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Abstract

The finite element analysis of a mechanical system is conventionally performed in the
context of deterministic inputs. However, uncertainties associatedwithmaterial properties,
geometric dimensions, subjective experiences, boundary conditions, and external loads are
ubiquitous in engineering applications. The most popular techniques to handle these
uncertain parameters are the probabilistic methods, in which uncertainties are modeled as
random variables or stochastic processes based on a large amount of statistical information
on each uncertain parameter. Nevertheless, subjective results could be obtained if insuffi-
cient information unavailable and nonprobabilisticmethods can be alternatively employed,
which has led to elegant procedures for the nonprobabilistic finite element analysis. In this
chapter, each nonprobabilistic finite element analysis method can be decomposed as two
individual parts, i.e., the core algorithm and preprocessing procedure. In this context, four
types of algorithms and two typical preprocessing procedures as well as their effectiveness
were described in detail, based on which novel hybrid algorithms can be conceived for the
specific problems and the future work in this research field can be fostered.

Keywords: interval finite element method, fuzzy finite element method, arithmetic
approach, perturbation approach, sampling approach, optimization approach, subinter-
val technique, surrogate model

1. Introduction

The traditional finite element analysis (FEA) was performed in the context of deterministic

parameters. However, uncertainties associated with material properties, geometric dimen-

sions, and external loads are always unavoidable in engineering. The ability to include uncer-

tainties is of great value for a design engineer. In the last decade, criticism has arisen regarding

the general application of the probabilistic concept. Especially when the statistical information

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



on uncertainties is limited [1], the subjective probabilistic analysis result may be obtained by

the probabilistic method [2, 3], which proves to be of little value and does not justify the high

computational cost [3–5]. Consequently, nonprobabilistic concepts have been introduced.

In this context, interval and fuzzy approaches are gaining more and more momentum for the

uncertainty analysis and optimization of numerical models in their descriptions. In the interval

approach, uncertainties are considered to be contained within a predefined range and only the

lower and upper bounds are necessary for each uncertain parameter. The fuzzy approach further

extends this methodology by the α-level technique, where α stands for the extent that a specific

value is member of the range of possible input values. From this viewpoint, a fuzzy analysis

requires the consecutive solution for a number of interval analysis based on the α-level technique

[6]. For this reason, current researches on nonprobabilistic uncertainty propagation mainly focus

on the solution and implementation of the interval analysis. In the past decades, the interval and

fuzzy concepts in FEA have been studied extensively and some typical solution schemes for the

interval FEA (IFEA) and fuzzy FEA (FFEA) were developed. This chapter is to give an overview

of state-of-the-art numerical implementations of IFEA and FFEA in applied mechanics.

FFEA aims to obtain a fuzzy description of an FEA result, starting from fuzzy descriptions of all

uncertainties. The α-level technique subdivides the membership function range into a number of

discrete α-levels. The α-cuts of the input quantities are defined as xiα ¼ {xi ∈Xi,μ~x
i
ðxiÞ ≥α} where

μ
~xðxÞ is the membership function. This means that an α-cut is the interval resulting from

intersecting the membership function at μ
~x
i
ðxiÞ ¼ α. The α-level interval describes the grade of

membership to the fuzzy set for each element in the domain and enables the representation of a

value that is only to a certain degree member of the set. However, the confidence interval defined

in statistics is the range of likely values for a population parameter, such as the population mean.

