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Abstract

We study the dynamics of one-electron atoms interacting with a pulsed, elliptically
polarized, ultrashort, and coherent state. We use path integral methods. We path inte-
grate the photonic part and extract the corresponding influence functional describing
the interaction of the pulse with the atomic electron. Then we angularly decompose it.
We keep the first-order angular terms in all but the last factor as otherwise their angular
integration would contribute infinites as the number of time slices tends to infinity.
Further we use the perturbative expansion of the last factor in powers of the inverse
volume and integrate on time. Finally, we obtain a closed angularly decomposed expres-
sion of the whole path integral. As an application we develop a scattering theory and
study the two-photon ionization of hydrogen.

Keywords: path integrals, influence functional, perturbation, coherent state, hydrogen,
sign solved propagator, two photons

1. Introduction

The study of the interaction of radiation with matter is an area of major importance in physics.
The production in laboratories of pulses of various durations and central frequencies has given
a further boost in that study. These pulses can be used in the study of various elementary
processes such as the excitation or photoionization of atoms [1-7]. This is possible due to their
short time length of the order of a few femtoseconds or of a few hundreds attoseconds. Sub-
100-as pulses have been generated as well. Moreover, their photons’ energy may belong in the
ultraviolet or extreme ultraviolet and therefore just one or two photons may be enough to
cause excitation or ionization.
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In the present chapter, we introduce a fully quantum mechanical field theoretical treatment, for the
interaction of a pulsed, elliptically polarized ultrashort coherent state with one optically active
electron atoms. We use path integral methods. So we integrate the photonic part and extract the
corresponding influence functional describing the interaction of the pulse with the atomic electron.

Proceeding we use the discrete form of that influence functional and angularly decompose its
expression. We keep first-order angular terms in all but the last factor as otherwise their angular
integration would contribute infinites as the number of time slices tends to infinity. Further, we
use the perturbative expansion of the last factor in powers of the inverse volume and integrate on
time. So we generate a perturbative series describing the action of the photonic field on the
electron of the atom. It includes photonic and vacuum fluctuations contributions. Moreover, we
manipulate the angular parts of the atomic action via standard path integral methods to finally
obtain a closed angularly decomposed expression of the whole path integral.

As an application we develop a scattering theory and we study the two-photon ionization of
hydrogen from its ground state to continuum. For the same transitions and to the same order
vacuum fluctuation terms contribute as well. In the present application we consider orthogo-
nal pulses. We use the propagator that appears in its sign solved propagator (SSP) form Ref.
[8]. Previously, we have considered other kinds of photonic states interacting with one-electron
atoms (see Refs. [6, 7, 9, 10]).

The present chapter proceeds as follows. In Section 2, we describe the present system and integrate
its photonic part. Then in Section 3, we give the angular decomposition of the propagator in the
case of elliptic polarization. In Section 4, we give an application and our conclusions in Section 5.
Finally, in the Appendix we give some functions necessary in the evaluation of certain integrals.

2. System Hamiltonian and path integration

In the present chapter, we consider a one-electron atom initially in its ground state under the
action of a coherent state. Therefore, the system Hamiltonian H can be decomposed into a sum
of three terms. The electron’s one H,, the photonic field one H and an interaction term of the
photonic field with the electron H; .that is,

H =H, + Hf + H;. (1)
H, has the form
12 _
He=37 +V(7), @)

while the interaction term H; in the Power-Zienau-Woolley formalism takes the form
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H; = —er - Ef(7, 7). (4)

—

E f(7, 7) is the field operator of the photonic pulse given by the expression

i 1

Ef(7, 1) = Wil(w)@(”c) cae

ikt gt gremikne T | (5)

(1) is the pulse’s envelope function. In Eq. (5) l(w) = V27w is a real frequency function, ¢ is

the polarization vector, w is the pulse’s carrier frequency, ko, is the radiation wave vector and
V'is a large volume. Then H; has the form

Hy=g(t)a+¢"(t)a’. (6)
We have set

§(1) = —%ielw)p(w? (ke T, 7)

Now we combine the photonic field variables in the term

Ho(a*,a;7) =Hy+H; = wa"a+ g(t)a+ g"(t)a”. (8)

The propagator between the initial and final states corresponding to the Hamiltonian Eq. (1) can
be obtained by integrating on both the space and photonic field variables. At first we integrate the
photonic field variables, which appear only in H, (Eq. (8)). Then we obtain the following path
integral of only the spatial variables:

