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Abstract

Fault diagnosis of a class of linear multiple-input and multiple-output (MIMO) systems
is developed here. An emulator-based scheme is proposed to detect and isolate faults in
a system formed by interconnected subsystems. Emulators, which are hardware or
software devices, are connected to the input and measurement outputs in cascade with
the subsystems whose faults are to be diagnosed. The role of an emulator is to induce
variations in cascade combination of the nominal fault-free subsystem so as to mimic the
actual perturbations that may occur in the subsystem during the offline identification
phase. The emulator-generated data are employed in the reliable identification of the
nominal system, the associated Kalman filter, and a map that relates the emulator
parameters to the feature vector. In the operational stage, the Kalman filter residual is
used to detect a fault in the system; the emulator parameter that has varied is estimated,
and using the emulator-feature vector map, the faulty subsystem is isolated. The main
contributions of this work are accurate and reliable identification of the system, the fault
diagnosis of multivariable systems using feature vector-emulator map fault diagnosis of
multivariable systems, and the establishment of the key properties of the Kalman filter
for fault detection. The proposed scheme was successfully evaluated on a number of
simulated as well as physical systems.

Keywords: fault detection, fault isolation, fault diagnosis, Kalman filter, emulators,
identification, Bayes decision theory

1. Introduction

Fault detection and isolation (FDI) of physical systems—especially mission critical systems

including nuclear reactors, aircraft, automotive systems, spacecraft, autonomous vehicles, and

fast rail transportation—is becoming increasingly important in recent times thanks mainly to

advances in sensors, computing, and communication technologies. It still poses a challenge in

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



view of the stringent and conflicting requirements, high probability of correct detection and

isolation, low false alarm probability, and timely decision on the fault status.

The identification of the system model is crucial to the performance of the fault diagnosis

scheme. The more accurate the identified model, the higher is the probability of correct diagnosis

and the lower is the false alarm probability. The reliability and accuracy of the identification

hinges on ensuring that the identified model is captured completely and what is leftover is the

information-less zero-mean white noise process. As the Kalman filter is a zero-mean white noise

process if and only if there is no mismatch between the identified model and the model of the

system, the identification scheme should minimize the residual of the Kalman filter—instead the

equation error, which in general, is a colored noise [1]. The widely popular, consistent, and

efficient scheme that meets the above state requirement is the prediction error method (PEM)

[2]. The PEM identifies the system by minimizing the residual of the Kalman filter.

A physical system is subject to perturbation resulting from the variations of the parameters

and effects nonlinearities resulting in the deviation in the neighborhood of the nominal oper-

ating point. A model identified at a nominal operating point will not capture the static and the

dynamic behavior of the perturbed system. To overcome this, an emulator, which is a hard-

ware or a software device, is connected to either an accessible input or an accessible output in

cascade with a subsystem to mimic its operating scenarios [3–5]. The powerful concept of

emulators, which is employed to mimic the likely operating scenarios for single-input and

single-output (SISO) system, is extended to multiple-input and multiple-output (MIMO) and

multiple-input and single-output (MISO) system. The system is identified and the feature

vector-emulator map is estimated from the emulator-generated data covering all likely operat-

ing scenarios including the normal and the faulty ones similar in spirit to that employed in

training the neural network [6]. The identified nominal model, an optimal nominal model, is

robust to model perturbation in the neighborhoods of the nominal operating point. It may be

worth noting that the conventional scheme uses only the input-output data from the system in

the nominal operating scheme.

There are essentially three approaches to the failure detection and isolation problem: the non-

parametric approach, the parametric approach, and the combined approach. The non-para-

metric approach is based on analyzing a residual. The residual is defined as a signal, which is

ideally non-zero in a statistical sense when there is a failure present, and zero otherwise. The

residual may be generated using Kalman filters, observers, unknown-input observers, other

forms of detection filters, and parity equations [7–12]. In view of the following key properties

of the Kalman filter listed below, the Kalman filter is deemed the most preferable for both fault

detection and fault isolation [1]:

a. Model matching: The residual is a zero-mean white noise process if and only if there is no

mismatch between the actual model of the system and its identified model embodied in

the Kalman filter, that is, and its variance is minimum.

b. Optimal estimation: The estimate is optimal in the sense that it is the best estimate that can

be obtained by any estimator in the class of all estimators that are constrained by the same

assumptions.

Fault Diagnosis and Detection2



c. Robustness: Thanks to the feedback (closed-loop) configuration of the Kalman filter with

residual feedback, the Kalman filter provides the highest robustness against the effect of

disturbance and model variations.

d. Model mismatch: If there is a model mismatch, the residual will not be a zero-mean white

noise process and an additive term termed fault-indicative term. The fault-indicative term

is affine in the deviation in the linear regression or the transfer function model.

The feature vector-emulator map relating the deviation of the feature vector and variations of

the emulator parameter is used for fault isolation if a fault is detected. The influence vector,

which is the partial derivative of the feature vector with respect to an emulator parameter,

plays a crucial role in pinpointing the faulty subsystem and tracks its parameter variation.

The main contributions here are the development of emulator-based system identification, and

estimation of the feature vector-emulator map and its application to performance monitoring

and fault diagnosis of multivariable system. The key properties of the Kalman filter, including

model matching, whitening of the equation error, and residual expression for the model-

mismatch case, are established for MIMO, MISO, and SISO systems.

The chapter is organized as follows. In Section 2, the mathematical model of the multiple-input

and multiple-output system in state-space, frequency-domain, and a linear regression form is

developed. The multiple-input and single-output and the single-input, single-output models

are derived. Modeling of faults is also given. In Section 3, the concept of emulators, the

generation of emulator-perturbed data, and its role in the identification of the system, the

estimation of the feature vector-emulator map for fault isolation is developed. In Section 4,

the identification of the system and the associated Kalman filter using prediction error method

is suggested. The feature vector-emulator map is estimated using the expression of the Kaman

filter residual in the model-mismatch case. In Section 5, the model of the Kalman filter, residual

model, and the key properties of this filter are given. The key properties of the residual are

established including whitening of the equation error, and expressions for the residual for the

model-mismatch case. In Section 6, Bayesian approach to fault diagnosis is explained. Finally,

in Sections 7 and 8, the successful evaluation of the proposed scheme on both a simulated and

physical system is given, respectively.

2. Mathematical model of the system

The MIMO state-space model of the system denoted ðA,B,CÞ is given by

xðkþ 1Þ ¼ AxðkÞ þ BrðkÞ þ EwwðkÞ
yðkÞ ¼ CxðkÞ þ vðkÞ

ð1Þ

where xðkÞ ¼ ½ x1ðkÞ x2ðkÞ x3ðkÞ … xnðkÞ �
T , yðkÞ ¼ ½ y1ðkÞ y2ðkÞ y3ðkÞ … yqðkÞ �

T ,

rðkÞ ¼ ½ r1ðkÞ r2ðkÞ r3ðkÞ … rpðkÞ �
T , wðkÞ and vðkÞ, are respectively, nx1 state vector, qx1

output, px1 input to the system, px1 disturbance and qx1 measurement noise; A, B, C, Ew are nxn

state transition, nxp input, and qxn output and nxp input disturbance matrices;A andC are block

Fault Detection and Isolation
http://dx.doi.org/10.5772/67870

3



diagonal matrices; A ¼

A1 0 : 0
0 A2 : 0
: : : :

0 0 : Aq
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B2

:

Bq
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;Ew ¼

Ew1

Ew2

:

Ewq
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7

5

;C ¼

C1 0 : 0
0 C2 : 0
: : : :

0 0 : Cq

2

6

6

4

3

7

7

5

,

Aj, Bj, Ewj,and Cj are, respectively, njxnj, njxp, njxp, and 1xnj matrices. The output of the system

is corrupted by disturbance wðkÞ and measurement noise vðkÞ; GðzÞ ¼ CðzI � AÞ�1B ¼ D�1ðzÞ

NðzÞ; I is an identity matrix; DðzÞ ¼ jðzI � AÞj ¼ 1þ
X

n

ℓ¼1

aℓz
�ℓ ; Bj ¼ ½Bj1 Bj2 : Bjp �;

Ew ¼ ½Ewj1 Ewj2 : Ewjp �.