The selection of a confidence level for an interval determines the probability that confidence

interval produced will contain the true parameter value. The intersection with the membership

function of the input uncertainties on each α-level results in an interval and IFEA is formulated,

resulting in an interval for the output on the considered α-level. The fuzzy solution is finally

assembled from the resulting intervals on each sublevel. The IFEA is based on the interval

description of uncertainties and its goal is to capture the range of specific output quantities of

interest that corresponds to a given interval description of input uncertainties. For the sake of

simplicity, the static analysis of a mechanical system is adopted in this chapter to explain current

IFEA schemes. The FEA equation can be expressed in a general form as follows:

KðpÞUðpÞ¼ FðpÞ ð1Þ

where K and F stand for the stiffness matrix and load vector, respectively; U represents the

static response vector; and p is the input parameter vector of the mechanical system. In the

IFEA, p is quantified as an interval input vector pI and shown in Figure 1.

where pci is the nominal value, Δpi is the interval radius. Then, the IFEA equation is accordingly

rewritten as follows:

KðpIÞUðpIÞ¼ FðpIÞ ð2Þ

Uncertainty Quantification and Model Calibration50



where the superscript “I” hereinafter represents an interval input. The exact solution set of this

interval equation can be expressed as:

U ¼ UjKðpÞU ¼ FðpÞ, ∀p∈pI
� �

ð3Þ

It is noted that interdependencies among entries of the response vector are introduced due to

sharing the common input vector and a nonconvex polyhedron is always defined [7], which

makes it extremely difficult to obtain the exact solution [5]. However, only individual ranges of

some components in the response vector are of interest for real-life problems. Therefore, by

neglecting the aforementioned interdependencies, the smallest hypercube approximation

denoted as UI around the exact solution set is an alternative object for current IFEA. The kth

component of UI is expressed as follows:

UI
k ¼ UL

k , U
U
k

h i

¼ min
p∈pI

UkðpÞ, max
p∈pI

UkðpÞ

� �

, k ¼ 1, 2,…, N ð4Þ

where superscripts “L” and “U” represent the lower and upper bounds of an interval variable,

respectively; N is the total number of response components of interest. Accordingly, the

smallest hypercube solution of IFEA equation is expressed as:

UI ¼ UI
1 ,U

I
2,…,UI

N

h iT
ð5Þ

where “T” is a transposition operator.

2. Core algorithms

From published literatures, four types of algorithms for IFEA have been well established. Most

of the current schemes are formulated based on these core algorithms.

Figure 1. The diagram of interval variable p.
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2.1. Arithmetic approach

The key point of arithmetic approach is to translate the complete deterministic numerical FE

procedure to an interval procedure using the arithmetic operations. Each substep of the

interval algorithm calculates the range of the intermediate subfunction instead of the deter-

ministic result. Based on this principle, the interval bounds of the output can be obtained.

The original solution procedure for IFEA is the interval arithmetic approaches [7–10], in

which all basic deterministic algebraic operations are replaced by their interval arithmetic

counterparts.

The major advantage of the arithmetic approach is its simplicity. However, the major

drawback of this method is its repeated vulnerability to conservatism. It is shown that

these methods suffer considerably from the overestimation effect, also referred to as the

dependency problem, and for the real-life problems, the resulting overestimation may

render the final result totally useless [5]. A simple example is shown as follows. Consider

the function

f ðxÞ ¼ x2 � xþ 1 ð6Þ

applied on the interval x ¼ ½0, 1�. Applying arithmetic approach, both terms are assumed

independently. This leads to the interval solution f ðxÞ ¼ ½0, 2�. However, the exact range of the

function equals f ðxÞ ¼ 3
4 , 1
� �

. That is to say, an arithmetic interval operation introduces conser-

vatism in its result if neglecting the correlation that exists between the operands. Besides, the

integration of interval arithmetic approaches with software for FEA is also a challenge in real

applications.

2.2. Perturbation approach

The perturbation approach has been widely applied in structural response analyses and other

applications. Compared to arithmetic approaches, perturbation methods are more popular

due to its simplicity and efficiency in IFEA and can be available in the original, improved,

and modified versions.

