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Abstract

Septic encephalopathy is a devastating symptom of severe sepsis. Many studies have 
been performed to uncover the pathophysiological mechanisms of septic encephalopathy; 
however, novel technical approaches are still required to overcome this complex symptom. 
Because patients are suffering from severe cognitive impairment, coma, or delirium, 
which burden not only patients but also caregivers, overcoming septic encephalopathy is 
still a major social problem worldwide, especially in the intensive care. Septic encepha‐
lopathy seems to be caused by cytokine invasion and/or oxidative stress into the brain, 
and this pathological state leads to imbalance of neurotransmitters. In addition to this 
pathophysiology, septic encephalopathy causes complicated symptoms (e.g., ischemic 
stroke, edema, and aberrant sensory function). For these pathophysiological mecha‐
nisms, electrophysiology using animal models, positron emission tomography (PET), 
computed tomography, and magnetic resonance imaging for septic patients has provided 
important clues. However, the research for septic encephalopathy is currently confronted 
with the difficulty of complex symptoms. To overcome this situation, in this chapter, 
we introduce our novel methods for in vivo imaging of septic encephalopathy using 
near infrared (NIR) nanoparticles, quantum dots. In addition to our recent progress, we 
 propose a strategy for the future approach to in vivo imaging of septic encephalopathy.

Keywords: septic encephalopathy, molecular mechanism, in vivo imaging, quantum 
dots, disseminated intravascular coagulation

1. Introduction

Although the pathophysiological mechanism of septic encephalopathy (SE) still includes 

some mystery, recent progress of challenging research using animal models of sepsis has 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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gradually uncovered the molecular pathogenesis of SE. For instance, recent pathophysiologi‐

cal findings for SE include synaptic deficiency by interleukin‐1 beta [1] and acetylcholine [2] 

and brain ischemia or edema with disseminated intravascular coagulation (DIC) [3]. These 

phenomena are dynamically altered in a time‐dependent manner based on the content of 

 symptoms. Functional magnetic resonance imaging (fMRI) for patients of SE can describe 
the status of symptoms; however, it is difficult to track these time‐dependent changes in the 
septic brain because of the low time resolution of its measurement. To overcome this technical 

difficulty, we are working to develop noninvasive near infrared (NIR) imaging as a novel 
method to analyze the pathological state of SE.

In this chapter, we introduce current understanding of pathophysiology, the imaging 
technology, and the application of novel imaging technology to visualize the pathophysi‐

ological mechanism of SE. The contents are described as follows: (1) etiology of SE, (2) 
molecular mechanisms of pathogenesis, (3) NIR in vivo imaging, and (4) application to SE. 
In particular, we focus on DIC and our approach firstly demonstrates the novel application 
of NIR in vivo imaging to DIC. We expect that this review will be helpful to readers such 
as basic biomedical students, and scientists who are interested in the future preclinical and 

clinical application to SE.

2. Septic encephalopathy (SE)

Septic encephalopathy (SE) is a symptom with brain dysfunction caused by sepsis. Up to 70% 

of severe septic patients encountered developed SE [4]. Patients with SE are often  suffering 
from various neurological symptoms. Many research reports and reviews have discussed 

cognitive impairment [5, 6], delirium [7], coma [8–11], and recently seizure and aberrant sen‐

sory function [12–16]. In addition, complication symptoms such as ischemic stroke, edema, 
etc. occurred [17–19]. However, not all of pathophysiological mechanisms for SE have been 

clarified in Ref. [20], and a better understanding of SE is still an important social problem 
worldwide [21].

2.1. Etiology

The SE is often found in acute liver failure and cirrhosis patients and triggered by the various 

chemical mediators followed by systemic inflammatory response syndromes, whole‐body 
inflammation [22–24]. SE is different from the brain “encephalitis” which occurs due to patho‐

gens (e.g., bacteria, virus, etc.) direct invasion into the brain. Rather than the direct invasion, 
SE is caused indirectly by excessive inflammatory response (e.g., cytokine storm). Thus, SE 
is a symptom. Clinical studies for SE reported that patients with SE often suffered from 
hypotension [25], imbalance of amino acids in plasma [26], and neuronal injury with edema 

[27, 28]. Several lines of evidences suggest that a rodent model of SE showed aberrant behavior: 
altered sensory function [29, 30], increased anxiety [31, 32], and cognitive impairment [33]. 