We assume that the system is controllable and observable, that is, ðA,CÞ is observable, ðA,BÞ is

controllable, implying that all the states may be estimated from the input and the output data,

and the input affects all the states. The disturbance wðkÞ and the measurement noise vðkÞ are

assumed zero-mean white noise processes. The covariance of wðkÞ and vðkÞ are

E½wwT � ¼ Q and E½vvT � ¼ R ð2Þ

where Q and R are positive definite and positive semi-definite matrices, Q > 0 and R ≥ 0. The

covariances Q and R are not known a priori.

The MIMO model in the frequency domain is

yðzÞ ¼ GðzÞrðzÞ þ ϑðzÞ ð3Þ

whereGðzÞ is qxpmatrix transfer function, andNðzÞ is the qxp numerator matrix; ϑðzÞ is the qx1

is the effect of disturbance wðkÞ and the measurement noise vðkÞ on the output yðzÞ.

ϑðzÞ ¼ CðzI � AÞ�1EwwðzÞ þ vðzÞ ð4Þ

2.1. Single-input single-output pairing

A single-input single-output (SISO) model derived from the state-space model relating the

input riðzÞ, and its associated output, termed yjiðzÞ, which is the same as the output yjðzÞ when

the input is riðzÞ and the rest of the inputs rjðzÞ ¼ 0 for j 6¼ i, is

yjiðzÞ ¼ GjiðzÞriðzÞ þ ϑjiðzÞ ð5Þ

where GjiðzÞ ¼ CjðzI � AjÞ
�1Bji ¼ D�1

j ðzÞN jiðzÞ; and ϑjiðzÞ ¼ CjðzI � AjÞ
�1EwjiwiðzÞ. The trans-

fer function GjiðzÞ may in general be a cascade combination of subsystems fGjiℓðzÞg:

GjiðzÞ ¼
Y

ℓ

GjiℓðzÞ ð6Þ

The subsystems GjiℓðzÞ may, for example, be a transfer function of a controller, an actuator, a

plant, or a sensor associated with a position control system, process control system, magnetic

levitation system, or other systems [4].

Fault Diagnosis and Detection4



Expressing the frequency-domain model (5) in a linear regression form yields

yjiðkÞ ¼ ψT
ji ðkÞθji þ υjiðkÞ ð7Þ

where υijðzÞ ¼ DjðzÞϑijðzÞ; ψ
T
ji ðkÞ is 1x2nj regression vector formed of the regression vectors,

formed ψT
yjiðkÞ associated with yjiðkÞ, and ψT

riðkÞ associated with input riðkÞ:

ψT
ij ðkÞ ¼ ½ψT

yjiðkÞ ψT
riðkÞ � ð8Þ

ψT
yjiðkÞ ¼ ½�yjiðk� 1Þ �yjiðk� 2Þ : �yjiðk� njÞ �; ψT

riðkÞ ¼ ½ riðk� 1Þ riðk� 2Þ : riðk� njÞ�;

θji is 2njx1 feature vector formed of the nj coefficients of the denominator polynomialDjðzÞ and

the numerator polynomial N ijðzÞ:

θji ¼ ½θyj θrji �
T ð9Þ

Remarks: In the operational stage, we may not have access to the output yjðkÞ, termed yjiðkÞ,

generated by the input riðkÞ alone when rest of the inputs are set to zero. It is estimated during

the identification phase of the multi-input and single-output model relating the accessible

output yjðkÞ generated by all the inputs rðkÞ.

2.2. Multi-input and single-output pairing

Using Eq. (5), the output yjðzÞ is the output due to all the inputs rðkÞ of MISO system, which is

yjðzÞ ¼
Xp

i¼1

yjiðzÞ ¼ GjðzÞrðzÞ þ ϑjðzÞ ð10Þ

where GjðzÞ ¼ D�1
j ðzÞN jðzÞ ¼ ½Gj1ðzÞ Gj2ðzÞ : GjpðzÞ �; υjðkÞ ¼

Xp

i¼1

υijðkÞ.

Expressing the frequency-domain model (10) in a linear regression form yields

yjðkÞ ¼ ψT
j ðkÞθj þ υjðkÞ ; j ¼ 1, 2, 3,…, q ð11Þ

where ψT
j ðkÞ is 1xðnj þ njpÞ regression vector formed of the regression vectors ψT

yjðkÞ associated

with yjðkÞ, and ψT
r ðkÞ associated with rðkÞ:

ψT
j ðkÞ ¼ ½ψT

yjðkÞ ψT
r ðkÞ � ð12Þ

ψT
yjðkÞ ¼ ½�yjðk� 1Þ �yjðk� 2Þ : �yjðk� njÞ �; ψT

r ðkÞ ¼ ½ψT
r1ðkÞ ψT

r2ðkÞ : ψT
rpðkÞ �; θj is

ðnj þ njpÞx1 feature vector formed of the n coefficients of the denominator polynomial DjðzÞ

and the njp coefficients of the numerator polynomial N jðzÞ;

Fault Detection and Isolation
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θj ¼ ½θyj θrj �
T ð13Þ

where θyj ¼ ½ aj1 aj2 : ajnj �
T ; θrj ¼ ½θT

rj1 θT
rj2 : θT

rjp �
T .

2.3. Multi-input and multiple-output system

Extending the results of the time-domain expression to the MIMO (3), we get

yðkÞ ¼ ψTðkÞθþ υðkÞ ð14Þ

where ψTðkÞ is qxðnþ npqÞ regression matrix formed of the regression vectors fψT
ij ðkÞg, and θ

is ðnþ npqÞx1 feature vector formed of θj, j ¼ 1, 2,…, q is given as follows:

ψTðkÞ ¼

ψT
y1ðkÞ ψT

r ðkÞ 0 0 : 0

ψT
y2ðkÞ 0 ψT

r ðkÞ 0 : 0

ψT
y3ðkÞ 0 0 ψT

r ðkÞ : 0
: : : : : :

ψT
yqðkÞ 0 0 0 : ψT

r ðkÞ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; θ ¼

θy

θr1

θr2

:

θrp

2

6

6

6

6

4

3

7

7

7

7

5

ð15Þ

The regression model (14) is the time-domain version of the frequency-domain model (3).

Expressing the time-domain model (14) in the frequency domain, we get

yðzÞ ¼ ψTðzÞθþ υðzÞ ð16Þ

2.4. Interconnected system

The system is an interconnection of subsystems such as the plant, the actuator, the sensors, and

the controllers shown in Figure 1. Subfigure A at the top shows that jth output of the system

yj ¼
X

p

i¼1

yji is given by Eq. (10) where yijðzÞ given in Eq. (5) is the output generated by the input

ri acting alone.