- - ~,.Dp
Klag, rp tr i, i ti) = JDT(T) (an(;,) X
i ‘ 2 Y
exp | (5@) - v<?<r)>) - ifrg(12(z,1)- ®)

ti ti

(|Oéf|2 + ‘0(1'|2) + Y(tf; ti)a}“ai + Z(tf, ti)a}‘ — iO(iX(tf, ti)},

N[ —

where Y(t, t;), X(t, t;), and Z(tf, t;) read:

fr
Y(t, t;) = exp —in’ca)(T) = exp ( —iw(tf — ti)), (10)

t;

X(ty, ) = jchg(wm ) (11)
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tf tf
Z(ts, ;) = —inTg*(T) exp —inT’a)(T’) . (12)
ti T

The propagator in Eq. (9) with diagonal field variables («; = oy = @) can be written as

fr

exp inT [ﬁ(’[) - 7(1) _P 21) — V(7 (1))

£

Dp(7)
(2n)°

K(oz, 7f, tf,' a, 7,‘, t,') = JD?(T)
+A — Bla|* + Dja + Da*|. (13)

The parameters are given as follows:

te T - .
Altp ) = — 2P (@) e a0z - Feko 7O i) F(pre R TV 0, 1a)

[ZR

B(tf — t,') =1 Y(tf, t,‘) =1 efiw(tfit"), (15)

tr
1 oF = 7? T (0) ity

D(ts, t;) :—el(w)JdT@(T)e 7 (r)e e T (W) pmiwlly =), (16)

VvV :
f
1 ~ T 7 .
Di(tf, t;) = —Wel(a))JdTp(T)e . r('c)elkp}"r(”e”“’”’tf). (17)

In the case of a field transition between an initial photonic state |®;) and a final one |®,), the
reduced propagator of finite time takes the form

d*a

=, — 2 — —
K(rg tyriti) = Jne|“| (Dr|a)K(a, 1y, tr; , 14, t) (| D). (18)

Here we consider that we have a field transition from an initial coherent state |3) to a final one
|y). So we can integrate to obtain the following reduced propagator for the motion of the
electron,

I~<(7f, te; ?i/ t) = C(tf - ti>K0(?f, te; ?1‘, t)

— C(ty — t,.)“r)?@) ?2”753

(19)

exp {iSot [ﬁ, T, 7|},

where
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By 11012 _ 115,02
exp (g — 2 Bl" — 317l
Ct) = <B“ Bz(t) ? ) (20)

The action is

t . >
sl 711 = [ |70 710 - L0 vizop o
tf i

+i%el(w)Jdr <5X(T)’§ T @k T O oyt () F (e kT (1))

ti

tr

i iw(T=p) . 7= T =
+lezl2(w)Jd”cp(T)Jdp@(p) [iei <? : r(T)e_’kPh‘r(T)> (e : r(p)e’kp’l'r(p)> +c.c.

V eiu)(tffti) _ 1 4
t; ti
(21)
where x(7) has the form
e—iarf
X(1) = (0) 22)
We notice the following identities:
1 1 1 wt 1 1 < 1
- = — — —Jcot|l— )| == —— . 23
B 2 2'° <2) 2 wm_Z_mt_me (23)

On using them and for arbitrary A() we can obtain the following formula after a direct Fourier
transform,

oo

]o %elftdt = % JA(t)eiftdt —I—g i: A (2717111) exp <lf2717m> ‘ (24)

M=—o0

—o0 —oo

Finally, upon using an inverse Fourier transform we obtain the following functional identities
1 < (2mm 1 1L wt

—+— E ol ——t —+= E olm——]]|. 2
2+wm:— < w ) 2+2m:—oo (m 27'()] < 5)

In the above expressions, the summation is to be performed symmetrically. Identity in Eq. (25)
is to be used in Egs. (19) and (20). The delta functions do not contribute in the final expressions
of Section 4 at the specific times introduced by them the photonic influence functional becomes
zero. Moreover, the measure of all those times is zero. Further to handle the exponential in
Eq. (20) within the scattering theory of Section 4 we use the limit

= A(t)
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limL = lim ! =1 (26)

B ] exp ( —i(w - iO)t)

Now due to the large volume V, we shall approximate the exact action (21) by neglecting in the
Taylor expansions

