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Abstract

This chapter describes technical aspects of neutron-stimulated gamma ray analysis of
soil carbon. The introduction covers general principles, different modifications of
neutron-gamma analysis, measurement system configuration, and advantages of this
method for soil carbon analysis. Problems with neutron-gamma technology in soil
carbon analysis and methods of investigations including Monte-Carlo simulation of
neutron interaction with soil elements are discussed further. Based on the investigation
results, a method of extracting the “soil carbon net peak” from the raw acquired data
was developed. The direct proportional dependency between the carbon net peak area
and average carbon weight percent in the upper 10 cm soil layer for any carbon depth
profile was shown. Calibration of the measurement system using sand-carbon pits and
field measurements of soil carbon are described. Measurement results compared to
chemical analysis (dry combustion) data demonstrated good agreement between the
two methods. Thus, neutron-stimulated gamma ray analysis can be used for in situ

determination of near-surface soil carbon content and is applicable for precision
geospatial mapping of soil carbon.

Keywords: soil carbon analysis, neutron-stimulated gamma ray analysis, Monte-Carlo
simulation, Geant4, soil carbon mapping

1. Introduction

1.1. System evolution and application

Neutron-gamma analysis is based on detection of gamma lines that appear due to neutron-

nuclei interactions. Many nuclei can be detected and quantified by the presence of these charac-

teristic gamma lines. State-of-the-art nuclear physics methodologies and instrumentation, com-

bined with commercial availability of portable pulse neutron generators, high-efficiency gamma

detectors, reliable electronics, and measurement and data processing software, have currently
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made the application of neutron-gamma analysis possible for routine measurements in various

fields of study. For these reasons, material analysis using characteristic gamma rays induced by

neutrons is more wide-spread today; e.g., threat material detection (explosives, drugs, and

dangerous chemicals [1]), diamond detection [2], planetary science applications for obtaining

bulk elemental composition information, soil elemental (isotopic) content and density distribu-

tion [3], archaeological site surveying and provenance studies [4, 5], elemental composition of

human [6, 7] and animal [8, 9] bodies, real-time elemental analysis of bulk coal on conveyor belts

[10, 11], chloride content of reinforced concrete [12, 13], and in oil well logging [14].

In addition to the aforementioned applications, neutron-stimulated gamma ray analysis can be

used in soil science for in situmeasurements of soil carbon. This method is based on detecting 4.44-

MeV gamma rays issued from carbon nuclei excited by fast neutrons promptly after the interaction

[15]. Accurate quantification of soil carbon is important since it is an indicator of soil quality [16]

that can affect soil carbon sequestration, fertility, erosion, and greenhouse gas fluxes [17–20].

Use of this method for soil elemental analysis has additional advantages over traditional

laboratory chemical methods. This is a nondestructive in situ method of analysis that requires

no sample preparation and can perform multielemental analyses of large soil volumes that are

negligibly impacted by local sharp changes in elemental content. These advantages support

the use of the neutron-gamma method in soil science.

1.2. General principles of neutron-gamma analysis

Neutron-gamma analysis is based on nuclei issuing gamma rays upon interaction with neu-

trons (Figure 1). Gamma rays are issued due to different processes of neutron-nuclei interac-

tions. First of all, there are inelastic neutron scattering (INS) and thermal neutron capture

(TNC) where gamma rays are issued promptly after interaction. New radioactive isotopes can

appear due to INS and TNC processes, and decay of these isotopes is accompanied by delay

activation (DA) gamma rays.

Each kind of nucleus and process produces gamma-rays of particular energy. In some cases, this

characteristic gamma line of particular energy can serve as an analytical line for elemental

determination. For some elements, the energy of characteristic gamma lines of nuclei and the

processes responsible for the appearance of these gamma lines are listed in Table 1. As can be

seen, gamma ray energy lies in the 1–11 MeV range. This is the range (greater than 1.022 MeV)

where the effect of pair production as gamma rays interact with matter is significant. This is why

Figure 1. Main processes of neutron interaction with nuclei.
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the single escape (SE) and double escape (DE) peaks appear in the gamma spectra near the full

energy peak [21]. For example, with carbon registration at full energy peak of 4.44 MeV, peak

shifts of 0.511 MeV (SE, 3.93 MeV) and 1.022 MeV (DE, 3.42 MeV) can be observed. The cross

sections of INS process for 14-MeV neutron interactions with nuclei are demonstrated in Table 1.

For instance, the value of the 12C cross section at neutron energy of 14.1 MeV is ~0.42 barn. The

inelastic scattering of fast neutrons on 12C nuclei elevates them to the 4.44-MeV exited energy

state [22]. Exited state 12C* promptly returns to the ground state issuing the 4.44-MeV gamma ray.

nþ 12C ! 12C� þ n
0 ! 12Cþ γð4:44 MeVÞ ð1Þ

Neutrons lose their energy when propagating through the medium. The interaction cross

section depends on energy. The dependence of the INS process cross section with energy for
12C is demonstrated in Figure 2. The intensity or peak area of this gamma line in the spectrum

can be associated with the amount of carbon in a given soil volume. Thus, the registration of

the gamma spectra from the studied object caused by neutron interaction with its nuclei can be

used for elemental analysis of the object.

1.3. Measurement system configuration

The configuration of a measurement system for neutron-gamma analysis should consist of a

neutron source, gamma detector, shielding and construction materials, operational electronics,

and data acquisition software. Below we briefly consider the main features of these component

parts.

1.3.1. Neutron sources

Isotope neutron sources (based on Cf-252, Am-241-Be, Pu-238-Be isotopes) and portable neu-

tron generators can be used in the measurement setup; some commercially available neutron

sources are listed in Table 2. Although radioisotope sources are widely used in neutron-

gamma analysis [23–26], the use of a neutron generator is preferred (from a radiation safety

point of view) since no radiation is produced when the generator is turned “off.” Furthermore,

the availability of pulse neutron generators has significantly expanded the possibilities of this

method [1, 2, 11, 27].

Element/nucleus Applied for analysis

Kind of neutrons Process Cross section, b (neutron energy) Characteristic gamma line, MeV

Silicon/28Si Fast INS 0.52 (14 MeV) 1.78

Oxygen/16O Fast INS 0.31 (14 MeV) 6.13

Hydrogen/1H Thermal TNC 0.33 (thermal) 2.22

Carbon/12C Fast INS 0.42 (14 MeV) 4.44

Nitrogen/14N Thermal TNC 0.08 (thermal) 10.82

Fast INS 0.39 (14 MeV) 2.31, 4.46, 5.03, 5.10, 7.03

Table 1. Gamma lines used in neutron-gamma analysis of some elements.
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Type of source Nuclear reaction Time of work = T1/2

or working mode

Neutron energy,

MeV, Avg (max)

Flux, n/s Reference

Isotope 241Am/Be 241Am!α+237Np

α+9Be!12C+n

432.6 yr 4 (11) 4e7 [22, 28, 29]

239Pu/Be 239Pu!α+235U

α+9Be!12C+n

24100 yr 4.5 (10.7) 4e6 [22, 28, 30]

210Po/Be 210Po!α+206Pb

α+9Be!12C+n

138 d 4.2 (10.9) 2.5e6 [22, 28]

252Cf spontaneous fission 252Cf 2.65 yr (alpha decay) 2.3 (6) 4.4e7 [22, 28, 31]

226Ra/Be 226Ra!α+222Rn

α+9Be!12C+n

1600 yr 3.9 (13.1) 1.5e7 [22, 28]

Neutron

Generator

Genie 16 d+d!n+3He On-Off 2.5 2e8 [32]

Genie 35 d+d!n+3He On-Off 2.5 1e8 [32]

d+t! n+α 14.1 1e10

P 211 d+d!n+3He On-Off 2.5 1e8 [33]

d+t! n+α 14.1

P 385 d+d!n+3He On-Off 2.5 5e8 [33]

d+t! n+α 14.1

D 711 d+d!n+3He On-Off 2.5 2e10 [33]

d+t! n+α 14.1

Figure 2. Inelastic neutron scattering cross section of 12C nuclei [22].
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1.3.2. Gamma detectors

Gamma detectors used in neutron-gamma analysis systems should be suitable for operation in

mixed radiation fields where neutrons and gamma rays are present. In ideal cases, detectors

should have the following properties [1]:

• detector material must have a high Z value, and total detector volume should be quite

large (more than 1 dm3, preferably 5–10 dm3) to effectively detect a relatively low flux of

characteristic gamma rays with energy up to ~12 MeV;

• detectors must provide energy resolution that allows for resolving peaks of interest;

• the interaction of neutrons with nuclei in the detector material should not produce gamma

rays that overlap useful signals emitted from samples; the detector material should be

void of isotopes that are anticipated in analyzed samples;

• neutron activation of isotopes inside the detector volume with time-delayed radiation

should be minimal;

• detector sensitivity to changing environmental conditions (temperature, etc.) should be

minimal for field application of neutron-gamma analysis.