Subfigure B at the bottom shows that the transfer function GjiðzÞ in the path from the input ri to

the output yij is formed of subsystems {GijlðzÞ}. The subsystem GijlðzÞ is driven by the input

ujilðzÞ and its output is corrupted by the disturbance wjilðzÞ. The input and the output of GjiðzÞ

are ri and yji , respectively, vji is the measurement noise, ϑji given in Eq. (5) is the combined

effect of the disturbances {wjik} and {vji} on the output yjiðzÞ.

2.5. Modeling of faults

There are two types of fault models, namely the additive and the multiplicative (or parametric)

types. In the additive type, a fault is modeled as an additive exogenous input to the system,

whereas in the multiplicative type, a fault is modeled as a change in the parameters, which

completely characterize the fault behavior of the subsystems. Although the multiplicative and

Fault Diagnosis and Detection6



additive perturbation models are equivalent, the multiplicative-type perturbation model is

preferable. The multiplicative perturbation model of the cascade combination of subsystems

can actually model the particular perturbation in any one of the subsystems under consider-

ation.

3. Emulators

The emulator-based identification scheme is motivated by the model-free artificial neural

network approach to capture the static and the dynamic behavior by presenting neural net-

work data covering likely operating scenarios. An identified model at each operating point

characterizes the behavior of the system in the neighborhood of that point. In practice, how-

ever, the system model may be perturbed because of variations in the parameters of the

system. To overcome this problem, the system model is identified by performing a number of

emulator parameter-perturbed experiments proposed in [4–5]. Each experiment consists of

perturbing one or more emulator parameters. A linear model, termed optimal model, is identi-

fied as a best fit to the input-output data from the set of emulated perturbations. The optimal

model thus obtained characterizes the behavior of the system over wider operating regions (in

the neighborhood of the operating point), whereas the conventional model characterizes the

behavior merely at the nominal operating point (i.e., the conventional approach assumes that

the model of the system remains unperturbed at every operating point). The optimal model is

more robust, that is, the identification errors resulting from the variations in the emulator

parameters are significantly lower compared to those of the conventional one based on

performing a single experiment (i.e., without using emulators).

Figure 1. Pairing of the inputs and an output and the subsystem in the path ji.

Fault Detection and Isolation
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During the system identification phase, a number of experiments are performed by (a) not

perturbing the emulator parameters and (b) perturbing the emulator parameters one at a time,

simultaneously perturbing two at a time, three at time, and so on till perturbing all of them.

The input-output data collected from all experiments are termed emulator-generated data.

• Nominal system model and the Kalman filter: The emulator-generated data are used to

identify the nominal optimal model of the system and the optimal Kalman filter model

using the prediction error method.

• Estimation of the influence vectors: Using the least-squares method, the influence vectors are

identified recursively using the input-output data obtained from the emulator-perturbed

parameter experiments. First, the influence vector for influence vector for the single

parameter perturbation is identified, and then using the estimated influence vector, the

influence vector for the two simultaneous emulator perturbations is estimated. Generaliz-

ing, the influence vector for m simultaneous perturbation is identified, and then using all

previous m estimates of the influence vectors, the ðmþ 1Þth influence vector is identified.

The emulators are transfer functions, which are connected in cascade with the subsystems to

generate likely operating scenarios including normal and faulty one for reliable and accurate

identification of the system, its associated Kalman filter, and the feature vector-emulator map.

Emulators are connected to the system during the identification phase and its parameter is

varied to generate likely operating scenarios. During the operational phase, the static emula-

tors are disconnected, as it were, by setting them to unit values. The dynamic emulator,

however, is not disconnected. Its gain is set to unity and its phase made a non-zero negligibly

small value so that (a) both of these parameters have a negligible effect on the dynamic

behavior of the system during the operational phase and (b) the order of the system during

the identification and the operational phases remains identical to ensure mathematical tracta-

bility without causing performance degradation. The role of the emulator-generated data

includes the following:

3.1. Emulator-generated data for MISO system

The MISO system is given by Eq. (11) relating all the inputs rðkÞ and the output yjðkÞ identified

by connecting an emulator EjðzÞ in cascade with rðzÞ. The emulator is a first-order all-pass filter

given by

EjðzÞ ¼ γj2

γj1 þ z�1

1þ γj1z
�1

 !

ð17Þ

where jγj1j < 1 to ensure stability. The emulators γj1 and γj2 are varied one at a time, and both

simultaneously. During the identification, an emulator EjðzÞ, which is a first-order all-pass filter

(17), is connected to the input rjðkÞ in cascade with nominal model Gj0ðzÞ. A number of

experiments are performed by varying the emulator parameters γj1, γj2 one at a time and both

simultaneously to acquire emulator-generated data: it is assumed for simplicity that the same

Fault Diagnosis and Detection8



input is applied to all the experiments. Using Eq. (10), the MISO model relating rjðkÞ and yjðkÞ

becomes

yelj ðzÞ ¼ Gj0ðzÞEjðzÞrðzÞ þ ϑe
j ðzÞ, el ¼ 1, 2,…, n exp , l ¼ 1, 2, 3 ð18Þ

where ye1j ðzÞ, y
e2
j ðzÞ, and ye3j ðzÞ denote, respectively, the output generated by varying γj1, γj2

and both γj1, γj2.

3.2. Emulator-generated data for SISO system

The feature vector-emulator map of the SISO system (5) is estimated for the isolation of faults

in the subsystems fGijℓðzÞg. The emulators EjiℓðzÞ are connected to an accessible input or output

fujiℓg in cascade with the subsystems fGjiℓðzÞg to mimic their variations. In other words, the

known emulator parameter variations mimic those of the unknown parameters of the associ-

ated subsystems. The accessible inputs include the tracking error, the control input, actuator

input, and sensor output.

The emulator EjiℓðzÞ may be a dynamic system, a constant gain ðγjiℓÞ, a gain, and a pure delay

of d time instants ðγjiℓz
�dÞ, a first-order all-pass filter

γjiℓþz�1

1þγjiℓz
�1

� �

or a Blaschke product of all first-

order-pass filters
Y

ℓ

γjiℓ þ z�1

1þ γjiℓz
�1

 !

[3]. The emulator EjiðzÞ is chosen to be a product of a static

gain and a first-order all-pass filter to mimic the behavior of the subsystem GjiðzÞ ¼
Y

l

ℓ¼1

GjiℓðzÞ

of the SISO system given by Eqs. (5) and (6)

γji2

γji1 þ z�1

1þ γji1z
�1

 !

ð19Þ

In order to ensure stability of the dynamic emulator, parameter γji1 is constrained by jγjiℓj < 1.

Connecting the emulator EjiðzÞ given in Eq. (19) to the nominal SISO model Gji0ðzÞ using

Eqs. (5) and (6), we get

yelji ðzÞ ¼ EjiðzÞGji0ðzÞriðzÞ þ ϑe
jiðzÞ, e ¼ 1, 2,…, n exp , l ¼ 1, 2, 3 ð20Þ

where ye1ji ðzÞ, y
e2
ji ðzÞ, and ye3ji ðzÞ denote, respectively, the output generated by varying γji1, γji2

and both γji1 and γji2.