These results are similar to the symptoms of brain dysfunction in SE patients [34]. Thus, 

neurological impairment leads to various symptoms in SE.
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3. Molecular mechanisms

3.1. Pathogenesis

To understand the molecular mechanisms, pathophysiological factors (e.g., imbalance of 

chemical substances, cellular environment, and molecules) are discussed. Overall pathogen‐

esis for SE is summarized in Figure 1. When SE is occurred, various chemical substances 
(e.g., neurotransmitter, modulator, etc.) were involved as reviewed elsewhere in Refs. [35, 36]. 

These chemical substances were mainly important for maintaining homeostasis in the normal 

condition. After the SE occurred, the imbalanced rate of substances (e.g., amino acids) [37–41] 

abrogated brain metabolic function (e.g., tryptophan metabolism) [42–44], microglial activa‐

tion in the brain followed by detachment of pericyte from microvascular basal lamina [45, 46].

Normally, the brain is protected with a barrier called blood brain barrier (BBB). The barrier 

consists of brain endothelial cells, and these cells are tightly attached with tight junction. The 
barrier is selectively permeable to transport of amino acid, gas, and lipid‐soluble chemicals 

which are important for neuronal function. Therefore, the inflammatory molecules cannot 
affect brain function in the normal condition because the brain is protected with blood brain 
barrier, and foreign substances are impeded by this barrier.

Figure 1. Overview of pathogenesis for septic encephalopathy (SE). Severe sepsis often results in septic encephalopathy, 

mainly followed by oxidative stress and cytokine storm. Accompanying BBB impairment and DIC, invaded 
inflammatory mediators cause aberrant neuronal function. PAMPs: pathogen‐associated molecular pattern; DAMPs: 
damage‐associated molecular patterns; BBB: blood brain barrier; IL: interleukin; TNF: tumor necrosis factor.
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In the septic condition, occurrence of systemic inflammatory response syndromes is followed 
by sepsis, the syndromes lead to destruction of this blood brain barrier [47, 48], and harmful 

chemical substances disrupt normal brain function. Then, the chemical substances cause 

the aberrant neuronal transmission and plasticity [1, 30]. The components of tight junctions 

are claudin, occludin, zona occludin, etc. [49]. This tight junction serves as if an adhesive 

of cells and underpins the blood brain barriers. Using a mouse model of sepsis, we clearly 

demonstrated that the occludin protein was destroyed 20 h after induction of sepsis and led 
to a permeabilization of cytokine [1, 30]. Other groups reported that tumor necrosis factor 

(TNF)‐alpha and calcium‐binding proteins were increased in the SE [50].

3.2. Blood brain barrier (BBB) impairment

Why was the tight junction disrupted? Overall mechanisms are still unclear, a hypothesis 
is, however, addressed. Neuroinflammation (e.g., microglia/macrophage activation, nitrogen 
oxide gas production) resulted in the mitochondria dysfunction with reactive oxygen syn‐

thesis (ROS) [51–55] and dysfunction of cerebrovascular endothelial cells [56]. The process is 

impeded by ROS inhibitors [57] or mitochondria‐targeted peptides [55].

Another hypothesis is as follows. Septic patients sometimes showed a rapid vasoconstriction 

of blood vessels, and this mechanical alteration may cause the damage to the microvascu‐

lature structure [58, 59]. Endothelin and its receptor which constrict blood vessels might be 

involved in that process [60, 61]. Phosphoinositide 3‐kinase cascade activated microglial cell 

and matrix metalloproteinase (i.e., marker of inflammation) and aggravated BBB impairment 
[62]. Consequently, the BBB disruption finally leads to the invasion of inflammatory mediators 
into the brain of SE [63].

3.3. Effect of cytokine storm on brain function

In any case, the dysfunction of blood brain barrier after sepsis increases the permeability of 
inflammatory molecules as described below and finally causes the brain malfunction.

For example, there are widely discussed cytokines such as interleukins (interleukin‐1, ‐6, ‐10) 
[37, 64], tumor necrosis factor (TNF)‐alpha [65, 66], complement C5a [67], and cascade [68]. 