Satisfaction of these requirements can be difficult, especially due to budget constraints. Among

the different types of gamma scintillators, inorganic scintillators are more suitable for neutron-

gamma analysis systems due to higher efficiency of registering gamma rays in the energy

range up to 12 MeV. The high sensitivity of inorganic scintillation detectors is assured by high

gamma ray energy deposition in the relatively large volume (up to several cubic decimeters) of

transparent inorganic gamma scintillator mono-crystals with a high Z and density and by their

high light yield values (photons per MeV). Semiconductor detectors have a better resolution

compared to scintillation detectors, but lower registration efficiency in the desired energy

range (up to 12 MeV), which makes scintillation detectors more preferable for use in neutron-

gamma analysis systems.

Properties of detectors [based on the sodium iodide NaI(Tl), bismuth germinate BGO, and

lanthanum bromide LaBr3(Ce)] commonly used in the neutron-gamma analysis systems are

Type of source Nuclear reaction Time of work = T1/2

or working mode

Neutron energy,

MeV, Avg (max)

Flux, n/s Reference

MP320 d+d!n+3He On-Off 2.5 1e8 [33]

d+t! n+α 14.1

API 120 d+t! n+ α On-Off 14.1 2e7

[33]

ING d+d!n+3He On-Off 2.5 1e8 [34]

d+t! n+ α 14.1 1e10

Table 2. Some neutron sources available for use in neutron-gamma analysis.
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described in Table 3. Note that other detectors based on inorganic scintillators have worse

characteristics and are not usually applied in neutron-gamma analysis.

1.3.2.1. NaI(Tl)

As shown in Table 3, all listed detectors have high light yield. These detectors with sizes

around dia 15 · 15 cm provide practically 90% adsorption of gamma rays with energy up to

10 MeVas shown by data in Figure 3 for sodium iodide detectors. For other detectors, sizes can

be less due to higher density and effective atomic numbers. Sodium iodide detectors under

neutron irradiation are activated, showing the delayed beta decay spectral continuum with

end point energy of 2 MeV [1]. But this activation by neutron fluxes in neutron-gamma

analysis does not significantly impact the neutron-stimulated gamma spectra [41]. There are

no significant differences in energy resolution before and after irradiation by 4.7 · 1011 of 14-MeV

neutrons for the dia 10 · 10 cm NaI(Tl) detector [42]. The radiation damage of sodium iodide

occurs at an adsorption dose of 500–1000 Gy [43], which is not accumulated in real time when

conducting neutron-gamma analysis.

Detector type Light yield,

photon/MeV

Scintillation

decay time, ns

Resolution, %

(at 662 keV)

Density, g/cm3 Effective atomic

number*
Reference

NaI(Tl) 38000 250 7 3.67 47 [35]

Bi4Ge3O12 (BGO) 8200 300 10 7.13 62 [36, 37]

LaBr3(Ce) 70000 17 3 5.07 43 [38, 39]

*Effective atomic number is calculated by [40].

Table 3. Properties of gamma detectors used in neutron-gamma analysis.

Figure 3. The family of curves derived from NBS circular 583 (1956), Table 37, mass attenuation coefficients for NaI(Tl).

Each curve represents the percent absorption (I-attenuation) of a parallel beam of gamma rays normally incident on NaI

(Tl) crystals of a given thickness [44].
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1.3.2.2. BGO

The relatively small light yield of BGO scintillators is compensated by the higher densities and

atomic numbers of the composition elements. BGO scintillators have approximately the same

efficiency as NaI(Tl), but the interactions of neutrons with BGO elements result in the appear-

ance of gamma lines with energy up to 2.5 MeV, which makes this detector unsuitable for

measuring gamma spectra in this range in neutron-gamma analysis [45]. Also, a significant

drawback of this type of detector is sensitivity to external temperature [46], but a thermal

correction system can compensate for this disadvantage [47].

1.3.2.3. LaBr3(Ce)

Among inorganic scintillators, LaBr3(Ce) demonstrated the best resolution and efficiency. Due

to the shortest scintillation decay time, this detector had lower background in the high energy

part of the spectra due to the smaller number of pile-ups of low energy photons. The presence

in this detector of small quantities of the 138La radioactive isotope produces a 1.47-MeV

gamma peak, which is always visible in the gamma spectrum and can be used for calibration

purposes [1], but does not significantly impact the neutron-stimulated spectra. This detector

has stable gamma ray spectra parameters when properly shielded against direct neutron flux

from the neutron source. It is the best candidate for active neutron applications, but the high

cost of this detector (7.62 cm · 7.62 cm LaBr3(Ce) costs ~US$35,000 vs US$2,000 for a high

quality NaI(Tl) of similar size [39]) limits a wider use compared to NaI(Tl) and BGO detectors.

1.3.3. Shielding and construction materials

Direct fast neutron flux on the gamma detector and gamma radiation appearing from neutron

interaction with detector nuclei leads to high gamma spectra background. High background

increases the minimal detection limit of the measurement system and measurement errors.

Shielding use between the neutron generator and gamma detector improves characteristics of

the measurement system.

Shielding that is one-layer [48–51] or multilayer [52–54] can be used for this purpose. In most

cases, fast neutron shielding consists of two or three components which first slows fast neu-

trons to thermal energy (moderator), absorbs thermal neutrons (absorber), and then attenuates

the gamma rays which are produced by different neutrons-nuclei interactions in the moderator

and absorber (attenuator). Light materials like water, heavy water, and polyethylene are

usually used as neutron moderators, and boric acid is a possible absorber. Sometimes iron is

used in the first layer ahead of the light materials to moderate fast neutrons via inelastic

neutron scattering [52, 53]. Borated water or borated polyethylene can serve as a combined

moderator and absorber in the first layer of shielding. Lead, tungsten, iron, or other such

materials with high atomic mass are used to decrease gamma radiation.

While decreasing background, the shielding material and geometry should allow for the

counting of useful signal. This means that the shielding thickness should be reasonable and

should not produce gamma lines within the energy range of interest. Additionally, it is impor-

tant to know the possible high energy gamma lines produced from a particular shielding

Neutron-Stimulated Gamma Ray Analysis of Soil
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material since they could interfere with useful gamma lines or give additional continuous

background lower energy due to the Compton Effect. Construction materials should have

minimal susceptibility to neutron activation by fast or thermal neutrons, issue few gamma

rays in the energy range of interest, and have minimum high energy gamma rays that increase

system background.

1.3.4. Operational electronics and data acquisition software

Operational electronics and data acquisition software essentially depend on the task and

particular method modifications. For example, prompt gamma neutron activation analysis

with a radioactive isotope neutron source, a standard gamma detector, and multichannel

analyzer (e.g., MCA-1000) with its own software could be used [23]. A complicated custom-

made experimental setup consisting of standard Ortec or Canberra electronic blocks paired

with a pulsed neutron generator and gamma and alpha detectors can be used for dangerous

material detection (as described in [55]). A custom-made electronic scheme and data acquisi-

tion software could be used in some cases due to the absence of suitable standard equipment

(e.g., NaI(Tl) detector with corresponding electronics and ProSpect v0.1.11-vega software from

XIA LLC, Hayward, CA; see Ref. [56]).