Figure 2 shows an example of a closed-loop position control system formed of a controller, an

actuator, a plant, and a sensor in the path connecting the tracking error eriðkÞ ¼ riðkÞ � yjiðkÞ

and the output yji. Only eriðkÞ, uij1ðkÞ, and uij3ðkÞ are the measurement outputs. The emulators

Eji1ðzÞ ¼
γji1þz�1

1þγji1z
�1, and Eji2 ¼ γji2 are connected to uji1, and Eji3 ¼ γji3 is connected to uji3 to mimic

Fault Detection and Isolation
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the perturbations in the dynamic plant Gji1ðzÞ, the static actuator Gji2ðzÞ ¼ kA and the static

sensor Gji3ðzÞ ¼ ks, respectively, where Eji1ðzÞ is dynamic, and Eji2 and Eji3 are static emulators.

The nominal static emulator is set to unit value γ0ijk ¼ 1. The variation Δγjik of an emulator γijk

may be expressed in terms of its nominal value γ0jik as Δγjik ¼ γjik � γ0jik.

3.3. Feature vector-emulator map

The feature vector-emulator map for the SISO and the MISO systems is developed subse-

quently.

3.3.1. SISO system

Consider the emulator-perturbed SISO system (20) relating the inputs riðkÞ and yjiðkÞ and the

associated linear regression model (7). The feature vector θji is a nonlinear function of the

emulator parameter γji ¼ ½γji1 γji2 �. Assuming that the feature vector θji is a continuous

function of γji, then using Weierstrass approximation theorem, the feature vector-emulator

map becomes

Δθji ¼ Ωji1Δγji1 þΩji2Δγji2 þΩji12Δγji1Δγji2 ð21Þ

where Δθji ¼ θji � θ0
ji;Δγjℓ ¼ γjℓ � γ0jℓ is the parameter variation;θ0

ji is the nominal feature

vector; Ωji1 is a 2njx1 vector of partial derivatives of the feature vector θji with respect to γji1

evaluated at the unperturbed nominal emulator value γ0ji1. Similarly, Ωji2 is a 2njx1 vector of

partial derivatives of the feature vector θji with respect to γji2 evaluated at the unperturbed

nominal emulator value γ0ji2, Ωji12 is the second partial derivatives with respect to γji1 and γji2

evaluated at the unperturbed nominal emulator value γ0ji1 and γ0ji2. The partial derivative terms

Ωji1, Ωji2 Ωji12, which are the Jacobean of the feature vector θji with respect to the emulator

parameters fγjikg, are termed influence vectors. The influence vectors play a crucial role in

isolating a fault occurring in any subsystem. The influence vectors Ωji1, Ωji2, and Ωji12 track

the degree of variations in the parameters of the subsystem perturbations.

Substituting for θji in (7), the variation ΔyjiðkÞ ¼ yjiðkÞ � y0jiðkÞ between the actual output yjiðkÞ

and the nominal fault-free output y0jiðkÞ becomes

1

1

1

11

ji

ji

z

z

 g

g

–

-

+

+

emulator 2emulator E 3emulator Eplant sensoractuator
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Figure 2. Position control system: emulators and subsystems.

Fault Diagnosis and Detection10



ΔyjiðkÞ ¼ ψT
ji ðkÞðΩji1Δγji1 þΩji2Δγji2 þΩji12Δγji1Δγji2Þ þ υjiðkÞ ð22Þ

Let Ωji be an influence matrix associated with the emulators located at the path ij

Ωji ¼ ½Ωjik Ωjikℓ Ωjikℓmn : Ωji12…q � ð23Þ

A number of emulator parameter-perturbed experiments are performed by perturbing the

parameters of the emulators (20). For each experiment, N input-output data ðyej ðkÞ, rðkÞÞ are

obtained, k ¼ 1, 2,…, N. The input rðkÞ for each experiment is chosen to be persistently exciting.

The regression models associated with the experiments and Eq. (22) are given as follows:

Δye1ji ðkÞ ¼ ψT
ji ðkÞΔγji1 Ωji1 þ υe1

ji ðkÞ

Λye2ji ðkÞ �ψT
ji ðkÞΔγji1 Ωji1 ¼ ψT

ji ðkÞΩji2Δγji2 þ υe2ji ðkÞ

Δye3ji ðkÞ �ψT
ji ðkÞðΔγji1 Ωji1 þΩji2Δγji2Þ ¼ ψT

ji ðkÞðΩji12Δγji12Þ þ υe3ji ðkÞ

ð24Þ

3.3.2. MISO system

Consider the emulator-perturbed MISO system (18) relating the inputs rðkÞ and yjðkÞ, and the

associated linear regression model (11). Similar to Eqs. (21) and (24), we get

Δθj ¼ Ωj1Δγj1 þΩj2Δγj2 þΩj12Δγj1Δγj2 ð25Þ

Δye1j ðkÞ ¼ ψT
j ðkÞΔγj1 Ωj1 þ υe1

j ðkÞ

Λye2j ðkÞ �ψT
j ðkÞΔγj1 Ωj1 ¼ ψT

j ðkÞΩj2Δγj2 þ υe2j ðkÞ

Δye3j ðkÞ �ψT
j ðkÞðΔγj1 Ωj1 þΩj2Δγj2Þ ¼ ψT

j ðkÞðΩj12Δγj12Þ þ υe3j ðkÞ

ð26Þ

4. Identification

The prediction error method can be derived from the residual model of the Kalman filter,

which is presented in the next section. It is used to identify both the nominal system and the

Kalman filter associated with the system without the need for a priori knowledge of the

covariances of the noise and the disturbance statistics. Prediction error method is consistent,

efficient, and a gold standard for system identification, and can identify open-loop and closed-

loop systems. The variance the parameter estimates asymptotically approaches the Cramer-

Rao lower bound.

Optimal models: The optimal system and the associated Kalman filter are identified using the

prediction error method using computationally efficient scheme. First, the MISO system is

identified and then the SISO system is derived from the estimate of feature vector associated

with the MISO system. The emulator-generated data generated using Eq. (18) are used to

identify MISO system (10) and the nominal feature vector θ0
j for Eq. (11), which is the best

least-squared fit to set all perturbed feature vector θj, and the Kalman gain Kj0 are estimated.
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Let the optimal state-space model of the MISO system be ðAj0,Bj0,Cj0Þ and associated Kalman

filter be ðAj0 � Kj0Cj0, ½Kj0 Bj0�,Cj0Þ. Let the optimal transfer matrix of the MISO system and the

optimal estimate of the output be G
opt
j ðzÞ and ŷ

opt
j ðkÞ, respectively. Using Eq. (10), we get

ŷ
opt
j ðzÞ ¼ G

opt
j ðzÞrðzÞ þ ϑjðzÞ ð27Þ

Then, the best estimate of the feature vector θji of the SISO system (7), denoted θ
0
ji , and the

Kalman gain are estimated from θ
0
j .

