertainty propagation is a progress of finding the maximum and minimum of the system

response value in each hypercube interval (proposition of the joint belief structure). To propa-

gate the represented uncertainties of Park-Ang damage model constants, the damage index D

is considered as system response.

Considering epistemic uncertainty of the system, the belief and plausibility functions of the

response are obtained on the basis of the combined BBAs of the input parameters from

different information sources using the evidence combination rules. For the prediction

response process D = f(Y), whose input parameter vector Y = (Y1,…,Yn) has n variables with

epistemic uncertainty, the joint proposition C of elementary proposition is constructed for the

Park-Ang damage index prediction system model as:

C ¼ {ck ¼ ½x1i1 , x2i2 ,⋯, xnin � : x1i1 ∈X1, x2i2 ∈X2,⋯, xnin ∈Xn} ð17Þ

where X1, X2,…, Xn denote the intervals sets (frame of discernment) of the n variables Y1, Y2,

…, Yn, and the relevant numbers of the intervals are I1, I2,…, In. x1i1 , x2i2 ,⋯, xnin denote the

subintervals, 0 ≤ jij ≤ Ij (j = 1,2,…,n); ck denotes the n-dimensional joint proposition set

constructed by several subintervals, and there are I1, I2,…,In joint proposition sets ck in C. The

BBA of the joint proposition set C is defined as:

mcðckÞ ¼ m1ðx1i1Þm2ðx2i2Þ⋯mnðxninÞ ð18Þ

Thus every element of the Cartesian set C is required to be checked in the evaluation of the

belief and plausibility functions by finding the system response bounds. That is to say the

minimum and maximum responses of each joint set are needed to calculate:

½Dmin, Dmax� ¼ ½min½f ðckÞ�,max½f ðckÞ�� ð19Þ

As uncertain variable is represented by many discontinuous set instead of smooth and contin-

uous explicit function, time consuming is inevitable in UQ with evidence theory. There are two

main approaches to find the bounds of the system response: sampling and optimization. The

accuracy of sampling approach is highly dependent on the number of samples and the number

of hypercubes, and the process is costly. On the contrary, optimization methods have the
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potential to dramatically reduce the computational work. To alleviate this computational

burden, based on authors’ previous work [11], the differential evolution (DE) [28] optimization

approach is used to calculate the response bounds of each hypercube and compute the com-

posite BBA of each hypercube, propagation of the represented uncertainty through Park-Ang

damage model (Eq. (1)). The characteristics of derivative-free and capability of handling

discrete belief structure make DE method to be a good choice for such an interval bound task.

DE is arguably one of the most powerful stochastic real-parameter optimization algorithms for

solving complex and computational optimization problems in current use. As a novel evolu-

tionary computation technique, differential evolution resembles the structure of an evolution-

ary algorithm (EA). However, unlike traditional EAs, the DE-variants perturb the current

generation population members with the scaled differences of randomly selected and distinct

population members. The characteristics together with other factors of DE make it a fast and

robust algorithm and as an alternative to EA. Since late 1990s, DE started to find several

significant applications to the optimization problems arising from diverse domains of science

and engineering. In a recently published article, Das and Suganthan [29] provided a compre-

hensive survey of the DE algorithm and its basic concepts, different structures and variants for

solving various optimization problems, as well as applications of DE variants to practical

optimization problems.

In the context of DE, the individual trial solutions (which constitute a population) are called

parameter vectors or genomes. Let S ∈ Rn be the search space of the problem. Then, the n-

dimensional vector can be represented by xi = (xi1, xi2,…, xin)
T
∈ S, i = 1, 2, …, NP, and DE

algorithm utilizes NP as a population for each iteration, called a generation of the algorithm.

For the damage index assessment response process, its parameter vector is generated by the

uncertainty variables (β, Fy, and δu) in ranges according to their respective belief structures. DE

operates through the same computational steps as employed by a standard EA, including

crossover, mutation, crossover, and selection operators, but differs from traditional EAs, DE

employs difference of the parameter vectors to explore the objective function landscape. As

above brief description, the pseudocode of DE is presented in Figure 7 and with a detailed

survey of the DE family of algorithms can be found in Ref. [29].