1.4. Modifications of neutron-gamma analysis

Depending on the area of application, different modifications of neutron-gamma analysis can

be used. Detailed descriptions of these methods were presented in Ref. [27]; we briefly list

these methods below:

• PGNAA—Prompt Gamma Neutron Activation Analysis

• PFNA—Pulsed Fast Neutron Analysis

• PFTNA—Pulsed Fast/Thermal Neutron Analysis

• PFNTS—Pulsed Fast Neutron Transmission Spectroscopy

• API—Associated Particle Imaging

Pulsed Fast/Thermal Neutron Analysis (PFTNA) is the most suitable for soil neutron-gamma

analysis [57]. The main difficulty conducting soil neutron-gamma analysis is the overlapping

of different gamma lines from soil and measurement system nuclei and processes with the

main peak of interest (e.g., soil carbon peak). The PFTNA system makes it possible to separate

the gamma ray spectrum due to INS reactions (n,n’γ) from the TNC (n,γ) and DA reaction

(e.g., (n,p)) spectra. The moderation and moving neutrons in matter limit the incoming neu-

tron—matter nucleus reaction speed. Approximately 1.5 microseconds are required to moder-

ate 14-MeV neutrons to thermal energy in hydrogenous materials [58], while the lifetime of

thermal neutrons can be hundreds of microseconds [59]. Thus, INS reactions will only occur

during the microsecond neutron pulse, while TNC processes are running during the neutron

pulse and between pulses. One memory address of the data acquisition system records during

the neutron pulse, while another memory address acquires data between pulses. This is a

technique used with small portable electronic neutron generators (see Table 2). PFTNA

employs pulses with a duration of 5–20 microseconds. Microsecond pulse durations
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significantly reduce PFTNA system cost compared to pulsed methods using nanosecond

neutron pulses. The PFTNA system employs pulse frequencies greater than 5 kHz to ensure

nearly constant thermal neutron flux for the measurement period [60]. When operating at 10

kHz and a 25% duty cycle neutron pulse, it was demonstrated that net count rates in the

individual peaks of the soil elements silicon and oxygen in the TNC spectrum have a steady

state between neutron pulses [61]. Thus, at first approximation, the count rate registration of

gamma flux, which appears under neutron irradiation of samples, can be accepted.

2. Neutron-gamma technology for soil carbon determination

2.1. Importance of soil carbon determination

Adoption of agricultural land use practices adapted for climate change and mitigation poten-

tial depends on agricultural productivity and profitability. Understanding and evaluating the

impacts on soil resources will influence the development of sustainable land use practices. A

critical component of any soil resource evaluation process is measuring and mapping natural

and anthropogenic variations in soil carbon storage. Soil carbon can impact many environ-

mental processes, such as soil carbon sequestration, fertility, erosion, and greenhouse gas

fluxes [17–20]. The current “gold standard” of soil carbon determination is based on the dry

combustion technique (DCT) [62]. This method is destructive, time-consuming, and labor-

intensive since it involves collecting extensive field soil core samples and requires lots of

sample preparation before complex laboratory analysis can be conducted. Furthermore, DCT

soil analysis represents a point measurement in space and time that cannot be confidently

extrapolated to field or landscape scales which limits its utility for expansive coverage or

longer timescale interpretation. Other techniques include laser-induced breakdown spectros-

copy, near- and mid-infrared spectroscopy, diffuse reflectance infrared Fourier transform spec-

troscopy, and pyrolysis molecular beam mass spectrometry [15].

Soil neutron-activation analysis is a new method with the potential for measuring soil carbon

in relatively large volumes without having to take destructive soil samples requiring time-

consuming standard laboratory analysis. This new method is based on measuring the gamma

response of soil irradiated with fast neutrons. One modification of this method, PFTNA—

Pulsed Fast/Thermal Neutron Analysis, has been shown to provide wide-area monitoring for

prolonged periods [15, 53]. The result of measurements using this method gives, as will be

demonstrated below, the values of average carbon content in weight percent in the upper soil

layer (thickness ~10 cm) of ~1.5 m2 area centered under the neutron source. The measurement

time for each surveyed area is 30–60 minutes.

2.2. Problems with neutron-gamma technology in soil carbon analysis and methods of

investigation

2.2.1. Features of soil carbon neutron-gamma analysis

The main purpose of this book chapter is to describe the application of neutron-gamma

technology for soil elemental analysis. Common features of this technology were described

earlier in the introduction. The following aspects of neutron-stimulated gamma ray analysis

will be covered:

Neutron-Stimulated Gamma Ray Analysis of Soil
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• mobile neutron-gamma technology systems for soil carbon content determination;

• procedures for measuring the gamma response of neutron-irradiated soil (raw data) and

extracting the net soil carbon signal;

• soil carbon depth distribution and the particular soil carbon characteristics that are

directly and proportionally dependent on the net carbon signal;

• comparison of neutron-gamma field measurements of soil carbon content to traditional

chemical analysis;

• factors impacting gamma response intensity in quantitative soil analysis.

2.2.2. Methods of investigation

The methods used for investigating the effects of different factors when applying neutron-

gamma technology for soil elemental analysis are:

• Experimental design. Soils being experimentally measured should be around a cubic

meter in volume and weigh around a metric ton.

• Deterministic modeling. This method involves solution of integral or differential equa-

tions that describe the dependence of behavioral characteristics of the system in question

in terms of spatial or time coordinates. This method was used in cases of simple shapes

and sample properties (e.g., uniform distribution of elements within the sample volume).

This method gives useful semi-quantitative results.

• Monte-Carlo (MC) simulation. The gamma response spectra from modeled soil samples

irradiated by neutrons are a very effective method to determine the effect of different

factors on the neutron-gamma measurement. An MC simulation model of any sample

shape, shielding and detector configuration, or measurement geometry is applicable. MC

simulation results are very close to experimental findings.

All these methods were used during our investigations. Results from these methods will be

discussed and compared with each other.

2.2.3. Monte-Carlo simulation method

MC simulations [63, 64] have been extensively used to solve various problems. For example,

MC simulations are capable of estimating the neutron flux passing through materials and their

energy loss in these materials, determining the energy distribution of emerging neutrons [65],

calculating the optimal thickness of shielding [66, 67] and moderator [68], and reproducing the

characteristic neutron-induced gamma-ray spectra of different materials [69–73].

An MC simulation model of soil neutron-gamma analysis should consist of two major compo-

nents—the measurement system and a soil model. The modeled measurement system should

mimic the experimental measurement system. The system could have neutron sources (isotro-

pic source with energies that match the experimental setup), detector, and shielding (if

required). The MC simulation soil model can be viewed as a three-phase system (solid, liquid,
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and gaseous phases) [74]. Based on calculation objectives, the soil model may be simplified if

all soil parameters critical to the MC simulation are met. Our research used the approach of

other researchers [74, 75] where the soil model was constructed as a compact medium with

known elemental composition and density depth profiles.

The MC simulation describes randomly issued neutron transportation which includes all

interactions with soil components until reaching the simulation volume boundary or

exhausting its kinetic energy and disappearing due to an interaction. Some neutron-nuclei

interactions result in the appearance of gamma rays which move through and interact with

soil components. These interactions cause gamma quanta to disappear as they lose energy;

however, some will propagate through the soil and be counted by the detector. The simulated

gamma spectrum represents the relationship of the gamma count versus energy. The spectrum

shape (number of peaks, their intensity) will be influenced by soil properties. The variation of

modeled soil properties and MC simulation of the gamma spectra makes it possible to detect

the effect of different soil parameters on the shape of the spectra. Note that the MC simulation

gave results that were very close to real data.