F(0) =T (0) + (p— 07 (1) + ... (27)

higher terms than the first one, as they are going to involve powers of higher order in Vin the
denominator. To demonstrate this we consider the action in Eq. (21) and we derive the
equation of motion of the electron by using Lagrange’s equation and the action’s Lagrangian

in the absence of V(7). So the part of the Lagrangian that interests us reads

2

=130 @ (ﬁxm%‘ (@R TO Ly (e ?<T>e‘ik”“'m)>
+ L)) [dppp) i P G 7(T)€izpﬁ<f)) (27 >ef?ph-7<m) +ec
14 PP elwoltr—t) _ P R
ti

(28)

and has equation of motion
F(t)=0 (i) (29)

— )
Therefore we can set,
(o) = 7(1) + o(i> (30)
7T )

In the case of the presence of V(7) we perform a full order perturbation expansion of the full
propagator in Eq. (19) with respect to the potential term. That is,

Ko=T+TVT +TVTVT + .... (31)

Then the propagator T, in the expansion, will be the one of the electron in the photonic field
for which the approximation of Eq. (30) as discussed above is valid. Then, we sum back to
obtain the final full propagator, thus maintaining the same approximation for the total
propagator as well. Notice that the expansion (31) may converge very slowly but since it is
a full order expansion it does not matter. Eventually in the large volume limit we get the
action
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+i\/1vel(a))Jd’c ([3)((7)? 7(T)eizph'7(T) +y*x*(1)e LT (’c)e’lzph 7(T)> (32)

b 2

+ Ve212(w)de(T> e 7 (1),

where T
(1) = (o) [@lp)e(x - p)dp, (33)
&(t—p) =csc [@] cos [a)(’c —p) — M} . (34)

Finally, we notice that in the long wavelength approximation we can set ek = 1. S0 we
obtain the following expression

tr 2
S [7, 7,7] = ”ﬁ@) F(0) - D v |aet
. 1 tf | o * % ~k o —
l\/—Vd(w)JdT {ﬁx(”c)e () +y* X (r)e - r(’c)}—i— (35)
ffl 2
Vezlz(w)JdTv(T) e - r(1)

Now we proceed to the angular decomposition of the above expressions.

3. Angular decomposition

We intend to perform angular decomposition and evaluate the SSP corresponding to the
propagator of Eq. (19) in the long wavelength approximation.

Here we consider elliptic polarization so that the polarization vector takes the form

€ = £, c0s (g) +ie,sin (g), (36)
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where ¢ and ¢, are the unit vectors along the x- and y-axis. The upper sign corresponds to left
polarization while the lower one to right one.

The propagator Kg (7f, tr; 7, t;) of Eq. (19) with the above polarization vector ¢ has the discrete
form

—

3 N |5 N+l | % dp
KE(F) b T b) = Jﬁn J z
o\ frtf H J H (27_()3

n=1{

X exp {zl\ir:1 [pn I (70’”2“) + V(?,ﬁ) (37)

2
21w . o 21w
+1 76(5Xn T +Vi*xie - 1y) +7€vn

All the functions with index n are evaluated at time 7,, = ne + t; where ¢ = % X and v,, have
the form (see Egs. (22) and (33))

—~  —

E'T’n

efiwIn

Xn = @(%)m/ (38)
vy = v(Ty). (39)
Additionally, we note that we have set 7o=riand Fnp = 7f.
Now we insert delta functions in Eq. (37) to get the expression
Kg(7f, tf,' ?,‘, ti) =
N | T N+1 | T g [N+ | T N+1
— d —~ —
H Jd?"n J —pn3 H szwn [6(2)(wn_ € rn):|
n=1| < n=1 [~ (27-() n=1 [ n=1
N+1 —2 (40)
xexpsiy |p, _1) —¢ p”—(T)+V(7n)
n=1 2

2
. 2nw . e\ | 2T
+iy [ (Bx,wn + y*xiws) + 7 EVn[wn

We have defined 6% (z) = 6(z)6(z*). Moreover w,, = wy, + iwy,. The delta functions have the
representation
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N

52 (wn — 7 [sin d, (cos <§> cos ¢, Eisin (g) sin(pn>]> = (271_()
X J sz/\n exp |i [ ;(/\ w, + Ajwy) — i;/\n (Ex cos <§> +ie,sin <§>) T (1)