Take the pseudocode of DE in mind, the illustration of DE-based computational strategy for

finding the propagated belief structure by the example as shown in Figure 8 (only one

uncertain parameter is considered).

The procedure of uncertainty propagation using the DE strategy is as follows:

• Collect all uncertain information and construct corresponding BBA structure of each

uncertain parameter, combine the BBA structures under the situation of evidences pro-

vided by different sources or experts using combination rules of evidence.

• Use differential evolution algorithm to calculate the bound values of the system response

within each joint interval and construct corresponding joint belief structures.

• Given the complete BBA on the output response of interest damage indexD, the belief and

plausibility functions on D are given and any general subset can be developed by apply-

ing Eqs. (9) and (10).

Epistemic Uncertainty Quantification of Seismic Damage Assessment
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Once the BBA structure of the Park-Ang damage index response is constructed, observed

evidence on simulation responses is used in the determination of target propositions to

Figure 7. Pseudocode of DE.

Figure 8. Uncertainty propagation of belief structure of system by DE.

Uncertainty Quantification and Model Calibration78



estimate uncertainty measures, i.e., cumulative belief function (CBF) and cumulative plausi-

bility function (CPF).

3.2.3. Uncertainty measurement for seismic damage assessment

In evidence theory framework, the plausibility function Pl and belief function Bel are used to

denote the uncertainty measurement. Employing the construction rule proposed by Sentz et al.

[30], the CBF and CPF of Park-Ang damage index D less than the threshold value are formu-

lated as follows:

PlðDthreÞ ¼
X

uD ∩UD 6¼∅
mðuÞ UD ¼ {uD ≤Dthre} ð20Þ

BelðDthreÞ ¼
X

uD ⊆UD
mðuÞ UD ¼ {uD ≤Dthre} ð21Þ

Where uD ∩UD 6¼ ∅ means that the joint focal element u can be entirely or partially within the

threshold domain uD ≤Dthre and uD ⊆UD means that the joint focal element uD can be entirely

within the threshold domain uD ≤Dthre. Summarized above subparts, the separate stages of UQ

framework of evidence theory using differential evolution optimization is shown in Figure 9.

Figure 9. Procedure of UQ of Park-Ang damage model.
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4. Case study

In order to investigate the effectiveness and feasibility of the proposed UQ measures, the

column “zahn86u7” [31] is selected to compute the Park-Ang damage index in its load step.

The backbone curve and load history are shown in Figure 10.

As shown in Figure 10a, the ultimate cyclic displacement is calibrated by using the average

value of 80% maximum force point on the force capacity reduction slope of positive and

negative direction. The effective path in Figure 10b denotes the load path from initial state to

ultimate state and the load path is the global displacement history. Using the properties of

column, listed in the webpage of PEER, the nominal value of constants in Park-Ang damage

model β, δu and Fy can be estimated by the empirical expressions from Eq. (2) to Eq. (7),

respectively. In consistent with Section 3.2, the uncertainty distribution of model constants

can be depicted as the nominal value multiply the factor ε. Taking the computed results into

the evidence representation process, the BBA structures of β, δu, and Fy with different models

are listed in Tables 1 and 2.

Taking above uncertain information into the differential evolution-based uncertainty propaga-

tion framework, the evidential UQ results for each load step as shown in Figure 11.

To validate the generality of evidence theory, the variability of Park-Ang model parameters is

also represented by probability theory. The goodness of fit test is applied to test the distribu-

tion type and determine the related distribution parameters. The uncertainty distribution

information of model B for β model C for δu and Fy is presented in Table 3.

From Table 3, the values of ε(β) and ε(δu) do not refuse the normal and lognormal distribution.

We use two strategies to construct the probability input of variables. In first strategy, the lognor-

mal distribution is applied to fit all the uncertainty inputs and the cumulative distribution

Figure 10. Backbone curve (a) and load path (b) of columns of column test.
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function of uncertainty response which is indicated as CDF1. In other strategy, the probability

distributions of ε(β) and ε(δu) are assigned as normal distribution, while the distribution of ε(Fy)

is lognormal and corresponding cumulative distribution function of uncertainty result is

represented as CDF2. To compare the quantification results of probability and evidence theory,

Figure 12 is presented to describe the damage index evolution in load steps 280 and 412,

respectively. To make a further illustration for the damage state evolution in each load step, the

point 0.25, 0.5, 0.75, and 1 are used to represent the minor, moderate, severe, and collapse

damage state, respectively.