2.3. Mobile system for soil carbon determination

As previously described [56], our PFTNA system was mounted on a platform that could be

transported by tractors or all-terrain vehicles over various field terrains. The dimensions of our

mobile platform were 75 cm · 23 cm · 95 cm and weighs ~300 kg. While the primary

construction material was aluminum, the iron shielding contributed more weight. Previous

findings [53, 76] were used as a basis for the current construction and electronic system

requirements. Our PFTNA system had three separate construction blocks (Figure 4). Compo-

nents of the first block were an MP320 pulsed neutron generator (Thermo Fisher Scientific,

Colorado Springs, CO), an R2D-410 neutron detector (Bridgeport Instruments, LLC, Austin, TX),

and a power system (Figure 4a, d). The neutron generator has a pulsed output of 107–108 n s�1

(depending on parameter settings) and neutron energy of 14 MeV. Components of the PFTNA

power system were four DC105-12 batteries (12 V, 105 Ah), a DC-AC inverter (CGL 600W-

series; Nova Electric, Bergenfield, NJ), and a Quad Pro Charger model PS4 (PRO Charging

Systems, LLC, LaVergne, TN). The first block also contained water, iron and boric acid

shielding for isolating the detector from the neutron beam and focusing the beam on the soil

area of interest. The second block had the gamma ray measuring equipment (Figure 4b, e) and

contained three 12.7 cm · 12.7 cm · 15.2 cm scintillation NaI(Tl) detectors (Scionix USA,

Orlando, FL) with corresponding XIA LLC electronics (XIA LLC, Hayward, CA). For equip-

ment operation, the third block (Figure 4c) housed a laptop computer for controlling the

neutron generator, detectors, and data acquisition system ProSpect 0.1 (XIA LLC) (Figure 4c).

In our applied PFTNA technique, gamma rays emitted by soil chemical elements under pulsed

neutron irradiation were divided into two groups: emissions during the neutron pulse due to

INS and thermo-neutron capture (TNC) and emissions between neutron pulses due to TNC

reaction. Delay gamma rays (i.e., caused by neutron activation reactions) are also captured in

these spectra. The two concurrent gamma spectra from each PFTNA measurement (i.e., INS

+TNC and TNC spectra) were treated together. Spectra acquisition from the three gamma
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detectors can be performed in two separate ways. In the first, analog signals from the detectors

go to a summing amplifier for processing by a digital multichannel analyzer [77]. In the

second, each detector has a dedicated analog-digital converter for spectra acquisition which

can be summarized after correction for energy calibration instability [76, 78]. Our testing

showed improved resolution from the second method which was therefore adopted for use in

our PFTNA. For autonomous operation under field conditions, we developed a mobile power

system for reliable equipment operation over extended periods of time. In this mobile PFTNA

system, the neutron generator, neutron and gamma detectors, and laptop computer were all

powered by four batteries via a power inverter. This inverter transformed 12 VDC battery

power to 110 VAC and could operate with input voltages between 10.9 and 14.7 V.

2.4. Raw data acquisition

Two gamma spectra are acquired with our PFTNA measurements: (1) inelastic neutron

scattering (INS) spectra acquired during the neutron pulse and (2) thermo-neutron capture

(TNC) spectra acquired between neutron pulses. Typical INS and TNC experimental gamma

spectra from soil (raw spectra) are shown in Figure 5 (top and bottom lines, respectively).

Each spectrum has a background spectrum and lines due to gamma emission from neutron-

irradiated soil elements. The main gamma peak of interest has a centroid at 4.45 MeV in the

INS spectrum. This peak may be due to neutron interactions with carbon nuclei and the

interference of gamma lines from other nuclei. The oxygen peak (6.13 MeV) and the pair

production peak (0.511 MeV) are used as reference points for spectral calibration. The INS

spectra consist of gamma rays appearing from inelastic neutron scattering, thermal neutron

D

E

Figure 4. Overview of the PFTNA sytem: (a) neutron generator, neutron detector, and power system; (b) three NaI (Tl)

detectors; (c) equipment operation; (d) general view of A showing individual components; and (e) close-up view of the

gamma detectors [56].
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capture, and delay activation of nuclei (samples and system construction materials). The

TNC spectra consist of gamma rays from all of the above-listed processes except the INS

process.

2.5. Extracting the “Net INS Spectra”

The first step in data processing is extracting the “net INS spectra” from raw data. The

acquisition time of INS spectra is the duty cycle of neutron pulses multiplied by measurement

clock time (minus dead time of multichannel analyzer), while the acquisition time of TNC

spectra is one minus the duty cycle of neutron pulses multiplied by time of measurement

(minus dead time of multichannel analyzer). Information on acquisition times is made avail-

able by the data acquisition software. Thus, spectra can be represented in counts per second

(cps). As a first approximation, the number of INS events in some sample volume at some time

moment is proportional to the number of fast neutrons in this volume, while the number of

TNC events in some sample volume at some time moment is proportional to the number of

thermal neutrons in this volume. In the first approximation, the time dependence of the

number of fast neutrons nf(t) can be estimated according to the equation:

dnf ðtÞ

dt
¼ NðtÞ �

nf ðtÞ

τf
ð2Þ

where t is a time, N(t) is the neutron flux to the sample from neutron sources, s�1, τf is the fast

neutron moderation time, s. The fast neutrons convert to thermal neutrons at moderation. The

time dependence of the thermal neutron number nth(t) can be estimated as:

Figure 5. Raw experimental soil gamma spectra [56].
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dnthðtÞ

dt
¼

nf ðtÞ

τf
�
nthðtÞ

τth
ð3Þ

where τth is the lifetime of thermal neutrons. As was discussed earlier (see Section 1.4), the fast

14-MeV neutron thermalization time can be accepted as equal to 1.5 microseconds, while the

thermal neutron lifetime can be equal to ~1000 microseconds. The pulse neutron flux (in

neutrons per microsecond) with time can be described by the equation:

NðtÞ ¼
40 if f loor

t

200

� �

≤
t

200
< f loor

t

200

� �

þ 0:25

0 otherwise
, ð4Þ

if the neutron flux is 107 neutrons per second, frequency is 5000 Hz (pulse time is 200 micro-

seconds), and duty cycle is 0.25 (these pulse neutron generator working regime parameters are

for PFTNA of soil).

Solutions for these simple model equations are presented in Figure 6. As can be seen, in the

frame of this model the time dependence of fast neutron numbers in the sample practically

coincides with neutron flux time dependence (Figure 6a,b), while the time dependence of the

thermal neutron is saw-shaped (Figure 6c). If the average value of this “saw” increases at the

beginning, the average value reaches a constant value after more than 5000 microseconds

(Figure 6d). When the “saw” reaches a constant value, the increase in thermal neutrons during

the neutron pulse is practically linear with time, and the decrease in thermal neutrons between

pulses is also linear (see Figure 6c). For this reason, the average value of TNC events and

consequently the average TNC gamma flux during the neutron pulses is equal to the average

value of TNC events and average TNC gamma flux between the neutron pulses. Hence it is

possible to accept that the TNC spectra intensity between pulses is approximately the same as

the TNC spectra intensity during pulses (in cps per channel). Based on this consideration, the

“net INS spectra” can be restored with channel-by-channel subtraction of the TNC spectra

from the INS spectra (both expressed in cps).

2.6. Measurement system background signal

Net INS spectrum represents the gamma rays appearing due to inelastic neutron scattering

in both the sample and PFTNA system construction materials. The spectrum due to INS of

the system construction materials is the background signal of the measurement system. To

measure this background signal, the system has to be spatially removed from large objects

(e.g., ground, floor, walls, building ceilings). To achieve this, the PFTNA system could be

raised above the ground and away from buildings and large objects by using a crane

(Figure 7). The measured INS and TNC spectra at different heights above the ground are

shown in Figure 8; “net-INS spectra” (difference between INS and TNC spectra, both in cps)

are shown in Figure 9. The peaks in these spectra can be attributed solely to INS processes.