4.1. Estimation of the influence vectors

SISO system: Knowing the emulator parameter perturbations Δγji1, Δγji2, Δγji12 and the resulting

emulator-generated data, the influence vectors Ω̂ji1, Ω̂ji2, and
^Ωji12 are estimated recursively

using the least-squares method using Eq. (24)

Ω̂ ji1 ¼ argmin
Ωji1

kΔyeiji ðkÞ �ψT
ji ðkÞΩji1Δγji1k

2
n o

Ω̂ ji2 ¼ argmin
Ωji2

kΛye2ji ðkÞ �ψT
ji ðkÞΔγji1 Ω̂ ji1 �ψT

ji ðkÞΩji2Δγji2k
2

n o

Ω̂ ji12 ¼ argmin
Ωjiklm

kΔye3j ðkÞ �ψT
ji ðkÞðΔγji1 Ω̂ ji1 þ Ω̂ ji2Δγji2Þ �ψT

ji ðkÞΩji12Δγji12k
2

n o

ð28Þ

where kxðkÞk2 ¼
X

N

k¼1

x2ðkÞ.

MISO system: Similar to Eq. (28), the influence vectors Ω̂ jk, Ω̂ j2, and Ω̂ j12 are estimated.

5. Model of the Kalman filter

The Kalman filter forms the backbone of the MISO and the SISO systems fault detection and

for fault isolation, respectively. The Kalman filter is a closed-loop system, which is (a) an exact

copy of the identified nominal of the system driven by the residual, which is the error between

the output and its estimate, and (b) is stabilized by the Kalman gain.

MISO system: Using the state-space model ðAj0,Bj0,Cj0Þ derived from the identified nominal

feature vector θ
0
j . The Kalman filter ðAj0 � Kj0Cj0, ½Kj0 Bj0�,Cj0Þ associated with the MISO

system (10) is

x̂jðkþ 1Þ ¼ ðAj0 � Kj0Cj0Þx̂jðkÞ þ Kj0yjðkÞ þ Bj0 rðkÞ

ŷjðkÞ ¼ Cj0x̂jðkÞ

ejðkÞ ¼ yjðkÞ � ŷjðkÞ
ð29Þ

where x̂jðkÞ and ŷjðkÞ are, respectively, the minimum variance estimates of the state and the

output.

Fault Diagnosis and Detection12



Figure 3 shows the nominal fault-free system and the Kalman filter. The structure of the

Kalman filter is based on the internal model principle, which embodies the nominal system

model ðAj0,Bj0,Cj0Þ. The inputs to the Kalman filter are the input rðkÞ and the output yjðkÞ

which is corrupted by the disturbance wjðkÞ and the measurement noise vjðkÞ.

5.1. Expressions of the residual

The expression for the residuals for the MISO system ejðzÞ and the SISO system ejiðzÞ is derived

from the Kalman filter (29).

MISO model: The frequency-domain expression, relating the nux1 input rðzÞ and output yjðzÞ to

the residual ejðzÞ is given by the following model, termed residual model:

ejðzÞ ¼
Dj0ðzÞ

Fj0ðzÞ
yjðzÞ �

N j0ðzÞ

Fj0ðzÞ
rðzÞ ð30Þ

where Fj0ðzÞ ¼ jzI � Aj0 þ Kj0Cj0j is the characteristic polynomial termed Kalman polynomial;

Dj0ðzÞ ¼ Fj0ðzÞ
�

I � Cj0ðzI � Aj0 þ Kj0Cj0Þ
�1
Kj0

�

-

N j0ðzÞ ¼ ½Nj10ðzÞ Nj10ðzÞ : Njp0ðzÞ � ¼ Fj0ðzÞ
�

Cj0ðzI � Aj0 þ Kj0C0Þ
�1
Bj0

�

SISO system: The residual ejiðzÞ is derived from the residual model (30) from the map relating

ejiðzÞ to yjðzÞ and riðzÞ:

ejiðzÞ ¼
Dj0ðzÞ

Fj0ðzÞ
yjðzÞ �

Nji0ðzÞ

Fj0ðzÞ
riðzÞ ð31Þ

where N0jiðzÞ is the i
th element of N j0ðzÞ.

5.1.1. Key properties of the Kalman filter residual

The Kalman filter forms the backbone of the proposed scheme in view of its key properties

proved in [1]. These properties exploited in developing the system identification using the

z

( 1)j k +x ( )j kx

( )kr ( )jy k

jA

jB jC

wjE

( )j kw

( )jv k

z

ˆ ( 1)j kx ˆ ( )j kx ˆ ( )jy k

0jA

0jK 0jC

0jB

( )kr

( )je k

system Kalman filter

( )je k

–1
+

–1

Figure 3. The system and its associated Kalman filter.
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residual model, and in unified approach to fault detection and isolation fault, where a fault is

defined as an incipient fault resulting in the model mismatch.

5.2. Propositions

We establish important results, in the form of lemmas that are crucial to the development of the

proposed fault diagnosis scheme. In Lemma 1, it is shown that (a) the system transfer function

can be estimated from the residual model and (b) Kalman filter whitens the output error ϑjðzÞ

given in Eq. (10). Lemma 2 shows that the residual will not be a zero-mean white noise process

if there is a model mismatch, and there will be an additive fault indicating term, which is a

function of the deviation between the actual feature vector θj of the system model ðAj,Bj,CjÞ

and the nominal fault-free feature vector θ0
j of nominal fault-free model ðAj0,Bj0,Cj0Þ.

Case 1: The system and the nominal models are identical

Lemma 1:

Gj0ðzÞ ¼ D�1
j0 ðzÞN j0ðzÞ ¼ D

�1

j0 ðzÞN j0ðzÞ ð32Þ

where Gj0ðzÞ is the transfer function of the nominal fault-free model ðAj0,Bj0,Cj0Þ.

Proof: Substituting for yðzÞ from Eq. (10), the residual model (30) becomes

ejðzÞ ¼
Dj0ðzÞ

Fj0ðzÞ

��

D�1
j ðzÞN jðzÞ �D

�1

j0 ðzÞN j0ðzÞ
�

rðzÞ
�

þ
Dj0ðzÞ

Fj0ðzÞ
ϑjðzÞ ð33Þ

Correlating both sides with input rðkÞ, and invoking the orthogonality properties, the residual,

namely rðkÞ, is uncorrelated with both ejðkÞ and the output error ϑjðkÞ [4], we get

Dj0ðzÞ

Fj0ðzÞ

��

D�1
j ðzÞN jðzÞ �D

�1

j0 ðzÞN j0ðzÞ
�

rðzÞ
�

¼ 0 ð34Þ

Hence, Eq. (32) holds.

Corollary 1: The filter
Dj0ðzÞ

Fj0ðzÞ
whitens the output error ϑjðzÞ if there is no model mismatch:

ejðzÞ ¼
Dj0ðzÞ

Fj0ðzÞ
ϑjðzÞ ð35Þ

Proof: Consider the expression for the model-matching case (33). Using Eq. (32), we establish

Eq. (35).

Case 2: System and the nominal model mismatch

Lemma 2: If there is model mismatch, then

Fault Diagnosis and Detection14



ejðzÞ ¼
Dj0ðzÞ

Fj0ðzÞ
ΔGjðzÞ þ ϑjf ð36Þ

ejðzÞ ¼ ψT
jf ðzÞΔθj þ υjf ðzÞ ð37Þ

where ΔGjðzÞ ¼ D�1
j ðzÞN jðzÞ �D�1

j0 ðzÞN j0ðzÞ, Δθj ¼ θj � θ0
j ; ψ

T
jf ðzÞ ¼

Dj0ðzÞ

DjðzÞFj0ðzÞ
ψT

j ðzÞ, ϑjf ¼
Dj0ðzÞ

Fj0ðzÞ
ϑjðzÞ,

and ejf ðzÞ ¼
Dj0ðzÞ

DjðzÞFj0ðzÞ
υjðzÞ are the filtered regression matrix ψT

j ðzÞ and filtered output error

ϑjðzÞ, filtered equation error υjðzÞ, respectively.