2.2.1. Original version

The first-order Taylor expansions of the interval stiffness matrix and load vector at the nominal

(mid-) values of interval parameters were firstly obtained as:

KðpIÞ ¼ KðpcÞ þ
X

n

i¼1

∂KðpcÞ

∂pi
ΔpIi ¼ Kc þ ΔKI

FðpIÞ ¼ FðpcÞ þ
X

n

i¼1

∂FðpcÞ

∂pi
ΔpIi ¼ Fc þ ΔFI

ð7Þ

where pc is the nominal (mid-) value of the interval input vector and ΔpIi ¼ ½�Δpi,Δpi� is the

interval radius of the ith interval parameter, i.e.,
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pc ¼ ðpU þ pLÞ=2 ¼ ½pc1,p
c
2,…,pcn�

T

Δp ¼ ðpU � pLÞ=2 ¼ ½Δp1 ,Δp2,…,Δpn�
T

ð8Þ

And the interval radiuses of the stiffness matrix and load vector in Eq. (7) are expressed as

follows, respectively.

ΔKI ¼
X

n

i¼1

∂KðpcÞ

∂pi
ΔpIi ¼ ½�ΔK,ΔK�

ΔFI ¼
X

n

i¼1

∂FðpcÞ

∂pi
ΔpIi ¼ ½�ΔF,ΔF�

ð9Þ

The FEA model for the perturbed system can be rewritten as follows:

ðKc þ ΔKIÞðUc þ ΔUIÞ ¼ Fc þ ΔFI ð10Þ

By expanding Eq. (10) and neglecting the second-order perturbed term, the following equa-

tions can be obtained.

Uc ¼ ðKcÞ�1Fc

Kc
ΔUI ¼ ΔFI � ΔKIðKcÞ�1Fc

ð11Þ

Substituting Eq. (10) into Eq. (11) yields the interval radius of the response vector as:

ΔUI ¼ ðKcÞ�1
X

n

i¼1

∂FðpcÞ

∂pi
ΔpIi � ðKcÞ�1

X

n

i¼1

∂KðpcÞ

∂pi
ΔpIiðK

cÞ�1
Fc ð12Þ

And the radius vector of the response vector is estimated in the original interval perturbation

method [11] as follows:

ΔU ¼
X

n

i¼1

ðKcÞ�1

�

�

�

�

�

�

�

�

�

�

∂FðpcÞ

∂pi

�

�

�

�

�

�

�

�

�

�

þ ðKcÞ�1

�

�

�

�

�

�

�

�

�

�

∂KðpcÞ

∂pi

�

�

�

�

�

�

�

�

�

�

ðKcÞ�1

�

�

�

�

�

�

�

�

�

�

Fc

�

�

�

�

�

�

�

�

�

�

 !

Δpi ð13Þ

The smallest hypercube solution can thus be determined as:

UI ¼ ½Uc � ΔU,Uc þ ΔU� ð14Þ

The major drawback of this method is that a significant overestimation is introduced by the

original interval perturbation method, indicating that it applies to the interval analysis of

problems with “small” interval parameters.

2.2.2. Improved version

The most typical improved interval perturbation method was proposed in Ref. [12], in which

the radius vector of the response vector was calculated as follows:
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ΔU ¼
X

n

i¼1

ðKcÞ�1 ∂Fðp
cÞ

∂pi
� ðKcÞ�1 ∂KðpcÞ

∂pi
ðKcÞ�1

Fc

�

�

�

�

�

�

�

�

�

�

Δpi ð15Þ

Accordingly, the smallest hypercube solution of IFEA can also be determined by Eq. (14).

Although with better accuracy compared to the original one, an interval translation effect, i.e.,

the translation of the resulting interval w.r.t. the accurate one, is always introduced by the

improved interval perturbation method.

2.2.3. Modified versions

Compared with the original version of the perturbation approach where only first-order terms

are considered, the main aspect of the following two modified interval perturbation methods

[13, 14] is that the interval bounds are calculated by retaining part of higher order terms in

Neumann series. Therefore, the modified methods can obtain more accurate response bounds.