Intensities can be evaluated to determine the height at which the signal remained uniform

with no change. This “no change” signal is considered to be the net INS system background

spectrum.
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Figure 6. Time dependence of the neutron flux (a), number of fast neutrons in a sample nf(t) (b), number of thermal

neutrons in a sample nth(t) (c), and time dependency of the number of thermal neutron in a sample at a time more less

than 6000 microseconds (d).
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The behavior of peak areas with centroids at 1.78 MeV (“silicon peak,” 28Si), 4.45 MeV (“car-

bon peak”), and 6.13 MeV (“oxygen peak,” 16O) acquired from the net INS spectra are shown

in Figure 10. As shown in Figures 8–10, some peaks in the spectra decrease and fully disap-

pear with increasing height (e.g., peaks with centroids at 4.95 and 4.44 MeV in the TNC

spectra), while other peaks decrease and reach constant values as height increases. Starting at

~4.5 m height, minimal spectral changes are detected. At this height, the measurement system

Figure 7. The PFTNA system background measurements (up to 6.7 m above the ground) [79].
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Figure 8. INS and TNC spectra measured by the PFTNA system at different heights above the ground [79].

Figure 9. (a) Measurement system net INS spectra (difference between INS and TNC spectra, both in cps) at different

heights above the ground; (b) fragment of the net INS spectra around 1.78 MeV; and (c) fragment of the net INS spectra

around 4.43 MeV [79].

Neutron-Stimulated Gamma Ray Analysis of Soil
http://dx.doi.org/10.5772/68014

149



is far enough away from the ground (and other large objects) that the gamma responses from

these objects are negligible compared with the gamma responses from the measurement

system construction materials. The net INS spectrum acquired at a height more than 4.5 m

could be used as the system background spectrum.

2.7. “Soil Net INS Spectra” and “Soil Carbon Net Peak”

The “soil net INS spectrum” can be obtained from the results of soil measurements and the

system background spectra. For this, “the system background net INS spectrum” should be

subtracted (channel by channel) from the soil net INS spectrum received from the raw INS and

TNC spectra (all spectra should be in cps). The “soil net INS spectrum” consists of gamma rays

which appear due to inelastic neutron scattering of fast neutrons on soil nuclei.

Main peak of interest in “the soil net INC-spectra” is the peak with a centroid at 4.45 MeV.

Analysis showed (see Figure 11) that this peak can consist of the soil carbon peak with centroid

at 4.44 MeV, soil silicon cascade transition peak with centroid at 4.50 MeV; possibly the carbon

peak with centroid at 4.44 MeV has contribution from excited carbon nuclei as a result of INS

on other soil nuclei (e.g., due to 16O (n,n’α)12C*
!

12C + γ(4.44 MeV) reaction [80]). Silicon 28Si

nuclei turn to different excited states due to INS on silicon nuclei. The relaxation of excited

silicon passes through the first exited state with energy 1.78 MeV, and the transition to ground

state is accompanied by issued gamma rays with energy close to 1.78 MeV (i.e., “soil net silicon

peak”). The relaxation of the 6.28 MeV silicon excited state pass to ground state through the

first excited state and is accompanied by gamma rays with energy close to 4.50 MeV (6.28 �

1.78MeV); that is the “silicon cascade transition peak” [22]. This peak can be a part of the 4.45MeV

Figure 10. Dependencies of peaks areas with centroids at 1.78, 4.43, and 6.13 MeV in the net INS spectra for measurement

system with changing heights above the ground [79].
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peak in the “soil net INS spectra.” The theoretical calculation of the 4.50 to 1.78 MeV gamma ray

intensity ratio (i.e., “cascade transition coefficient”) gives a value of 0.0547 [81].

2.8. Defining “Soil Carbon Net Peak Area” for a uniform carbon depth profile

2.8.1. Measured gamma spectra of sand-carbon pits

Measurements of INS and TNC spectra using the PFTNA system were performed over 1.5 m ·

1.5 m · 0.6 m pits filled with uniform sand-carbon mixtures that had carbon contents of 0, 2.5, 5,

and 10 w%. The measurement system was placed over each pit such that the neutron source was

situated over the geometric center of each pit. The “soil net INS spectra”were calculated for each

pit, taking into account the system background spectra as described above. The experimental

“net INS spectra” for pits are shown in Figures 12 and 13.

2.8.2. Monte-Carlo simulated gamma spectra of sand-carbon pits

MC simulations of gamma spectra from pits (1.5 m · 1.5 m · 0.6 m) with different sand-

carbon mixtures using model geometry very similar to experimental system geometry were

evaluated. The soil models are represented as compact media with above-mentioned dimen-

sions and uniform SiO2+C composition densities

dmix ¼
1:7 � 0:52 � 100

Cw% � 1:7þ ð100� Cw%Þ � 0:52
ð5Þ

where 1.7 is the sand bulk density (g cm�3); 0.52 is the coconut shell bulk density used in the

pits as carbon (g cm�3), and Cw% is the carbon content of the mixture in weight percent. The

Figure 11. Composition of the 4.45-MeV peak in the soil net INS spectrum.
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Figure 12. Simulated and measured 14-MeV neutron-stimulated net INS gamma spectra of sand-carbon mixtures (0, 2.5,

5, 10 w% C) in 1.5 m · 1.5 m · 0.6 m pits [79].

Figure 13. Fragment of simulated and measured 14-MeV neutron-stimulated net INS gamma spectra of sand-carbon

mixtures (0, 2.5, 5, 10 w% C) in 1.5 m · 1.5 m · 0.6 m pits [79].
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simulation model consisted of a point isotropic neutron source, gamma detector, and shielding

similar to the real measurement system. The distance between the source and detector (35 cm),

height of the model system above the ground, and number and type of detectors (three NaI(Tl)

12.7 cm · 12.7 cm · 15.3 cm) were the same as in the experimental system. The Geant4 tool kit

[82] version G4.10.01p.01 [83] was used to conduct the MC simulations for this and other

research issues. A conventional laptop with a multicore processor and high performance

computing cluster (Auburn University Samuel Ginn College of Engineering vSMP HPCC

consists of 512 cores @ 2.80 GHz X5560, 1.536TB shared memory, and 20.48TB raw internal

storage) were used for calculation in the multithread mode. Note that for accuracy of the

simulated spectra to approximately equal the experimental accuracy, 109 simulation events

should be performed. Due to the large number of simulation events, the simulation time for

each spectrum was several dozen hours. Our simulation used the neutron cross section

JENDL4.0 database rather than the default database (G4NDL4.5) due to the JENDL4.0 simu-

lated spectra and the experimental spectra being more similar. From Geant4 toolkit, we used

the QGSP BIC HP and QGSP BERT HP physics lists (Reference Physics Lists, 2014). Both lists

had high precision models for neutron transport below 20 MeV and gave the same simulation

results. The change in detector energy resolution was taken into account as ~1.142�

ffiffiffiffiffiffi

Eγ
p

(Eγ is

the gamma quanta energy, keV) during simulation. This type of energy resolution dependence

for gamma detectors is known [84], and the multiplier 1.142 was determined by matching the

width of the simulated 137Cs peak to that in the experimental spectra. The detector efficiency

dependence with energy was not accounted for since this change would be minor due to the

large NaI crystal sizes in the 1–10 MeV energy range [44]. Only INS spectra were simulated;

other processes (like thermal neutron capture) in the simulation code were deactivated. A

computer screenshot of the simulation model is shown in Figure 14.

2.8.3. MC simulated system background “INS spectra”

For determination of “pit net INS spectra,” the system background “INS spectra” should first

be simulated. In this simulation, the measurement model geometry and system components

(detectors, shielding, sizes) were the same, but the pit model was absent. The “pit net INS

spectra” are represented with channel-by-channel differences (simulation channel width is 10

keV) between “pit INS spectra” and system background “INS spectra.”

The effect of system background on the simulated spectra is demonstrated as follows. Figure 15

represents simulated “INS spectra” of the SiO2+5w%C pit measured by a system consisting of

a neutron source, sodium iodide detector, and different shielding. The system background

spectra with different shielding are also shown in this plot. The “pit net INS spectra” (differ-

ence between “pit INS spectra” and “background INS spectra”) are presented in Figure 16. As

can be seen, the shape of each “pit INS spectra” measured by the system with different

shielding is also different. Similar variations were also seen in “background INS spectra” for

different shielding, but the “pit net INS spectra” were the same in all cases (Figure 16).