Epigenetic modulation (e.g., histone acetylation) participates in the trigger of aberrant glu‐

tamate receptor subunits [29, 69] and causes memory deficit [70]. In addition, disseminated 
blood coagulation [71, 72] and oxidative stress [73–75] aggravated brain dysfunction of SE. 

MicroRNA (i.e., noncoding small RNA) involved in RNA silencing and posttranscriptional 
modification [76]. Besides nitric oxide (NO), lipid peroxidase, S100B protein [77], and the 

prion protein [78] may participate in SE.

3.4. Imbalance of synaptic transmissions on neurons

As a morphological study revealed that the neuronal spine was destabilized in a mouse model 

[79], neuronal environment may possibly be altered in SE. Actually, for other potent factors 

related to neurotransmission, norepinephrine [80], adrenergic system [81, 82], serotonergic 
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system [83], acetylcholine [84–86], gamma‐aminobutyric receptor A [87], N‐methyl‐D‐aspartate 

receptor 2B [29], and brain neurovascular dysfunction [88] were involved in the pathogenesis 

of SE. In summary, sepsis leads to the aberrant conditions in the neuronal and/or glial envi‐
ronments and may result in the devastating symptoms in the pathogenesis of SE.

4. Brain activity measurements: from electrophysiology to imaging

4.1. Electrophysiology

Neurophysiological studies have uncovered the neuronal dysfunction in SE. Neurophysiologists 

have developed various experimental techniques to study neuronal cell activity. Neuronal 

activities recordings can be classified as follows: (1) single neuronal activity and (2) multiple 
neuronal activity. To record the single neuronal activity, there are techniques such as patch 

clamp recording and intracellular recording.

On the other hand, to record multiple neuronal activity, there are several established 

 techniques. For example, there are field excitatory postsynaptic potentials (in vitro), local 
field potential (in vivo), and optical recording with voltage sensitive dye (in vitro and in 
vivo). For example, Kafa et al. reported reduced neuronal population activities in a rat 

model of SE [89], and Wang et al. also showed suppression of local field potentials dur‐

ing sensory stimulation in SE [30]. These findings are clearly similar to the clinical state of 
sensory dysfunction in septic patients [90]. It is useful to uncover the pathophysiological 
mechanism. These techniques are very powerful for studying the single neuron or sev‐

eral neurons in the local region of the brain. However, symptoms of SE are versatile with 

 complicated diseases (e.g., stroke, edema, myopathy, etc.) [35, 91, 92]. Integrative analysis 
with multiple viewpoints is still required [93].

4.2. Brain imaging

Noninvasive measurement was sought to determine the pathological state and followed by 

prognosis of SE [94]. Several research reports suggest that electroencephalogram (EEG) that 

placed to the surface of head was useful to study brain dysfunction by various encephalitis and 

encephalopathy [95, 96]. In SE, for example, the EEG recordings revealed decreased amplitudes 
of EEG signals [97]. Using a rat model, EEG signals were attenuated [83]. In addition, child 
patient with coma showed 6‐Hz burst firing pattern in SE [98]. Hence, EEG abnormality was 

found in the SE [99].

Why have these altered activity patterns due to brain dysfunction occurred? Functional 
 magnetic resonance imaging (fMRI) has been used to capture the pathological state of brain 
cortex in SE [100]. Clinically, patients of SE showed cerebral infarction with multiple ischemic 
stroke and white matter lesions [13, 101]. Additionally, cerebral edema was reported [102]. 

Recently, brain atrophy within the regions including amygdala, hippocampus, basal gan‐

glia, brainstem, thalamic, and cerebellar neurons was also shown in Ref. [103, 104]. Hence, 
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complicated symptoms, if they represent irreversible morphological alteration, have been 

found with fMRI. In addition to fMRI, positron emission tomography (PET) using 18  
F‐FDG was applied [105]; however, the application was limited. Conversely, reversible 
and time‐dependent altered symptoms (e.g., neuronal transmission) cannot be determined 

with fMRI imaging (and PET) [106]. Because fMRI takes 10–30 min or more to capture 
a brain image with the high spatial resolution, it only determines the stable state of the 

pathology for SE. To overcome this weak point, we are currently focused on the noninva‐

sive NIR imaging.