X exp {i/\xnwxn — idynWyn — iAxn COS (%) €y Fpti Ayn sin (%) gy 7;1] ‘

We have set A, = Axn +iAyn. Now we perform the change of variables Ay, — COAS iy Ayn —
Ayn & . & . .

sm—y(z), Wyn — €OS (5)Wyn, Wyn — sin (5)wyn. The factor due to the integration on A, is cancelled

with the factor due to the integration on w,. Further we expand angularly according to the

identity,

4>

l - 47TZ Z Z]l |K|1’ Ylm(SK’ (PK)YIH‘(S (P) (42)

=0 m=—I

where j; are spherical Bessel functions, and Y}, are spherical harmonics. So for right elliptic
polarization we get

e ln
0P (wy =€ Tu) =D > & (@, 1) VATY 1, (81, 9,,), (43)
1,=0 m,=—
where
gly,m,, (w/n/ rn) — l Ol = J J eXP lenw xn Z’Aynﬂwlyn]
I (44)
X, ([ An]rn) exp (—imug,,),
Ly —my)!
Otym, = \/(Zln +1) mpln” (0)
(45)

S Rl e
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We notice that if [, 4 m, is odd then Oy, is zero. Moreover |A,|, ¢,, are the polar coordinates
of A,, on the x-y plane. We have set

Wy = Wy COS <§> = |w',| cos (¢, ) cos <§> (46)
(A (€
Wyn = Wyn SN E - ‘wnl sSm ((Pw’n) s E ’ (47)
and
Wy = Whn + iWyn = WP, (48)

On integrating over ¢,, we get

) Iy
/ — (_4 l l mn .. _
glnmn (w ns er) - ( 1) o exp (lm" ((pw’n + 2))
. (49)
" J 402,01, (P2, T, (P2, W ])-
0
p,, = |Ax| and J,, ~are Bessel functions. In the appendix we give results for the expression in
Eq. (49).

Finally, we replace the delta functions in Eq. (40) with the above angularly decomposed
expressions. As N — < and within the range from n =0 to N we keep first-order angular terms.
Higher order angular parts would contribute infinites. Finally, the propagator takes the form

Kg(?f, tf,' 71', tz‘) =
[

9
ZZZZKImq rf’tf’rlf )\/_Ylm(sf’(Pf) CIP(Sf'(Pf) qp(sll(p)

T 20 me—1q=0p=—gq

(50)

where after standard manipulations [11] on the angular parts of the atomic system

Kfm q(rf, t; 1, t;) takes the form
; N |5 N+1| % dp N+1 N
Klmq rf/ tf/ 7/'l/ H Jdrn H J 2—7_1; H JJ gOO wl’l/ ri’l
n=1 n=1 [~ n=1 | <r n=1

N+1 2
, . 2 +1 51
X Q1m (WN41, TN+1) XP {15 :|:pn(r” —Tpo1) — € (]92 + q(qzrz ) + V(”ﬂ)) (51)
n=1 n

. 21w . e 2T 2
+1 TS(ﬁxnwn~l—y Xﬁwn)+75vn|wn| )

Further we observe that
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N N
. 2
Jm @'y | [ ] [8o0(@h )]
n=1 n=1
[y | <1y
X ex itf_tiZN i[9 B, w0 + 7 110 + 2 o 52
PUNT1Z v BXnT0n + Y X 10y) + = Vit (52)

So Eq. (51) becomes

Koy, b1 1) = Flm(rf)” Dr(r) 2L

f , & (53)

X exp inT [pf — (% + 17(172;; D + V(r))] + I,Z;I_Va) Jv(’c)rz(’c)d’( ,

ti ti

where

Fim(ry) = ” dzw/fglm(w/ff rF) X

\w’f|<rf

2ntw . e 2Nw 2
expq — 75([3)(wf+y)(wf)+17£v]wf| .

We notice that to evaluate the integrals in Eq. (54) we have to take into account the
expressions of Egs. (46) and (47). Then we expand it on parameters of interest and integrate
on time.