Although these results may appear trivial, this example demonstrates that parts of system

background in the raw spectra can be significant and should be taken into account by subtrac-

tion in quantitative analysis. Similar subtractions should be performed in experimental mea-

surements.
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Figure 14. The MC simulation model (Geant4) for measurement of gamma response from a sand-carbon pit under

neutron irradiation.

Figure 15. Simulated Geant4 gamma spectra of Pit SiO2 + 5%C and background for system with different shielding.
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2.8.4. Dependence of “Soil Carbon Net Peak” area versus pit carbon content

The MC simulated and measured “pit net INS spectra” for pits with different carbon contents

are shown in Figure 12. As can be seen, the simulated and measured spectra are similar. The

simplicity of the model combined with not accounting for the detector efficiency with energy

may help explain some differences between measured and simulated spectra. Despite the

insignificant discrepancies between measured and simulated spectra, the main features (i.e.,

position and relative intensity of pair production; and silicon, oxygen, and carbon peaks) are

approximately the same, and both were used in our analysis.

Assuming that the “soil carbon net peak” area value can be determined as “4.45 MeV net

peak” area minus the “soil silicon net peak” area multiplied by some coefficient f, then the

“4.45 MeV net peak” consists of only the “soil carbon net peak” and “silicon cascade

transition peak,” with the addition of other gamma rays being negligible. In this case, the

dependence of the “soil carbon net peak” area versus carbon content should pass through

the “zero-zero” point where the value of this coefficient equals the “cascade transition

coefficient.”

To define the dependence of the “soil carbon net peak” area versus carbon content for both the

simulated and measured spectra, the “4.45 MeV net peak” area and “soil silicon net peak” area

are determined in both the experimental and simulated spectra. In this case, spectral peaks of

interest were approximated by one or two Gaussian shape curves using Igor Pro standard

software [85] to determine the area beneath the curve. It is important to note that since peak fitting

Figure 16. Simulated Geant4 “net pit INS spectra” of Pit SiO2 + 5%C for system with different shielding.
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by summing two Gaussians gives approximately the same value for different component param-

eters, this sumwas used in the analysis rather than the area of the components. An example of the

simulated gamma spectra with fitted peaks with a centroid at 1.78 MeV (“soil silicon net peak”)

and 4.45 MeV (“4.45 MeV net peak”) by Gaussian shape curves is shown in Figure 17.

The “soil carbon net peak area” in the i-th spectrum was denoted as Ccorri. The “soil silicon net

peak” area in the i-th spectrum was denoted as SSii, “4.45 MeV net peak” area in the i-th

spectrum as SCi, and carbon content in the i-th mixture as Conti. The assumption was that

Ccorri can be calculated as (SCi � f�SSii); Ccorri was considered to be directly proportional to the

carbon content of the mixture (k�Conti) with f and k being the coefficients (these designations

are shown in Figure 17 for clarity). Using SCi and SSii data, the values of f and k can be

determined by minimizing the expression

Figure 17. An example of the simulated gamma spectra for the model soil sample and designations of the peak areas used

in the calculations: points—simulated data, solid lines—approximation by one (1.78 MeV, “net soil silicon peak”) or sum

of two Gaussians (4.45 MeV, “net 4.45 MeV peak”), dotted lines—peak components, and dashed lines—background.
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X

i

ðSCi � f � SSii � k � ContiÞ
2 ! min ð6Þ

The f and k values were found by equating the derivatives of this sumwith respect to f and k set

to zero. These calculations were performed using the standard mathematical software,

MathCAD (Parametric Technology Corporation, 2013).

The dependencies between the “4.45 MeV net peak” area, “soil silicon net peak” area, and “soil

carbon net peak” area Ccorr with carbon content from simulated and measured spectra are

presented in Figure 18. As can be seen, the dependencies in both cases are similar to each other

and pass through the “zero-zero” point. In addition, the values of the coefficient f from data

processing of both the experimental and simulated spectra are very close (0.054 and 0.058,

respectively). Values of this parameter (i.e., coefficient of the cascade transition for 28Si nuclei)

are similar to earlier published values [81, 86]. Thus, it is possible to define the “soil carbon net

peak” area (from the “soil net INS spectra”) as “4.45 MeV net peak” area minus “soil silicon net

peak” area multiplied by some coefficient f, where f is the “cascade transition coefficient” equal

Figure 18. Dependencies of the “4.45 MeV net peak” area SC, “soil silicon net peak” area SSi, and “soil carbon net peak

area” Ccorr with carbon content from the simulated and measured spectra of sand-carbon mixtures [79].
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to 0.0547 without taking into account the effect of other INS processes like 16O (n,n’α)12C*!12C + γ

(4.44 MeV).

2.9. Parameter selection for soil carbon characterization

The carbon gamma signal intensity (“soil carbon net peak” area) measured by the gamma

detector is dependent on neutron flux intensity and soil conditions (density and element

content), but the gamma signal intensity can be strongly influenced by the distribution of

carbon within the soil depth profile. Neutron penetration depth and gamma flux attenuation

are determined by soil properties. The distribution of soil carbon with depth is usually

nonuniform (i.e., carbon level decreases as depth increases) and by first approximation can be

described by exponential law [15]. The parameters of these distributions vary from site to site

[56]. For this reason, correlations between the carbon peak intensity in the gamma spectrum

and characterization of soil carbon content parameters are not obvious.

2.9.1. Parameter candidates

The main problem is determining which characteristic of soil carbon content has a direct

proportional dependency (even in some approximation) with “soil carbon net peak” area. In

general, the average carbon content or integral by some depth can be used to characterize the

carbon in some depth layer. The tested candidates were average parameter—average carbon

weight percent in some soil layer (AvgCw%(h), where h is the layer thickness) and integral

parameter—grams carbon per square centimeter of soil surface in a layer of some thickness

(SD(h), surface density). These parameters can be calculated as:

AvgCw%ðhÞ ¼
1

h

ðh
0

W%ðbÞdb ð7Þ

SDðhÞ ¼

ðh
0

W%ðbÞ � dðbÞdb ð8Þ

where W%(b) is carbon weight percent at depth b and d(b) is the soil density at depth b. Note

that another possible characteristic will be proportional to one of these characteristics.

2.9.2. “Surface Density in 30 cm” parameter

Ref. [15] reported that the value of the carbon signal in INS spectra was connected to the

surface density of carbon in a 30-cm layer. Figure 19 shows three carbon depth profiles in

modeled sand-carbon mixtures for which the values of SD(30) are all equal to 2.29 gC cm�2.

But the fragment of the MC simulated INS spectra around the carbon peak (Figure 20) for

these modeled sand-carbon mixtures illustrates that these peaks are quite different despite SD

(30) being the same for all mixtures. Thus, the “soil carbon net peak” area is not directly

proportional to soil carbon content expressed in carbon surface density at 30 cm; this indicates

that some other parameter should be found.

The effect of carbon depth profile and soil elemental content on the gamma spectrum as a

whole (particularly for the carbon peak) can be determined from experimental results for

soil sites with different carbon depth profiles, and by varying the carbon depth profile
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Figure 19. Carbon depth profiles in modeled sand-carbon mixtures for which the value of SD(30) = 2.29 gC cm�2.

Figure 20. Fragment of MC simulated INS spectra (around the carbon peak) of modeled sand-carbon mixtures with

carbon depth profiles shown in Figure 19. For all cases SD(30) = 2.29 gC cm�2.
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parameters in the soil model during MC simulations. These measurements and simulations

were done to further our understanding of the relationship between INS signals and soil

carbon content.