Proof:

Case 1: Consider expression (33). Using Eq. (32), we get

ejðzÞ ¼
Dj0ðzÞ

Fj0ðzÞ

��

D�1
j ðzÞN jðzÞ �D�1

j0 ðzÞN j0ðzÞ
�

rðzÞ
�

þ ϑjf ðzÞ ð38Þ

Substituting ΔGjðzÞ ¼ D�1
j ðzÞN jðzÞ �D�1

j0 ðzÞN j0ðzÞ, we get Eq. (36).

Case 2: Expressing the residual model (30) in an alternative form:

ejðzÞ ¼
Dj0ðzÞ

Fj0ðzÞ

�

yjðzÞ �D
�1

j0 ðzÞN j0ðzÞrðzÞ
�

ð39Þ

Using Eq. (32) and re-arranging, we get

ejðzÞ ¼
Dj0ðzÞ

Dj0ðzÞFj0ðzÞ

�

Dj0ðzÞyjðzÞ �N j0ðzÞrðzÞ
�

ð40Þ

Adding and subtracting yjðzÞ inside the bracket on the right-hand side yields

ejðzÞ ¼
Dj0ðzÞ

Dj0ðzÞFj0ðzÞ

�

yjðzÞ �
�

1�Dj0ðzÞ
�

yjðzÞ �N j0ðzÞrðzÞ
�

ð41Þ

Using the expression for the regression model (11) and substituting for the actual and the

nominal fault-free cases, we get

ejðzÞ ¼
Dj0ðzÞ

Dj0ðzÞFj0ðzÞ
ψT

j ðkÞΔθj þ υjf ðkÞ ð42Þ

Remarks: If there is a model mismatch because of variations in the subsystem parameters, the

residual is no longer zero-mean white noise process. The residual has an additive term, which

is affine in the deviation in the system transfer function ΔGjðzÞ or equivalently affine in the

feature vector ψT
jf ðzÞΔθj. The additive terms are termed fault indicators. This shows that the

Kalman filter provides a unifying approach to handle both fault detection and fault isolation.

Fault Detection and Isolation
http://dx.doi.org/10.5772/67870

15



In view of the key properties, the Kalman filter is employed for identification and the fault

diagnosis. In system identification, the criterion for determining whether the identified model

has captured completely the dynamic behavior of the system is that the residual (error

between the output and its estimate obtained using the identified model) is a zero-mean white

noise process. Consider the problem of identification of the system. Since the equation error

υðkÞ is a colored noise process, the parameter estimates will be biased and inefficient. To

overcome this, the input and the output are whitened using the Kalman filter as shown in

Eq. (35) of Corollary 1. The Kalman filter model (29) may be interpreted as an inverse system

generating the innovation sequence eðkÞ, or alternatively as a whitening-filter realization of a

state-space model that is driven by both the disturbance and measurement noise.

Lemma 3

ejiðzÞ ¼ ψT
jif ðzÞΔθji þ υjif ðzÞ ð43Þ

where Fji0ðzÞ ¼ jzI � Aji0 þ Kji0Cj0j, ψ
T
jif ðzÞ ¼

Dj0ðzÞ

DjðzÞFji0ðzÞ
ψT

ji ðzÞ;υjif ðzÞ ¼
D0jðzÞ

DjðzÞFji0ðzÞ
υjiðzÞ

Proof: The proof follows from Eqs. (31) and (37).

6. Bayesian approach fault diagnosis

The objective of fault detection is to assert whether the given residual belongs to a set of fault-

free data or faulty residual data, while fault isolation is determined to which class of emulator-

perturbed residual the given data belong. The problem of fault detection and fault isolation is

formulated by a pattern classification problem. Fault detection is a binary pattern classifica-

tion, while the fault isolation is a multi-class pattern classification. The Bayesian decision

strategy is employed to assert appropriate class label. The Bayesian decision strategy is based

on the a posteriori conditional probability of deciding a hypothesis given the data, a priori

probability of the hypothesis, and a performance measure. The decision strategy is determined

from the minimization of the performance measure with respect to all hypotheses.

The Nx1 residual eðkÞ is located in a different region of the N-dimensional plane depending

upon the fault type. In the ideal case regions, there will not be overlaps between regions

associated with different fault types. However, due to noise, disturbances, and other measure-

ment artifacts there will be overlap between the various regions. Hence, Bayesian strategy is

employed to asset an appropriate class label to ensure a high-probability correct decision, and

a low probability of false alarms.

6.1. Fault detection

Fault detection is posed as a binary hypothesis-testing problem. The criterion to choose

between the two hypotheses, namely the presence or an absence of a fault, is based on

minimizing the Bayes risk, which quantifies the costs associated with correct and incorrect

decisions. The Nx1 Kalman filter residual data eðkÞ generated by Eq. (29) is employed. The
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minimization of the Bayes risk yields the likelihood ratio test. The decision between the two

hypotheses is based on comparing the likelihood ratio, which is the ratio of the conditional

probabilities under the two hypotheses, to a threshold value. The resulting binary composite

hypothesis-testing problem compares the test statistics of residual eðkÞ with a threshold value

η:

tsðeÞ
≤ η no fault
> η fault

�

ð44Þ

The test statistics depends upon the input rðkÞ that generates the residual eðkÞ [4]:

tsðeÞ ¼

1

N

X

k

i¼k�Nþ1

eðiÞ

�

�

�

�

�

�

�

�

�

�

rðkÞ ¼ constant

Peeðf 0Þ rðkÞ is a sinusoid

1

N

X

k

i¼k�Nþ1

e2ðiÞ rðkÞ is an arbitrary signal

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð45Þ

6.1.1. Computationally efficient scheme

A computationally efficient scheme is employed here for the detection:

• The status of each of the MISO systemsGjðzÞ relating all the inputs rðzÞ and all the outputs

yjðzÞ is evaluated for all j ¼ 1, 2,…, q using the binary hypothesis scheme (44). Using the

test statistics of the residuals ejðkÞ given by Eq. (30) yields

tsðejÞ
≤ ηj no fault

> ηj fault
, j ¼ 1, 2, 3,…, q

�

ð46Þ

• If a fault is asserted in GjðzÞ, then the status of each of the p subsystems GjiðzÞ of the SISO

system is asserted using the test statistics of the residuals ejiðkÞ (31):

tsðejiÞ
≤ ηji no fault

> ηji fault
, i ¼ 1, 2, 3,…, p

�

ð47Þ

Fault accommodation: If a fault is asserted, then the Kalman gain is adapted online, the system

re-identified, and the Kalman filter redesigned accordingly, thus the fault is accommodated

and, in the extreme case, the system is shut down for safety reasons.