5. Near infrared (NIR) in vivo imaging

5.1. Probes

NIR imaging is a powerful tool for noninvasive in vivo imaging. Conventionally, visible light 
(400–700 nm) has been used for molecular fluorescent imaging in cellular dynamics [107, 108]. 

However, visible light is difficult to apply to deep‐tissue imaging because of the robust 
light absorption and scattering by intrinsic chromophores (hemoglobin, melanin, flavin, etc.) 
and organelles (mitochondria and cytoskeleton). Autofluorescence from tissues (heart, skin, and 
brain) which is excited by NIR light (700–1400 nm) is much lower than that by excited vis‐

ible light [109]. In addition, NIR light permeates tissues more than visible light (400–700 nm) 
(Figure 2). Therefore, the NIR light, especially 2nd optical window (1000–1400 nm), is currently 
expected to be applicable to noninvasive deep tissue imaging.

To label the target tissue, fluorescent probes are necessary. Compared to the visible light 
probes, NIR fluorescence probes are limited. For example, single‐walled carbon nanotubes 
(SWNTs), Ag

2
S quantum dots, PbS quantum dots, and rare‐earth‐doped nanocomposites are 

developed for 2nd optical windows for in vivo imaging (reviewed in Ref. [110]). We previously 

Figure 2. (a) Autofluorescence spectra of the dorsal side of a mouse body. The autofluorescence spectra were taken by 
excitation of 482, 670, and 785 nm. The dotted and solid arrows show the wavelength rage of 1st NIR optical window 
(I) and 2nd NIR optical window (II), respectively. (b) Absorption spectra of tissue slices of mouse skin, brain, and heart. 
Slice thickness of the skin, brain, and heart is 120, 100, and 200 μm, respectively. (Citation from Ref. [110]).
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compared these fluorescence probes in the same condition and found that PbS quantum dots 
were much brighter than other probes (Figure 3).

5.2. In vivo imaging

We applied PbS quantum dots (maximum fluorescence intensity: 1100 nm) from mouse tail 
vein and successfully recorded blood flow in the mouse head in a noninvasive manner [71] 

(Figure 4). The head of an anesthetized mouse was fixed on a stage of a microscope, and 
fluorescence was recorded through skin and skull (Figure 4a). The fluorescent intensity was 
recorded with InGaAs camera which is sensitive from 900–1600 nm. Soon after injection, brain 
blood vessels were visible on a mouse head (Figure 4b, right), and the picture was entirely 

similar to the image of blood vessels after scalp removal (Figure 4c, upper) and isolated brain 

(Figure 4c, lower). These findings suggest that the NIR in vivo imaging can visualize the brain 
blood flow non‐invasively. If we would like to apply this method to the pathophysiology of 
SE, what is the target?

Brain blood vessels are aggravated in SE. Previous reports addressed that, using an animal 

model, cerebral microcirculation was reported to be impaired [111]. Disseminated intravas‐

cular coagulation (DIC) is an important pathological state of sepsis and worsening of DIC 
increases multiple organ dysfunction. Anticoagulant therapy was performed, however, its 

effect was limited. Repetitive administration of anticoagulant drug increases the rate of 
side effects such as thrombocytopenia [112] and bleeding [113]. To find the pathological state 
of DIC, we examined whether NIR in vivo imaging detect DIC in the septic brain as described 
in the next section.

Figure 3. (a) Fluorescence spectra of nanomaterials that emit in the 2nd NIR window: SWNT, Ag
2
S QD, and PbS QD. 

(b) Bright field and fluorescence images (>1000 nm) of SWNT, Ag
2
S QD, and PbS QD. To compare the fluorescence 

brightness, absorbance at the excitation wavelength (720 nm) was adjusted to be the same value of 0.5 for SWNT, Ag
2
S 

QD, and PbS QD. (Citation from Ref. [110]).
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6. Application of NIR in vivo imaging to pathological analyses for septic 
encephalopathy

Next, we applied the NIR in vivo imaging to SE brain. To examine this, we studied whether 
DIC can be recorded with NIR imaging. Figure 5 demonstrated lipopolysaccharide (LPS)‐
induced DIC. Eighteen hours after LPS, clots (arrowheads) can be recorded noninvasively 

(Figure 5b, middle). In the isolated brain, the number of clots remarkably increased in the SE 
brain (Figure 6). Conversely, the increased clots were similar to the control level in the presence 
of heparin (i.e., inhibitor of clots formation), suggesting that the NIR imaging can record DIC 
in SE brain.