2.10. “Net INS Spectra” for nonuniform carbon depth profile sites

2.10.1. Carbon, soil density, and main element depth profile examples

Figures 21–23 show carbon depth profiles, soil density examples, and main element depth

profiles from sampling sites. These carbon depth profiles were from an applied field (AF)

located at the Piedmont Research Unit, Camp Hill, AL, USA [41]. Data was from traditional

dry combustion chemical analysis of cores collected from the AF sites. Dependencies shown in

Figures 21–23 were used to construct the soil model in the simulation. Six artificial carbon

depth profiles with extremal shapes (Art1–Art6 in Figure 21) were also used in the simulations.

2.10.2. Measured and simulated net INS spectra for sites with nonuniform carbon depth profile

Raw INS and TNC spectra were collected for each site and replotted in units of “counts per

second.” Afterwards, “soil net INS spectra” were calculated taking into account the “system

background spectra” data (as was described above). For MC simulation, “soil net INS spectra”

were calculated by subtracting the previously simulated system background spectra from the

“soil INS spectra.” Examples of measured and simulated spectra for some of these areas are

Figure 21. Soil carbon depth profiles for different sites (see text for details) [79].
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Figure 23. An example depth profile of the main soil elements [79].

Figure 22. Soil density depth profile for the experimental site [79].
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shown in Figure 24. As can be observed, the simulated and measured spectra were very

similar to each other. The peak areas with centroids at 1.78 and 4.45 MeV were calculated from

these spectra using approximation by one or two Gaussian shape curves with Igor Pro stan-

dard software [85]. Next, “soil carbon net peak” area was defined using the above described

procedure by subtracting the “soil silicon net peak” multiplied by the “cascade transition

coefficient” (i.e., 0.0547) from the “4.45 MeV net peak” for each measurement and simulation.

2.10.3. Calibration

The calibration coefficient to calculate the carbon content from the value of “soil carbon net peak”

area was determined from the gamma spectra for pits with uniform sand-carbon mixtures.

Carbon content can be denoted in units of the average carbon weight percent or surface density.

For uniform sand-carbon mixtures, the calibration line “soil carbon net peak” area versus w%

will not depend on the thickness, while the calibration line “soil carbon net peak” area versus SD

will depend on the given thickness. The carbon characterization parameter should be applied for

any carbon depth profile, including uniform distribution. Thus, it should be possible to use the

calibration coefficients derived from uniform distribution to calculate the carbon characterization

parameter for the spectra of sites with nonuniform carbon depth distribution.

Calibration dependencies for uniform sand-carbon mixtures were also constructed for simulated

and experimental spectra. In this case, the coefficients f and kw%, j and kSD, j (j = 1 for measure-

ment, j = 2 for MC simulation) were determined as described above by Eqs. (7) and (8) for both

cases, where Conti corresponded to W% or SD(h). For uniform mixtures, AvgCw% does not

depend on h. Thus, there is only one set of coefficients f and kw%, j. SD depends on h; therefore,

each h has its own set of coefficients, f and kSD,j(h). In the set of coefficients for SD, the coefficient f

is the same for each h and approximately the same for f for weight percent. Using the determined

coefficients, the dependencies of the “soil carbon net peak” area (Ccorr) in the measured andMC

simulated spectra versus carbon weight percent and versus carbon surface density at different

thicknesses [SD(h)] in sand-carbon mixtures samples were plotted (Figures 25 and 26). These

figures illustrate that the dependencies of Ccorr with W% and with SD(h) are directly propor-

tional within measurement and simulation accuracy limits in all cases.

Figure 24. Measured (a) and MC simulated (b) “net soil INS gamma spectra” of different sites with characteristics shown

in Figures 21–23.
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2.11. Comparison of PFTNA and chemical analysis data

The calculation of AvgCw%(h)DC,i and SD(h)DC,i by chemical analysis (dry combustion) was

done for each site to compare with the data received from the INS gamma spectra. Coincidence

of values for some parameters received from the net soil INS gamma spectra and from

chemical analysis will mean the value of this parameter can be determined from neutron-

gamma measurements.

2.11.1. Dependence of average values of relative differences with h

For each site, the relative difference between Cw%INS,i,j and SDINSi,j(h) for INS and MC simu-

lation data and AvgCw%(h)DC,i and SD(h)DC,i values from soil chemical analysis data were

used to compare these values.

rw%i, jðhÞ ¼
AvgCw%ðhÞDC, i � Cw%INS, i, j

Cw%INS, i, j
ð9Þ

Figure 25. Calibration lines plotted from data of MC simulations [79]: (a) “net soil carbon peak” area versus carbon

surface density; thickness shown near line; (b) “net soil carbon peak” area versus carbon weight percent.

Figure 26. Calibration lines plotted from measurement data: (a) “net soil carbon peak” area versus carbon surface

density; thickness shown near line; (b) “net soil carbon peak” area versus carbon weight percent [79].

Neutron-Stimulated Gamma Ray Analysis of Soil
http://dx.doi.org/10.5772/68014

163



rSDi, jðhÞ ¼
SDðhÞDC, i � SDINS, i, j

SDINS, i, j
ð10Þ

The relative difference values for each site with h were calculated and plotted. The example of

rw%i,2ðhÞ for different sites is shown in Figure 27. This relative difference was found to be equal

to zero at some layer thickness h for each site. As can be seen in Figure 27, this depth varies

around 10 cm in the range of �2 cm for all sites.

The dependence of average values of relative differences for weight percent and for surface

densities, ξw%jðhÞ and ξCDjðhÞ for all surveyed sites with h, were calculated as

ξw%jðhÞ ¼
1

Nj

X

i

AvgCw%ðhÞDC, i � Cw%INS, i, j

Cw%INS, i, j
ð11Þ

ξCDjðhÞ ¼
1

Nj

X

i

SDðhÞDC, i � SDINS, i, j

SDINS, i, j
ð12Þ

where Nj is the number of the sites used in measurements (j = 1) and in MC simulations (j = 2);

both demonstrated some form of regularity. These dependencies are shown in Figure 28 for

both measurements and MC simulations.

Equality ξw%jðhÞ or ξCDjðhÞ value to zero means that, at this h, the soil carbon characteristics

determined from the spectra and from depth distribution are very similar. As one can see, the

carbon weight percent derived from the spectra coincides with the average weight percent at a

thickness of ~10 cm. Figure 28 shows that the values of surface density from the spectra and

from depth profiles differ from each other at any thickness. From these results we conclude

Figure 27. The dependence of the relative difference between Cw%INS,i,j for data received from MC simulation and

AvgCw%(h)DC,i values from chemical analysis data with h for sites used for MC simulations [79].
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that the soil carbon content parameter (based on gamma spectra using uniform carbon-sand

mixture calibration data) is the average carbon weight percent for a 10-cm soil layer.

Therefore, INS simulation results (value of Cw%INS, i,2) can be attributed to average carbon

weight percent in the soil layer with thickness h. Since different carbon depth profiles (from

constant levels to sharp declines) were used in the simulations, the parameter (average carbon

weight percent in soil layer with thickness 10 cm) could be assigned to the value determined

from any INS gamma spectra.

2.11.2. Average carbon weight percent measured by PFTNA and chemical analysis

Results of carbon content measurements (average weight percent in upper 10-cm soil layer and

its standard deviation) are shown in Table 4. Measurements were conducted by two methods

(dry combustion and PFTNA). For clarity, the data from the open field at the Camp Hill

location are shown in Figure 29. These data demonstrate good agreement between methods,

especially for average values over whole plots. It should be noted that the accuracy of the

carbon concentration measurement using PFTNA is comparable to measured values when the

carbon concentration value is ~1 w% or less. To increase the accuracy of INS measurement at

low soil carbon levels, further modification of our system is required. Such modifications

would include (i) optimizing the detector’s positioning relative to the neutron generator; (ii)

increasing the number of detectors; and (iii) optimizing radiation shielding.

Data on soil carbon content can be used in mapping. Two maps of carbon distribution in the

upper soil layer on one of the surveyed fields based on neutron-gamma analysis (PFTNA

methods, Figure 30a) and chemical analysis (dry combustion, Figure 30b) are shown for

comparison. As can be seen, both of these maps are very similar to each other. It should

be noted that it took more than 1.5 months to collect the data for carbon content map-

ping in Figure 30b (dry combustion method), while only 2 working days were required

for collecting carbon content data mapped in Figure 30a (PFTNA methods).