7. Evaluation on simulated system

The proposed emulator-based system identification of the system, the associated Kalman filter,

feature vector-emulator map, and finally the fault diagnosis are illustrated using an example of

a position control system formed of an actuator, a sensor, and a plant.
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7.1. System model

A two-input and two-output system fault-free system ðA0,B0,C0Þ given by Eq. (1) is consid-

ered where

A0 ¼

0 �0:7 0 0
1 1:5 0 0
0 0 0 �0:82
0 0 1 1:8

2

6

6

4

3

7

7

5

; B0 ¼

0:5 1
1 0
1 �0:3
0 1

2

6

6

4

3

7

7

5

; C0 ¼
0 1 0 0
0 0 0 1

� �

ð48Þ

The nominal transfer matrix of the MIMO system (3) is

G0ðzÞ ¼
G11ðzÞ G12ðzÞ

G21ðzÞ G22ðzÞ

" #

¼

1þ z�1

1� 1:5z�1 þ 0:7z�2

1

1� 1:5z�1 þ 0:7z�2

1

1� 1:8z�1 þ 0:82z�2

1� 0:2z�1

1� 1:8z�1 þ 0:82z�2

2

6

6

6

4

3

7

7

7

5

ð49Þ

The nominal MISO transfer matrix, Gj0ðzÞ ¼ D�1
0 ðzÞN j0ðzÞ, j ¼ 1, 2, of the system is

D0ðzÞ ¼ 1 � 3:3z�1 þ4:22z�2 � 2:49z�3 þ 0:574z�4

N0ðzÞ ¼
z�1 � 1:3z�2 �0:08z�1 þ 0:41z�2

z�1 � 1:8z�2 1:15z�1 � 0:2z�1

" #

ð50Þ

Figure 4a shows the emulator-generated MISO output 1, ye11 MISO output 2, ye12 , SISO

output 11, ye111, SISO output 12, ye112, SISO output 21, ye121 and SISO output 22, ye122 given in

Eqs. (18) and (20) resulting from the variations of the emulator parameters γj1 and γji1,

respectively. Subfigures A and B show plots of the perturbed step responses ye11 ðkÞ and

ye12 ðkÞ with respect to time, while subfigures C–F show plots of the perturbed outputs

ye111ðkÞ, y
e1
12ðkÞ, y

e1
21ðkÞ, and ye122ðkÞ with respect to time. The outputs are in centimeters (cm)

and the time is in seconds (s). The plots are generated when the emulator parameter γj1 is

varied. The variations Δγj1 are { 0:1 0:5 0:9 1 }.

The mean-squared error (or residual), namely the error between the output of the optimal model,

denoted by ŷ
opt
j ðkÞ and given by Eq. (27), and the perturbed outputs ye1j ðkÞ resulting from the

variations of the emulator parameter γj1. The mean-squared error, denoted msejðγj1Þ, is computed

as follows:

msejðγj1Þ ¼
1

N

X

N

k¼1

�

ŷ
opt
j ðkÞ � ye1ðkÞ

�2
ð51Þ

The conventional scheme identifies only the unperturbed nominal model. Let the identified

model of the MISO system (10) be Ĝj0ðzÞ, the estimated output be ŷcj0ðzÞ. The mean-squared

error, denoted msecj ðγj1Þ, becomes
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msecj ðγj1Þ ¼
1

N

X

N

k¼1

�

ŷj0ðkÞ � ye1ðkÞ
�2

ð52Þ

The mean-squared errors msejðγj1Þ and msecj ðγj1Þ are plotted as functions of the emulator

parameter perturbations Δγj1. The mean-squared profiles of both the proposed emulator-

based and the conventional identification schemes are shown in subfigures A and B of

Figure 4b.
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Figure 4. (a) Emulator generated data and (b) performance of the identified model.
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The identified state-space model and the Kalman gain are

Â0 ¼

0:9843 �0:1588 0:0213 0:0224

0:1572 0:9266 0:2317 �0:2502

�0:0631 �0:3144 0:9090 �0:3230

0:0171 0:0153 0:1659 0:7225

2

6

6

6

4

3

7

7

7

5

, B̂0 ¼

0 0

0:1 0:1

�0:3 �0:3

2:6 2:6

2

6

6

6

4

3

7

7

7

5

103,

Ĉ0 ¼
21 �564:2 �245:6 49:5

1679:2 �336:3 �211:4 44:0

� �

The ranges of the mean-squared errors msejðγj1Þ and msecj ðγj1Þ are given below:

1:8390 ≤mse1ðγj1Þ ≤ 2:225

0:0137 ≤msec1ðγj1Þ ≤ 7:1815
ð53Þ

18:2224 ≤mse2ðγj1Þ ≤ 21:7167

0:0007 ≤msec2ðγj1Þ ≤ 69:8841
ð54Þ

Remarks: The emulator-generated data cover the operating scenarios, including both the normal

and abnormal ones, exhibiting variations of the rise time, the settling times, and the overshoots.

The identified optimal model ðÂ0, B̂0, Ĉ0Þ is different from the nominal system model

ðA0,B0,C0Þ. Even the block diagonal strictures of A0 and B0 are not preserved.

It can be deduced from Figure 4b on the right, Eqs. (53) and (54), that compared to the

conventional scheme, the proposed emulator-based identification is significantly more

robust to variations in the operating points, which are simulated by emulator parameter

perturbations.

The poles of the MISO transfer functions G2ðzÞ of y2ðkÞ and G1ðzÞ of y1ðkÞ were, respectively,

0:8500 � j0:3122 and 0:7500 � j0:3708. The same emulator was used for inducing phase shift

to the MISO models. G2ðzÞwith poles close to the unit circle was affected more than G1ðzÞwith

poles well inside. In view of the difference in the perturbations induced in the two models, the

mean-squared errors mse2 and msec2 are higher than mse1 and msec1.

7.2. Fault diagnosis

Detection of a fault: Various types of faults include (a) actuator, (b) sensor, and (c) plant, we

introduced by varying the columns of B0, the rows of C0, and the diagonal matrices of A0. A

fault is detected using appropriate test statistics depending upon the reference input waveform

from Eq. (45). Since the reference input rðkÞ is a constant waveform, the test statistics for the

MISO and the SISO system using Eqs. (46) and (47) are

tsðejÞ ¼
1

N

X

k

i¼k�Nþ1

ejðiÞ ; tsðejiÞ ¼
1

N

X

k

i¼k�Nþ1

ejiðiÞ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ð55Þ

A visual picture of the faulty and the normal subsystems may be deduced from the autocorre-

lations of the residuals associated with the fault-free, sensor fault, actuator fault, and the plant

faults shown in Figure 5. Subfigures A, and B, subfigures C and D, subfigures E, and F, and
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subfigures G and H show respectively autocorrelations of the residual for the ideal no fault, the

sensor fault, the actuator fault, and the plant fault.

Remarks: The maximum value of the autocorrelation of the residual (i.e., its variance) provides

an indication of the presence or an absence of the fault. In the case of the sensor fault intro-

duced by perturbing C20, it affects only the residual e2ðkÞ. The variance of the autocorrelation

e2ðkÞ is large while that of e1ðkÞ indicating a fault in C2. However, a fault in either the actuator

or the plant, depending upon which elements of B0 or A0 are perturbed, may affect both

residuals, and hence would be difficult to isolate.