In the next section, we use the present propagator in its SSP form which appears after the
solution of the sign problem. It is

[ = g

K‘lf( rr, b7, 0) = W(S(rf — ri)z Z Z Z Yap (S, (pf)qu(Si, ®;)
! 1=0 m=—1q=0p=—q
(55)

t
27w 5
X VAT 10 (S, ;) Fim (1) exp [z?,vrfjv(’c)d”c] .
0

We have dropped the phase due to the atomic Hamiltonian because in the subsequent appli-
cation of the present chapter, it eventually cancels.
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4. Application and results

Proceeding to an application of the present theory we apply the above formalism to the case of
the ionization of hydrogen. In that case the potential is given as

We use as an initial state, the hydrogen’s ground one with wavefuction,

—

lpi(?, f) = lpi(f’) —igit R]S( )Yoo(s ¢) _lét 26_7Y00(\9 ¢) _lét (57)

where ¢; = —1, is the energy of the ground H(1s) state.

The final state of the ionized electron with wave vector k = k( sin 9 cos ¢,, sin 9y sin¢,, cos )
is

vk, n =
k k. (58)
iet __ iK1 - o _ -\ et
Wi (r)e ™ = exp (Zk) (1 —I—k) 1F1< ;1 —ikr ik r)e
It has energy
e=F/, (59)
and partial wave expansion
E 2T —i5s pk ~
WE(F) === Fe PRI Y Y(S, @) YalSk 9. (60)
s=0 t=—s
87tk - 1 1
R{(r) = < v+ —) —_—
V1—exp(— 27’c/k)y1i[1 K] (2s+1)! (61)

X (Zkr)se‘ikrlFl (;{

+s+1,25+2, 2ikr>

is the radial function and 6; = argI'(1 — £+ s) a phase. Then the transition amplitude from the
initial state i at t — —oo to the final continuum state f at t — +eo may be evaluated at any time ¢; it is

Ag = (@7 ()|} (1)), (62)

where @ (7,t) and @ (7,t) are exact solutions of the present system’s time-dependent

Schrodinger equation subject to the asymptotic conditions
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—

@7 (7, t)tjrwllffk (7, 1), (63)
O (7, 1) — Wi(7T,t). (64)

f— —o0

According to standard scattering theory we obtain the following form of the transition amplitude

Af =

1. x
E tllinjeo <q/f

ty 5]
llo(tz)+ exp (iJHeff(tZ, p)dp + iJHeff(t], p)dp) Uo(tl)
0 0

%> . (65)

The effective Hamiltonian H.¢, appearing above and corresponding to the action of Eq. (35)
has the form (see Eq. (2))

1 _ 1 -
Heyt = H, — i—el(w e TH+pxE 7)) - =P (wv|e T 66
ff N (@)(Bx B x ) — e wvle - 7] (66)

Moreover

U'(t) = et (67)

We set g = y. This appears to be a requirement in order the Hamiltonian to be PT (parity—time

reversal) symmetric. The one-half factor in Eq. (65) appears due to the initial % factor in

Eq. (20) and the identity in Eq. (25). At the times introduced by the delta functions the
propagator Kf(7f, 7; 7;,0)(see below) becomes zero. Moreover the exponential in Eq. (20) is

one as }i_r}gﬁ: land B=7y.

Now to proceed we set t, = —t; =t and take into account the PT invariance of the whole
system as the Hamiltonian Eq. (66) is PT invariant. So we reverse the time sign of the terms

involving the time #; something that equivalently implies for the position ¥ — —7, for the

momentum p — p and for the imaginary unit i — —i. Then we differentiate the operators
between the bra and the ket in Eq. (65), with respect to the variable t. Finally, after certain
standard manipulations and a subsequent integration we obtain the result

Ag = <lpfk |wi>+

¢ . T 0
+JdT<‘I/fk IU°(7)" exp (iJHeff(T, p)dp + iJHe(p)dp> (68)
0 0

).

X (—%el(w)(ﬁx? T HBXE )+ i%ezlz(w)vﬁ : 7|2> u'()
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We have supposed that the duration of the pulse is ¢, as well as that it begins at time zero. Now
in order to proceed we take into account that the asymptotic initial and final states are orthogo-
nal. Further we make use of the path-integral representation of the exponential in Eq. (68) and
angularly decompose it. So on making use of the results of the previous section and solving the
sign problem [8], Eq. (68) becomes

—

C
1 *
= i(e—¢&)T ki~ €M e 2N
Afl = Jd JJdrfdrzrl (ny (Tf)) Kl(rf/ T, 1, O)
0

27w

X (— 7([&){(1)? ST c.c.) + 1,2717@’2 : 7i!2V(T)>Wi(7z‘)-

We have used the prior form of the transition amplitude. K(ls(7f, 7; 7;,0) is given by Eq. (55).
The phase which appears after the solution of the sign problem has cancelled.