2.12. Effect of soil density and moisture on gamma response intensity

Soil density and moisture are parameters which could impact soil carbon measurement

results when using PFTNA. While increasing soil density should increase the macroscopic

Figure 28. The dependence of average values of relative differences for weight percent (circles) and for surface densities

(triangles) for measurements (a) and for MC simulations (b) with h [79].
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Location Site # or Plot # MINS measurements Dry combustion measurements

Carbon, w% STD,

w%

Plot average

�STD, w%

Carbon,

w%

STD,

w%

Plot average

�STD, w%

Camp Hill Open Field OF1 2.20 0.29 2.23�0.45 2.85 0.25 2.25�0.51

OF2 2.51 0.29 2.54 0.31

OF3 1.76 0.22 1.91 0.13

OF4 1.88 0.23 2.99 0.94

OF5 2.82 0.25 3.03 0.37

OF6 2.15 0.21 1.99 0.26

OF7 2.77 0.32 1.92 0.41

OF8 2.52 0.25 2.44 0.15

OF9 2.06 0.26 1.79 0.27

OF10 2.17 0.27 2.25 0.45

OF11 2.39 0.22 2.23 0.30

OF12 3.11 0.31 2.91 0.47

OF13 1.44 0.25 1.49 0.42

OF14 1.93 0.29 1.80 0.19

OF15 1.86 0.27 1.67 0.25

Camp Hill Applied Field 2 AF2-1 1.22 0.38 1.59�0.45 2.00 0.34 1.48�0.46

AF2-2 2.09 0.37 1.14 0.34

AF2-3 1.46 0.37 1.31 0.08

Camp Hill Applied Field 3 AF3-1 1.44 0.43 1.77�0.37 1.96 0.34 1.90�0.53

AF3-2 1.68 0.37 1.34 0.34

AF3-3 2.17 0.39 2.4 0. 8

Camp Hill Applied Field 4 AF4-1 2.59 0.42 2.33�0.34 1.58 0.34 2.12�0.46

AF4-2 2.47 0.37 2.35 0.34

AF4-3 1.94 0.45 2.42 0.14

E.V.Smith* Plots S220 - - 0.93�0.61 - - 0.93�0.18

S320 - - 0.92�0.61 - - 1.40�0.05

S104 - - 0.34�0.68 - - 1.06�0.09

S114 - - 0.81�0.62 - - 1.41�0.53

S102 - - 0.93�0.62 - - 1.04�0.11

S112 - - 1.49�0.68 - - 1.51�0.55

*The measurement was made for one site on these plots.

Table 4. Average carbon weight percent in the upper soil layer by dry combustion and PFTNA methods [79].

New Insights on Gamma Rays166



Figure 29. Average values of carbon weight percent for 10-cm soil layer measured by dry combustion (diamonds) and

PFTNA (circles) methods for the open field (OF) site at Camp Hill (points) and average field values (solid lines) [79].
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Figure 30. Carbon content maps of the upper layer of the open field (Piedmont Research Unit, Camp Hill, AL): (a)

neutron-gamma analysis (PFTNA method) and (b) chemical analysis (dry combustion).
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cross section of neutron interactions with soil nuclei, the excited soil volume could decrease.

Thus, at first glance the effect of soil density on the peak of interest areas in the soil net INS

spectra is not significant. The presence of soil moisture increases the amount of hydrogen atoms

that run to faster neutron moderation and can decrease the peak of interest areas in the soil net

INS spectra due to a decrease in fast neutron numbers. Using the Geant4 tool kit [82], MC

simulations of gamma spectra for carbon-sand mixtures with different densities and moistures

were conducted to estimate their effect on gamma response intensity. Both the INS and TNC

spectra were simulated; the TNC processes were inactivated at INS spectra simulation (com-

mands: /process/activate neutronInelastic, /process/inactivate nCapture, neutron data library

JENDL4.0), while the INS processes were inactivated at TNC spectra simulation (commands: /

process/activate nCapture, /process/inactivate neutronInelastic, neutron data library G4NDL4.5).

The simulated INS and TNC spectra for 150 cm · 150 cm · 60 cm pits with 5w% carbon-

sand mixtures of different densities (from 1.1 to 1.52 g/cm3) are shown in Figure 31. The

dependencies of peak of interest areas with centroids at 1.78 and 4.45MeV in the INS spectrawith

densities are shown inFigure 32. As can be seen in these figures, there are no significant changes in

the spectra or peak areas. Thus, there is no significant effect of soil density on the INS spectra.

Simulated INS and TNC spectra for 150 cm · 150 cm · 60 cm pits with 5w% carbon-sand

mixtures having different moistures H (H from 0 to 30%; a real range of soil moisture

change) are shown in Figure 33. The dependencies of peak of interest areas with centroids

at 1.78 and 4.45 MeV in the INS spectra with water weight percent W [W=H / (1+H)] are

shown in Figure 34. As seen in these figures, the peak areas slightly decrease throughout

Figure 31. Geant4 simulated INS (JENDL4.0, 1e9 events) and TNC (G4NDL4.5, 1e9 events) gamma spectra for 150 cm · 150 cm

· 60 cm pits with 5w% carbon-sand mixtures with different densities (from 1.1 to 1.52 g/cm3) irradiated by 14.1 MeV neutrons.
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Figure 32. Dependencies of peak areaswith centroids at 1.78 and 4.45MeVwithdifferent densities in INS spectra shown inFigure 31.

Figure 33. Geant4 simulated INS (JENDL4.0, 1e9 events) andTNC (G4NDL4.5, 1e9 events) gamma spectra for 150 cm · 150 cm

· 60 cmpitswith 5w% carbon-sandmixtureswith differentmoistures (from0 to 30%) irradiated by 14.1MeV neutrons.
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Figure 34. Dependencies of peak areas with centroids at 1.78 and 4.45 MeV with water weight percent in the INS spectra

shown in Figure 33.

Figure 35. Dependencies of peak areas with centroids at 2.22, 3.53, and 4.93 MeV with water weight percent in the TNC

spectra shown in Figure 33.
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the possible moisture range. However, these changes are not significant in the practical

range of soil moisture. Thus, it was concluded that moisture has no significant effect on the

INS spectra.

At the same time, TNC spectra of gamma response increase with increasing soil moisture. In

the studied moisture range, some peaks increase in direct proportion to the water weight

percent in soil (e.g., TNC Si peaks with centroids at 3.53 and 4.93 MeV). The hydrogen peak

with a centroid at 2.22 MeV increases as a square of the water weight percent within error

limits (Figure 35). This probably occurs due to the linear increase of both thermal neutron flux

and number of hydrogen nuclei as water weight percent increases. The conclusions regarding

moisture and density effects on soil INS gamma response spectra agree with findings of others

[15, 87].

3. Conclusion

Results of the PFTNA and the “gold standard” chemical analysis (Dry Combustion Technique)

demonstrated good agreement for soil carbon content measurements in the upper soil layer

(~10 cm). Experimental results successfully demonstrated that the average carbon weight

percent in the upper soil layer (regardless of carbon depth distribution shape) can be measured

in situ by the PFTNA measurement method (1 h) with accuracy comparable to the “gold

standard” technique. The described procedures for background accountability, system calibra-

tion, and “soil carbon net peak” area calculations from the acquired spectra should be utilized.

Although the current mobile system for PFTNA is fully capable of routine soil carbon mea-

surements in natural and agricultural field settings, future modifications of the detector system

and shielding can improve measurement accuracy and decrease measurement time. Neverthe-

less, the main features and herein described procedures (i.e., system background determina-

tion, calibration procedure, and “soil carbon net peak” area extraction) indicate that PFTNA

methods can be recommended as a viable alternative procedure for soil carbon measurement.

Additionally, MC simulations showed that soil density and moisture do not significantly

impact soil carbon measurements by PFTNA.
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