The key expressions are summarized as follows:

Uc ¼ ðKcÞ�1 Iþ
X

n

i¼1

Ec
i

" #

Fc

ΔUI ¼
X

n

k¼1

ðKcÞ�1
Iþ

X

n

i¼1

Ec
i

" #

∂FðpcÞ

∂pk

( )

ΔpIk þ
X

n

i¼1

ðKcÞ�1
ΔEI

iF
c

ð16Þ

where

Ec
i ¼

	

ðIþ ΔpiKiÞ
�1 þ ðI� ΔpiKiÞ

�1 � 2I



=2

ΔEi ¼ ðIþ ΔpiKiÞ
�1 � ðI� ΔpiKiÞ

�1

�

�

�

�

�

�

�

�

�

�

=2
ð17Þ

and

Ki ¼
∂KðpcÞ

∂pi
ðKcÞ�1 ð18Þ

Different estimations of the radius vector of the response vector were, respectively, obtained as

follows:

ΔU¼
X

n

k¼1

ðKcÞ�1
Iþ

X

n

i¼1

Ec
i

" #

∂FðpcÞ

∂pk

( )

Δpk þ
X

n

i¼1

ðKcÞ�1
ΔEiF

c

�

�

�

�

�

�

�

�

�

�

ð19Þ

ΔU¼
X

n

k¼1

ðKcÞ�1
Iþ

X

n

i¼1

Ec
i

" #

∂FðpcÞ

∂pk

�

�

�

�

�

�

�

�

�

�

Δpk þ
X

n

i¼1

ðKcÞ�1
ΔEiF

c

�

�

�

�

�

�

�

�

�

�

ð20Þ
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It should be pointed out that significant unpredicted estimation is always introduced by

Eqs. (19) and (20). A more reasonable estimation of the radius vector of the response vector is

simultaneously determined herein as follows:

ΔU¼
X

n

k¼1

ðKcÞ�1 Iþ
X

n

i¼1

Ec
i

" #

∂FðpcÞ

∂pk

�

�

�

�

�

�

�

�

�

�

Δpk þ
X

n

i¼1

ðKcÞ�1

�

�

�

�

�

�

�

�

�

�

ΔEi F
c

�

�

�

�

�

�

�

�

�

�

ð21Þ

And a slight conservatism is alternatively resulted in by Eq. (21). The smallest hypercube solution

for the IFEA is finally determined as Eq. (14). It is worth mentioning that the spectral radius of

ðKcÞ�1
ΔK increases with the increase in ΔKI. ðKc þ ΔKÞ�1 can be expanded with a Neumann

series if and only if kðKcÞ�1
ΔKk is less than 1 based on the criteria of convergence for a Neumann

series. Therefore, thesemethods applies to the interval analysis of nonlinear problemswith “small”

interval parameters and the accuracy for those with “large” interval inputs can be improved by the

subinterval technique in Section 3.1. Furthermore, the integration of all interval perturbation

methods with current FEA software for the system simulation remains a great challenge.

2.3. Sampling approach

2.3.1. Vertex method

The vertex method was originally developed in Ref. [15], which can be viewed as a sampling

technique with vertices being input samples of the FEA model. This method has been popular

for the implementation of IFEA [16–21] due to its main aspect of simple formulation and the

black-box property. If the behavior of the target response w.r.t. uncertain parameters can be

guaranteed to be monotonic, the vertex method firstly proposed in Ref. [15] yields the exact

solution. It should be pointed out that the concept of monotonicity in this section means

monotonic along all principal directions where only one parameter is changing at a time.

However, it is very hard—if not impossible —to prove the property of monotonicity in a

general way, e.g., in the application of structural dynamics [22]. The number of FEA runs

necessary for the vertex method is given as:

N ¼ 2n ð22Þ

where n is the number of interval parameters. It is noted that the computational cost for the

vertex method exponentially increases w.r.t. the number of interval parameters, which results

in a dimensionality curse.