As the present theory is PT symmetric we have to use PT symmetric quantum mechanics. So

7 PT 7 *
our equations take their final form according to the fact that (Wfk (7)) = (Wfk (7)) .

Here we want to study two-photon ionization processes. They are of order ¢ or higher. For the
same transitions the vacuum fluctuations term contributes to the same order. So we take it into
account. The amplitude takes the form

—

C
:J Jdrfdrzrl i(e—ei)t <Wfk(7f)>*

1

@/ T’f,T r1,0)<ﬁ)(( ) T +cc) +175f20(rf,7; ri,0)|e - ri|2v(T)>Wi(1’i)-

(70)

/_\

Upon expanding to powers of volume the sign solved propagators appearing in Eq. (70) take
the form

—

Slézl(rf’T ri, 0) = rf—ré Tf—Ti ZZqu S, (Pf qp(‘g”(P)
! q=0p=—q

[W(? : ﬂﬁjdp)((p) +c.c.)} exp [iz?ﬁ?)rfJV(P)dP]

0 0

(71)

and
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St (75,1 71,0) = ;6 =33 Y3 )V 50
fli g=0p=—q
. 2 T
2 Tw ’
y 1+ 2 V dp+ ﬁjdpx(p) + COS&RE <,8JdPX<P)> (72)
0 0

27 (
xexp i rva(p)dp :
0

Finally, we obtain the second-order transition probability

P 1 )
5= ij APdO... (73)

Here we consider the case of an orthogonal pulse of duration C. Then

@(T):{l OSTSC. . (74)

0 otherwise
In Figure 1, we plot the second-order term & as a function of the energy of the injected electron
¢ for C = 100 as and various values of the elliptic polarization parameter & We use

9E-144
8E-144 e e
7E-144 T
6E-144 .

5E-144

4E-14 4

3E-144"
0P/oe -

2E-14 1

1E'14 ) ) ) ) )
0,0 0,2 € 0,4 0,6

Figure 1. Second-order probability S of ionization as a function of the e. We set C =100 as. We give curves corresponding
to & =5 (solid) & = § (dashed) & = 75 (dotted). We use w = 0.4275a.u., f=1and V = 107.
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2w = 0.855 a.u. Within the range 0< ¢ < 7 the larger the ¢ the smaller the transition probability.
& = 7 corresponds to circular polarization. We give another approach of this case in [10]. £ =0
corresponds to linear polarization. In that case the present approach is degenerate. We give
other approaches in [6, 7, 9].

5. Conclusions

In the present chapter we have used path-integral methods in the study of the interaction of
electrons with photonic states. We have integrated the photonic field and then angularly
decomposed the electron—photonic field influence functional. Within those manipulations
there have appeared terms due to the electromagnetic vacuum fluctuations.

As an application we have developed a scattering theory and used it in the two-photon ioniza-
tion of hydrogen. For those transitions, the electromagnetic vacuum fluctuations contribute to
the same order. Moreover to handle the path integrals that appear, we have used the relevant
propagators in their sign solved propagator (SSP) form. The SSP theory appears in Ref. [8].

Concluding the present method is tractable and can be used in many problems involving the
quantum mechanics of one-electron atoms interacting with radiation.
Appendix

In Eq. (49), we have the expression (here we drop the n indices)

Otm

(1) = (=) S exp (i, +3)) [dop oo, )
0

=

Om L m im ! T i
- ﬁ(—z)lz e \/;rjdm\/ﬁfw%(wﬂm(m'w )
0
e (1M
Y F<T+1>
:—mm s zm(pwr
27 =i)e

42T (l_m%> T(m+1)

(75)
141
xF<l+m+1,m L+ 'm+1;|u;2>®(r—|w’|)

2 2 ’

r2 — |w’|2
xP ™ B O(r — [')),

where ©(x) is the step function
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o) 1, x>0 (76)
x) = .
0, x<0
We give the following cases:
/ 1 1 /
Soo(W' 1) = o O(r — [w']), (77)
2 e
r\/1r* — |w|
3 etiPu |w/| 1
/ — e _ /
IO ey Luia —— (- v, (78)
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