7.2.1. Fault isolation

If a fault is asserted, and the path where the fault is located, then it is isolated using Bayesian

multiple hypotheses testing scheme. The size of the fault is also estimated. The objective of

fault isolation is to determine which of the emulator parameter has varied using the residual
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Figure 5. Autocorrelations of the residuals: ideal, sensor fault, actuator fault, and plant faults.
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data generated or parameters using the expression for the Kalman filter residual for the model-

mismatch case given in Eq. (43). The residual ejiðkÞ is affine in the unknown emulator param-

eter variations fΔγijkg. The emulator parameter variation that is most likely to fit the perturbed

residual with additive term ψT
jif ðzÞΔθji is determined sequentially by first hypothesizing single

faults. If the estimates thus obtained do not fit the residual, then two simultaneous faults are

hypothesized. If again the estimates do not fit the residual model, then hypothesize triple

faults, and so on until the estimates fit the residual model. The maximum likelihood method,

which is efficient and unbiased, is employed herein to estimate the variation Δγ. The maxi-

mum likelihood estimates of the emulator parameters are obtained by minimizing the log

likelihood function [13].

Let Hð1Þ, Hð2Þ
, and H

ð3Þ denote a hypothesis that emulator parameter γji1, γji2, and γji12 has

varied. The Kalman filter residual for Hð1Þ becomes

H
ð1Þ

: e
ð1Þ
ji ðkÞ ¼ ψT

jif ðkÞΔθ
ð1Þ
ji þ υjif ðkÞ ð56Þ

The least-squares estimate Δγ̂ji1 from

Δγ̂ji1 ¼ arg min
fΔγji1g

fkejiðkÞ �ψT
jif ðkÞΔθji k

2g ð57Þ

If the estimate does not meet the criteria, then hypothesize that γji2 has varied. The criteria for

fitting a hypothesis are given later. The Kalman filter residual for Hð2Þ becomes

H
ð2Þ

: e
ð2Þ
ji ðkÞ ¼ ψT

jif ðkÞΔθ
ð2Þ
ji þ υjif ðkÞ ð58Þ

The least-squares estimate Δγ̂ji2 from

Δγ̂ji2 ¼ arg min
fΔγji2g

fkψT
jif ðkÞΔθ

ð2Þ
ji þ υjif ðkÞk

2g ð59Þ

If it does not meet the criteria, then hypothesize that γji12 has varied. The Kalman filter residual

for Hð3Þ becomes

H
ð3Þ

: e
ð3Þ
ji ðkÞ ¼ ψT

ijf ðkÞΔθ
ð3Þ
ji þ υjif ðkÞ ð60Þ

The least-squares estimate Δγ̂ji12 from

Δγ̂ ji12 ¼ arg min
fΔγji12g

k e
ð3Þ
ji ðkÞ �ψT

ijf ðkÞΔθ
ð3Þ
ji k2

n o

ð61Þ

where Δθ
ð1Þ
ji , Δθ2

ji , and Δθ3
ji are deviations in the feature vector when γji1, γji2, and γji12 are

assumed to have varied.
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7.2.2. Criteria for asserting the hypothesis

The most likely hypotheses is determined by verifying which of the emulator parameter or

parameters have varied by comparing the deviation with some threshold value

Assert H
ð1Þ if Δγ̂ji1 ≥ η1 ð62Þ

Assert H
ð2Þ if Δγ̂ ji2 ≥ η2 ð63Þ

Assert H
ð3Þ if Δγ̂ji12 ≥ η3 ð64Þ

where η1, η2, and η3 are threshold values. The subsystem associated with the subsystem is

asserted to be faulty if the criterion is met.

8. Evaluation on physical process control system

A laboratory-scale two-tank physical system is formed of a controller, a DC motor, a pump,

two tanks connected by a pipe, a flow rate sensor, and a liquid level sensor. The system is

interfaced to a PC with the National Instruments LABVIEW for data acquisition and

implementing the controller and the soft sensor [14]. The actuator, namely the pump driven

by the DC motor, sends the fluid to the first tank to maintain a specified fluid level in the

second tank. An evaluation of the proposed scheme for fault diagnosis was performed on a

benchmark laboratory-scale process control system using the National Instruments LABVIEW

as shown below in Figure 6. The sampling period is Ts ¼ 0:05.

Emulator-generated height and flow rate profiles under various types of faults are shown in

under the caption Height/Flow rate Profiles for PI controller with Consumer in Fig. 7. Fig-

ures 7a–c show the height and flow rate profiles when subjected to (a) leakage fault, (b) actuator

fault, and (c) sensor faults, respectively. The height profile is shown on the top and the flow rate

profile is shown at the bottom of Figure 7. The faults are induced by varying the appropriate
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Figure 6. Process control system: controller, actuator, and tank.
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emulator parameters to 0.25, 0.5, and 0.75 time the nominal values, in order to represent “small,”

“medium,” and “large” faults. However, by virtue of its control design objective, the closed-loop

PI controller will hide any fault that may occur in the system and hence will make it difficult to

detect it. In addition, the physical system exhibits a highly nonlinear behavior. The flow rate

saturates at 4.5 ml/s. The dead-band effect in the actuator exhibits itself as a delay in the output

response: when a step reference input is applied, the height output responds after some delay, as

a minimum force is required to drive the actuator. These nonlinearities affect the steady-state

value of the height: even though there is an integral action in the closed-loop control system, the

steady-state error is non-zero for a constant reference input.

The system is modeled as a single-input, multi-output system where r is the reference input,

and the outputs are the control input u, the flow rate f and the height h. Faults were induced in

the height sensor, the flow sensor, the actuator, and also as a leakage. The proposed fault

diagnosis successfully detected and isolated all the faults compared to SISO scheme [14],

where all the faults were detected and isolated using the reference input and the height output.
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Figure 7. Emulator-generated data: height and flow.
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9. Conclusions

Fault detection and isolation of a class of linear multiple-input and multiple-output system

based on the Kalman residual and the emulators were presented. The key properties of the

Kalman filter, namely the residual, is a zero-mean white noise process if and only if there is no

model mismatch, drive the prediction error identification of the nominal system model, and

the Kalman filter. In view of the closed-loop configuration, the noise and the disturbance are

attenuated at the estimated output. The Kalman filter is the best minimum variance estimator

in the class of all linear estimators.

To handle fault isolation, the powerful and effective concept of emulators was introduced.

Similar in spirit to the training of the artificial neural network, a number of emulator parame-

ter-perturbed experiments were performed to capture the perturbation model of the subsys-

tems to help with fault isolation. The influence vectors of the emulator parameters, which are

indirectly the associated subsystems, were estimated. The influence vectors captured the

emulator perturbation model and hence that of the subsystem.

The residual of the Kalman filter was shown to have an additive fault indicating term when

there is a model mismatch due to emulator perturbations. The model-mismatch term is affine

in the emulator parameter variations. Using the expression for the fault indicating term, the

fault was isolated using the influence vectors and its size was estimated. The residual, being

affine in the emulator parameter variation, easily lends itself to the widely used and successful

composite Bayes hypothesis-testing scheme for fault isolation.

The future work generated from this work includes its extension to a class of nonlinear

multiple-input and multiple-output systems, and the development of a computationally effi-

cient identification of the Kalman filter directly from the input data even for unstable systems.

Although a gold standard for system identification, the prediction error method involves a

nonlinear optimization problem and hence can suffer from the existence of local minima.

Unlike the least-squares approach, it does not offer a closed-form solution to the parameter

estimation problem. Instead, it relies on a recursive solution that may be time-consuming

(slow convergence rate), computationally complex, and which may also suffer from initializa-

tion problems.
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