2.3.2. Transformation method

To promote the accuracy of the vertex method for nonmonotonic problems, transformation

methods for the epistemic uncertainty propagation were developed. Its original version was

firstly proposed in literature [23]. This method is based on the α-level strategy and on each

α-level the interval problem is defined. The interval solution strategy then consists of a dedi-

cated sampling strategy in the space spanned by α-cut of fuzzy parameters. This method is

available in a general, a reduced, and an extended form, with the most appropriate form to be
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selected depending on the type of model to be evaluated [23, 24]. If the behavior of the target

response w.r.t. uncertain parameters can be guaranteed to be monotonic, the reduced transfor-

mation method yields the exact solution. If it shows nonmonotonic behavior, instead, the

extended transformation method can be applied, in which more observation points were

added in a well-directed way to the search domain after rating the monotonicity of the

response w.r.t. different uncertain parameters on the basis of a classification criterion [24].

The computational cost of the transformation method is governed by the number of FEA runs

N to be performed. In the case of the general transformation method, this number is given as:

N ¼
Xmþ1

k¼1

k
n ð23Þ

where m is the number of discrete α-levels and n is the number of fuzzy parameters. It is noted

that the number of FEA runs grows exponentially w.r.t. the number of fuzzy inputs, which

makes the general transformation method computational tedious for high-dimensional prob-

lems. The main aspect of the transformation method, its characteristic property of reducing

fuzzy arithmetic to multiple crisp-number operations entails that this method can be

implemented without major problems into an existing software environment for system simu-

lation. Expensive rewriting of the program codes is not required [25]. Some of the most recent

applications can be found in Refs. [25–32]. Besides, a program named as FAMOUS (fuzzy

arithmetical modeling of uncertain systems) has been developed [25], which provides an

interface to commercial software environments. Primarily developed in Matlab environment,

FAMOUS actually works as a standalone application on both Windows and Linux platforms.

2.4. Optimization approach

In essence, calculating the solution set expressed in Eq. (3) is equivalent to performing a global

optimization, aimed at the minimization and maximization of the components of the deter-

ministic analysis results {U}. The lower and upper bounds of the output of a classical FEA

model are determined by the optimization approach through a search algorithm within the

domain spanned by the interval parameters. If the global minimum and maximum of the

analysis result are found by the search algorithm, it returns the smallest hypercube solution

around the exact one. The optimization is performed independently on each element of the

response vector. Furthermore, as the behavior of the target response w.r.t. uncertain parame-

ters is rather unpredictable, the computational cost of the optimization approach in general is

strongly problem-dependent. It is noted that the optimization approach is immune to the

excessive conservatism for the interval arithmetic approaches because the optimization strat-

egy approaches the smallest hypercube solution from its inside, which means that it does not

guarantee conservatism until the actual bounds are captured. Additionally, the smooth behav-

ior of the target response w.r.t. uncertain parameters facilitates the search for the global

extrema over the space spanned by uncertain parameters. The directional search-based algo-

rithm [16, 33, 34], linear programming [35], and genetic algorithm [36] were utilized to formu-

late the procedure of IFEA or FFEA. More applications can be found in [37–39]. It is worth
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mentioning that the optimization approach and Monte Carlo simulation can be adopted to

verify the accuracy of other schemes for IFEA and FFEA.

3. Preprocessing procedures

Except for the aforementioned core algorithms for IFEA/FFEA, two types of preprocessing

procedures are always adopted to improve either the accuracy or efficiency.

3.1. Subinterval technique

For the accuracy improvement, the subinterval technique w.r.t. interval inputs is developed

[11, 40] and can be integrated with the interval arithmetic and perturbation approaches. The

main aspect of the subinterval technique is the ability to relax requirements of “small” or

“narrow” interval inputs for nonlinear responses. However, there remain two challenges as

follows:

1. Convergence validation. Similar to the prior determination of the sample size of MC in the

probabilistic analysis, the subinterval number for each interval parameter should be first

determined to guarantee the convergence of the analysis result.

2. Efficiency sacrifice. An exponential increase of the computational cost is introduced as

increasing the subinterval number to guarantee the convergence of the analysis result.