As illustrated in Figure 12, the probability theory based UQ results CDF1 and CDF2 are

located in the range of curves CPF and CBF, this indicates that evidence theory is compatible

to probability theory. The discrepancy of CDF1 and CDF2 demonstrates that probability

theory may not be suitable to handle the epistemic uncertainty which is stemmed from limited

experimental data. In other words, the probabilistic UQ result is ambiguous due to epistemic

uncertainty and the choice of distribution type has a great impact on the quantification result.

However, evidential UQ strategy demonstrates its power to quantify the epistemic uncertainty

β Fy

Model A Model B

Range BBA Range BBA Range BBA

[0.0345, 0.087] 0.301 [0.0266, 0.067] 0.458 [77.40, 133.19] 0.121

[0.0873, 0.139] 0.181 [0.0672, 0.108] 0.325 [105.22, 133.19] 0.422

[0.139, 0.192] 0.277 [0.0672, 0.189] 0.181 [133.19, 161.01] 0.26

[0.192, 0.244] 0.145 [0.0672, 0.230] 0.036 [161.01, 188.82] 0.139

[0.244, 0.296] 0.096 [161.0, 216.63] 0.029

[161.01, 244.44] 0.017

[161.01, 272.42] 0.012

Table 1. The BBA structure for multisource of β and Fy.

Model C Model D Model E

Range BBA Range BBA Range BBA

[0.034, 0.115] 0.568 [0.043, 0.116] 0.649 [0.0442, 0.104] 0.541

[0.115, 0.156] 0.207 [0.116, 0.188] 0.351 [0.104, 0.133] 0.180

[0.115, 0.196] 0.01 [0.133, 0.193] 0.279

[0.196, 0.237] 0.125

Table 2. The BBA structure for multisource of δu.
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because of its two uncertain measures belief function and plausibility function. In order to

further clarify the influence of epistemic uncertainty, the quantitative results of damage index

in Figures 12a and b are reported in Table 4.

As shown in Table 4, the belief interval of moderate damage state in steps 280 and 412 are

[0.11, 0.447] and [0, 0.026], respectively. This means the exceeding probability of moderate

damage state are [0.553, 0.89] and [0.974, 1] in steps 280 and 412, respectively. Table 5 also

displays the cumulative distribution value for moderate damage state for probability-theory-

based quantification results. Using the first probability strategy CDF1, the cumulative distri-

bution for moderate damage state are 0.217 and 0 corresponding to steps 280 and step 412.

This means the exceeding probabilities of moderate damage state are 0.783 and 1 in steps 280

and 412, respectively. Analogously, the cumulative distribution values of CDF2 for moderate

damage state are 0.298 and 0 in steps 280 and 412, respectively. It is worth noting the diver-

gence of the cumulative distribution values of CDF1 and CDF2 in step 280. Furthermore, the

Figure 11. The evidential uncertainty propagation results of Park-Ang damage index.

Constants Distribution type mu σ

εB(β) Normal 0.963 0.529

Lognormal -0.171 0.514

εC(δu) Normal 1.404 0.697

Lognormal 0.206 0.537

ε(Fy) Lognormal -0.272 0.225

Table 3. The distribution information of Park-Ang constants.
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divergence of two kind probability-based quantification results provides the evidence that

probability theory is not able to handle the epistemic uncertainty. Comparing the quantifica-

tion results of collapse damage state, the similar conclusion can be obtained. Especially, the

cumulative distribution value for collapse damage state is step 412, the evidence result is

[0.094, 0.447], this means the value of damage index larger than 1 is located in the interval

[0.453, 0.906]. While the cumulative probabilities of CDF1 and CDF2 are 0.178 and 0.233,

respectively. This illustrates that the exceedance probability of collapse state is 0.822 for CDF1

and 0.767 for CDF2. From the view of risk assessment, the evidence theory will give decision

maker a more robust UQ result, but the probability cannot.