What is the importance of these findings? In blood vessels of the brain, tissue factor acti‐
vation including thrombin and fibrinogen which enhanced blood clot formation was 
occurred [114, 115], and this pathology finally led to multiple organ (e.g., lung, liver, 
 kidney, and brain, etc.) dysfunction [116]. However, it has been difficult to visualize the 
pathological state of DIC because of a lack of an effective biomarker [117]. Our present 

findings developed a novel approach to analyze the pathological state of brain blood 
 vessels in SE.

Figure 4. (a) Experimental setup for NIR fluorescence imaging of cerebral blood vessels. An anesthetized mouse was 
administered QD1100 in a caudal vein. An optical laser (785 nm wavelength) was used as an excitation light source, 
and NIR fluorescence was detected with an InGaAs camera; (b) imaging of a mouse head. Bright field image (left), 
NIR fluorescence image without QD administration (middle), and the NIR fluorescence image with QD administration 
(right). Scale bar: 1 mm; (c) NIR fluorescence images of cerebral blood vessels. Upper: fluorescence image after scalp 
removed, lower: fluorescence image after isolation. Scale bars: 1 mm. (Citation from Ref. [71]).
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Figure 5. (a) Time course of experimental procedure for lipopolysaccharide (LPS) and heparin administration; (b) 
NIR fluorescence images (>1000 nm) of cerebral blood vessels before and after administration of LPS (LPS (−) and LPS 
(+)), and the image following additional administration of heparin (LPS + heparin) with scalp removed. Lower panel 
shows the magnification of the images shown by red rectangles. Arrowheads show clots. Scale bars: 1 mm; (c) statistical 
analyses of the clots in the cerebral vessels. *: p < 0.05, number of mice: LPS (−): n = 5, LPS (+): n = 5, LPS + heparin: n = 3; 
(d) immunofluorescence staining of LPS‐treated cerebral blood vessels, where antifibrinogen antibody (Alexa Fluor 488) 
was used for staining of fibrinogen. Fibrinogen helps the formation of blood clots. Scale bar: 10 μm; (e) ELISA assays 
for thrombin–antithrombin complex (TAT) in blood plasma. *: p < 0.05, number of mice: LPS (−): n = 5, LPS (+): n = 5, 
LPS + heparin: n = 3. (Citation from Ref. [71]).

Figure 6. (a) Upper panel: NIR fluorescence images (>1000 nm) of cerebral blood vessels of isolated mouse brains. Left: 
LPS (−), Middle: LPS (+), Right: LPS + heparin. Red circles: clots. Blue squares: region of interests for the magnified 
views of lower panels. Scale bars: 1 mm. Lower panel: magnified NIR fluorescence image of cerebral blood vessels at the 
bregma. Red arrows: clots. Scale bars: 100 μm; (b) Number of clots for each mouse. *: p < 0.05, number of mice: LPS (−): 
n = 5, LPS (+): n = 5, LPS + heparin: n = 4. (Citation from Ref. [71]).
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7. Future prospect

In this chapter, we introduce the application of NIR in vivo imaging to SE. Currently, imaging 
technology is confronted with a turning point. Although there are several noninvasive  imaging 

technologies (PET, MRI, etc.), NIR noninvasive imaging can possibly record the faster time‐
dependent changes of pathological state in SE, though further developments of the imaging algo‐

rithm are required. In addition, the NIR imaging can label the distinct proteins by several specific 
antibodies and perform the multiple molecular in vivo imaging. Therefore, using the biomarker 

for SE, we may be able to visualize the novel pathophysiological mechanisms of SE.

Finally, in addition to our challenges, other candidate biomarkers which employ correlation 

to the pathological state of SE are recently addressed: S100β (i.e., astrocyte‐secreting protein) 
[77, 118–120], free radicals [121, 122], ascorbate [123–125], and various neuropeptides [126]. In 
addition, adult neurogenesis was induced in a rat model of SE and the neurogenesis marker 

(e.g., 5‐bromo‐2′‐deoxyuridine) might be useful [127]. In conclusion, these multidisciplinary 
approaches may overcome the pathophysiology and lead to innovative therapeutics for SE.
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