For example, the computational cost increases by mn times where n is the number of

parameters and m is the number of subintervals for each interval parameter. Thus, the

most dominant advantage in efficiency for the interval arithmetic and perturbation

approaches over other interval algorithms is significantly sacrificed.

3.2. Surrogate model

To enhance the efficiency of IFEA and FFEA, many surrogate models of the real numerical

model are always adopted when dealing with engineering design problems often involving

large-scale FEA models. The main aspect of the surrogate model is to avoid the large amount

of computational time. Apart from the conventional surrogate models always used in the

optimization procedure of IFEA and FFEA, e.g. response surface models [41, 42], Kriging

models [43–45], radial basis function models [46–48] and sparse grid meta-models [49–51],

those for the sampling and optimization approaches including the high dimensional model

representation (HDMR) and the component mode synthesis (CMS) are gaining momentum in

recent years. CMS was originally introduced in Ref. [52], in which a Ritz-type transformation

to each individual component of a structure was adopted. The deformation of each component

is approximated using a limited number of component modes. For each of these vectors, only a

single degree of freedom (DOF) was retained in the reduced component model, yielding a

large reduction in DOF for each component and the entire structure. Thus, the computational

cost for the FEA is drastically reduced. From this viewpoint, CMS can also be seen as a special

surrogate model of the expensive numerical FEA for the improvement in the computational
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efficiency. The repeated FEAs required in the context of IFEA can benefit from this computa-

tional time reduction obtained by CMS.

4. Hybrid algorithms

Numerous schemes for IFEA and FFEA have been developed based on the core algorithms

and preprocessing procedure, which can be classified into the following three cases.

4.1. Subinterval-based hybrid algorithms

Divide the large interval parameter pIiði ¼ 1, 2,…, nÞ into Ni subintervals and its rith subinter-

val can be expressed as follow:

ðpIiÞri ¼ pLi þ
2ðri � 1ÞΔpi

Ni
, pLi þ

2riΔpi
Ni

� �

, ri ¼ 1, 2,…, Ni ð24Þ

The number of subintervals for each interval parameter may be different. Nsub combinations

can be produced by taking a subinterval out of each interval parameter.

Nsub ¼
Y

n

i¼1

Ni ð25Þ

For each subinterval combination, the IFEA model can be rewritten as:

KðpI
r1r2…rn

ÞUðpI
r1r2…rn

Þ¼FðpI
r1r2…rn

Þ, ri ¼ 1, 2,…, Ni; i ¼ 1, 2,…, n ð26Þ

where pI
r1r2…rn

stands for a subinterval combination and is composed of the r1th subinterval of

the first interval parameter, the r2th subinterval of the second one and up to the rnth subinter-

val of the nth one. In a conclusion, Eq. (26) stands for Nsub subinterval IFEA equations. For

each subinterval IFEA equation, the response vector can be obtained by using core algorithms

in Section 2, e.g., interval arithmetic approaches, perturbation approaches, and vertex method.

For two adjacent subinterval vector pI
r1…rr…rn

and pI
r1…rrþ1…rn

, the following formulae hold true,

i.e.,

KðpI
r1…rr…rn

Þ ∩KðpI
r1…rrþ1…rn

Þ ¼ KðpIr1 ,…, pUrr ¼ pLrr ,…, pInÞ ð27Þ

FðpI
r1…rr…rn

Þ ∩ FðpI
r1…rrþ1…rn

Þ ¼ FðpIr1 ,…, pUrr ¼ pLrr ,…, pInÞ ð28Þ

where pUrr and pLrr are the upper bound of pIrr and lower bound of pLrrþ1, respectively. Thus, the

intersection of UðpI
r1…rr…rn

Þ and UðpI
r1…rrþ1…rn

Þ does not equal to an empty set, i.e.,

UðpI
r1…rr…rn

Þ ∩UðpI
r1…rrþ1…rn

Þ 6¼ ∅ ð29Þ
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It is shown from Eq. (29) that the interval response vectors for each subinterval combination

are simply connected. Therefore, the interval response vector can be obtained as follows by

using the interval union operation.