With the incomplete knowledge of prediction model under the various operation conditions,

different expert evidence conflicts are inevitable. To reconcile this task challenge, evidence combi-

nation rule is proposed to combine the evidences from multisource. Herein, the Dempster’s rule is

applied to aggregate the different source of evidence for β, δu, and Fy as shown in Table 5.

Using the aggregated BBA structures of these three uncertain parameters, the system uncertain

response CPF2 and CBF2 are shown in Figure 13. To clarify the effectiveness of combination

Figure 12. Comparison of propagation results using evidence theory and probability theory. (a) The cumulative distribu-

tion of damage index in step 280 and (b) the cumulative distribution of damage index in step 412.

Damage index Cumulative distribution curve in step

280

Damage index Cumulative distribution curve in step

412

CPF CDF1 CDF2 CBF CPF CDF1 CDF2 CBF

0.25 0.026 0 0 0 0.25 0 0 0 0

0.5 0.447 0.217 0.298 0.11 0.5 0.026 0 0 0

0.75 1 0.522 0.644 0.354 0.75 0.244 0.050 0.053 0.026

1 1 0.722 0.818 0.419 1 0.447 0.178 0.233 0.094

Table 4. The cumulative distribution value of Park-Ang constants in step 280 and 412.
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rule, the uncertainty propagation results CPF1 and CBF1 from the model B of β and model C of

δu and Fy are also listed in Figure 13.

As shown in Figure 13, the UQ results of Park-Ang damage index variate in a large range. The

distance of CBF and CPF denotes the epistemic uncertainty that is derived from the limited

experimental data and lack of knowledge for complicated composite materials (e.g., parame-

ters model hypothesis, material properties) or incomplete knowledge of empirical model. In

comparison with the distance of CPF1 and CBF1 for uncombined BBA, the distance of CPF2

and CBF2 for combined BBA is much narrower, and this can be explained as the high conflict

information of multisources that are discarded by aggregating the multisources evidence.

However, the aggregation rule is not established in probability theory. From this point of view,

the evidence theory has great potential to quantify the uncertainty from multisources which

are having great existence in civil engineering.

β δu Fy

Range BBA Range BBA Range BBA

[0.035, 0.067] 0.297 [0.044, 0.104] 0.568 [77.40, 133.19] 0.121

[0.067, 0.087] 0.351 [0.104, 0.115] 0.189 [105.22, 133.19] 0.422

[0.087, 0.108] 0.127 [0.115, 0.116] 0.102 [133.19, 161.01] 0.26

[0.087, 0.139] 0.085 [0.116, 0.133] 0.055 [161.01, 188.82] 0.139

[0.139, 0.189] 0.108 [0.133, 0.156] 0.058 [161.01, 216.63] 0.029

[0.139, 0.192] 0.021 [0.133, 0.188] 0.028 [161.01, 244.44] 0.017

[0.192, 0.230] 0.011 [161.01, 272.42] 0.012

Table 5. The combined BBA structure for β, δu, and Fy.

Figure 13. Comparison of propagation results with uncombined and combined BBA input. (a) The cumulative distribu-

tion of damage index in step 280 and (b) the cumulative distribution of damage index in step 412.
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5. Conclusions

UQ of seismic damage model are important for PBSD and performance-based seismic

assessment. In this chapter, the epistemic uncertainty of the constants of Park-Ang model is

taken into account. The Park-Ang damage model constants are calibrated with column set,

selected from PEER column performance database. To effectively represent the uncertainty

inherent in Park-Ang model constants with limited experimental data, the UQ measurement

that combines evidence theory and differential evolution is presented. In order to further

investigate the feasibility and effectiveness of presented UQ measurement, the Monte-Carlo

sampling method combined with classical probability distribution, which is fitted with given

data, is used. Comparing the propagation results of evidence theory and classical probability

theory, we can conclude that the evidence theory is flexible to handle the epistemic uncer-

tainty, which is stemmed from lack of knowledge or sparse experimental data, whereas the

classical probability theory may be limited by the selection of distribution type and the

determination of value for the distribution parameters. Using the aggregation rules of evi-

dence theory demonstrates that evidence theory is capable to handle the uncertainty from

multisources.
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