UðpIÞ ¼ ⋃
ri ¼ 1, 2,…, Ni

i ¼ 1, 2,…, n

UðpI
r1r2…ri…rn

Þ ¼

min
ri¼1, 2,…,Ni

	

UðpI
r1r2…ri…rn

Þ



, max
ri¼1, 2,…,Ni

	

UðpI
r1r2…ri…rn

Þ



� � ð30Þ

The above subinterval method is shown in Figure 2with 50 subintervals when considering one

uncertain parameter x.

The interval arithmetic approach, subinterval technique and Taylor series expansion were

integrated [40]. More applications can be found in [13, 53, 54].

4.2. Surrogate model-based hybrid algorithms

Taylor series expansion was integrated with the interval arithmetic approach in [40] and a

method named as Taylor expansion with extrema management was proposed by integrating

the higher order Taylor series expansion and the optimization approach [55] to detect possible

nonmonotonic influences.

The transformation method was integrated with HDMR in Ref. [25]. And a component mode

transformation method was developed [56] by combing the CMS with the transformation

method to provide a significant reduction of the computational cost for large mechanical prob-

lems with uncertain parameters. Besides, a hybrid method was proposed for the interval fre-

quency response analysis by integrating the optimization and interval arithmetic approach in

[57], which was further integrated with CMS in Ref. [22]. An acceptable computational cost and a

limited amount of conservatism in the analysis result were achieved by these hybrid algorithms.

Figure 2. The diagram of subinterval method.
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4.3. Hybrid core algorithms

The aforementioned core algorithms can be combined together to achieve a better tradeoff

between the accuracy and efficiency, e.g., frameworks [22, 57–60] formulated by the global

optimization methods and interval arithmetic ones.

To improve the computational efficiency, any core algorithm in Section 2 can be integrated

with reanalysis method [61], which is fundamentally an intrusive FEA. It is noted that the

major computational cost of IFEA consists of repeated solutions of the deterministic FEA

systems while the main goal of the re-analysis method is to accelerate this conventional FEA

solution process. It is shown that the application of the re-analysis method in the context of

IFEA can reduce the computational cost by one order of magnitude compared to those based

on the conventional FEA strategy [5].

5. Conclusions

This chapter presents the state-of-the-art and recent advances in nonprobabilistic finite element

analyses. The main advantages and shortcomings of each nonprobabilistic finite element

analysis method are discussed.

The arithmetic approach is the most straightforward strategy for nonprobabilistic finite ele-

ment analyses. However, this chapter further shows that the interval arithmetic implementa-

tion of the finite element procedure is conservative. Therefore, the development of an adequate

methodology for solving the uncertain parameter dependency problem is still the main chal-

lenge in the domain of arithmetic approach. The perturbation approach has been widely used

in structural response analyses and other applications due to its simplicity and efficiency. The

accuracy of the original perturbation methods can be improved by retaining part of higher

order terms in Neumann series or Taylor series as shown in the improved and modified

versions. The sampling approach like vertex method yields the exact solution under the

condition that the behavior of the target response w.r.t. uncertain parameters can be

guaranteed to be monotonic and has been popular for the implementation of IFEA due to its

main aspect of simple formulation and the black-box property. However, when tackling the

nonmonotonic problems, the extended transformation methods should be applied by adding

more observation points in a well-directed way. The optimization approach is more and more

acknowledged as standard procedure in an interval finite element context except for the high

computational cost.

Moreover, in this context, two typical preprocessing procedures, e.g., subinterval technique

and surrogate model to improve either the accuracy or efficiency are described in detail.

Additionally, novel hybrid algorithms, including subinterval-based hybrid algorithms, surro-

gate model-based hybrid algorithms and hybrid core algorithms can be conceived by combin-

ing the aforementioned core algorithms and preprocessing procedures to achieve a better

tradeoff between the accuracy and efficiency for the specific problems and the future work in

this research field can be fostered.
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