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Abstract

Antibiotics are nonbiodegradable, can survive at aquatic environments for long periods
and they have a big potential bio-accumulation in the environment. They are extensively
metabolized by humans, animals and plants. After metabolization, antibiotics or their
metabolites are excreted into the aquatic environment. Removal of these compounds
from the aquatic environment is feasible by different processes. But antibiotics are not
treated in conventional wastewater treatment plants efficiently. During the last years
studies with advanced oxidation processes (AOPs) for removal of these pharmaceuticals
from waters has shown that they can be useful for removing them fully. Advanced
oxidation processes (AOPs) can work as alternatives or complementary method in
traditional wastewater treatment, and highly reactive free radicals, especially hydroxyl
radicals (OH) generated via chemical (O3/H2O2, O3/OH-), photochemical (UV/O3, O3/H2O2)
reactions, serve as the main oxidant. This study presents an overview of the literature on
antibiotics and their removal from water by advanced oxidation processes. It includes
almost all types of antibiotics which are consumed by human and veterinary processes. It
was found that most of the investigated advanced oxidation treatment processes for the
oxidation of antibiotics in water are direct and indirect photolysis with the combinations of
H2O2, TiO2, ozone and Fenton’s reagent.
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1. Introduction

The “antibiotic” term qua generic is used to specify any class of organic molecule that blocks or

ravage microbes by specific interactions with bacterial marks, without considering any com-

pound or class [1]. Antibiotics are designed to act very effectively even at low doses and, in

case of intracorporal administration, to be completely excreted from the body after a short time

of residence [2]. They are nonbiodegradable and can survive in aquatic environments for long

periods [3]. The entrance of these compounds into the environment owing to anthropogenic

sources can result in a potential risk for organisms. Although antibiotics exist at residual levels,

they can cause resistance in bacterial populations, making them inactive in the treatment of

several diseases in the near future [4, 5]. And they cause endocrine-disrupting effects when

they are consumed by living organisms. They interfere with the synthesis, secretion, transport,

binding, action, and elimination of hormones in the human body [6].

The annual usages of antibiotics are determined between 100,000 and 200,000 t globally [7].

Traditionally, these compounds were not accepted as environmental contaminants, but their

existence in the aquatic ecosystems has become an apprehension as biological impacts and

potential threat to the environment [8–10]. Furthermore, it has been shown up that residual

antibiotics are able to support the election of genetic variants of microorganisms concluding in

the existence of antibiotic-resistant pathogens [11, 12].

Removal of these compounds from the aquatic environment is feasible by different processes.

This can be carried out using biotic (biodegradation) or nonbiotic (chemical oxidation and

advanced oxidation) ways. But antibiotics are not treated in conventional wastewater treat-

ment plants efficiently. During the last years, studies with advanced oxidation processes

(AOPs) for removal of these pharmaceuticals from waters have shown that they can be useful

for removing them completely. In this chapter, we aim to introduce a review of literature on

antibiotics and their removal from water by advanced oxidation processes. An effort to include

as many studies as possible was made in order to highlight important findings and present the

knowledge currently available on the removal efficiency of antibiotics from wastewater.

2. General description of antibiotics

Antibiotic as a word is reproduced from the Greek anti (¼against) and biotikos (¼living).

Most of the living organisms are able to compose matters that can influence other organisms’

capacity for growth, endurance, and reproduction. Microorganisms have a versatile ability to

inhibit the growth and purpose of other microorganisms and produce and release biologically

effective substances at the appropriate moment. We denominate substances of this kind as

antibiotics [13].

In addition, organisms’ ability to compose antibiotics has been of great importance for the

development of different life forms and their capability to accommodate to new circumambi-

ent. Nowadays, antibiotics are important components for the functions of various biological

systems.
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With the development of synthetic antibiotics, a large number of substances with specific areas

of application have been given to access. Today, the level of usage of synthetic antibiotics and

their effects to the environment are at a critical rate. Since antibiotics are bioavailable, they can

show long-term biological effects in the environment.

Antibiotics can be grouped according to their chemical structure or mechanism of action. There

are various groups of chemicals that can be arranged to different subgroups, such as ß-lactams,

quinolones, tetracyclines, macrolides, sulphonamides, and others. They are complicated mole-

cules, which may have different functionalities within the same molecule. Consequently, they

act as neutral, cationic, anionic, or zwitterionic under different pH conditions. Owing to

different functionalities in a single molecule, their physico-chemical and biological properties

(like octanol-water partition coefficients (log Pow), sorption behavior, photoreactivity and anti-

biotic activity, and toxicity) may change with pH [14].

b-Lactam antibiotics contain cefradine, amoxicillin ceftriaxone, sultamicillin, and penicillins G

and VK. Actually, these antibiotics have been insulated from molds and have been adapted to

obtain different physicochemical and pharmacological properties [15]. They suppress bacterial

cell wall synthesis.

Sulfonamides are synthetic antibiotics, and they inhibit generation of bacteria by behaving as

competitive inhibitors of p-aminobenzoic acid in the folic acid metabolism cycle [15]. A diversity

of sulfonamides have been developed, consumed, and finally detected in the environment, and

some of them have been studied for their degradation by ozonation andAOPs. These compounds

include sulfadiazine, sulfadimethoxine, sulfachlopyridazine, sulfamethazine, sulfamethizole, sul-

famethoxazole, sulfisoxazole, sulfapyridine, sulfathiazole, sulfamoxole, and sulfamerazine.

Most common quinolone antibiotics are enrofloxacin and ofloxacin. They have been examined in

terms of their degradation by ozonation and AOPs. More particularly, both are fluoroquinolones.

While enrofloxacin is utilized as a veterinary antibiotic, despite that ofloxacin is designed for

human uptake. These compounds have a benefit to suppress the activity of bacterial DNAgyrase.

It is known that the quinolones are metabolized in the liver and eliminated in the urine [15, 16].

When we examine other antibiotics, clarithromycin, azithromycin, erythromycin, and roxi-

thromycin are macrolide antibiotics, and lincomycin is a lincosamide antibiotic. These antibi-

otics are described by a property to inhibit bacterial protein synthesis. These antibiotics are

mostly eliminated in the bile [15, 16].

Antibiotic is a chemotherapeutic agent that inhibits the growth of microorganisms (bacteria,

fungi, protozoa, or viruses) even at very low concentrations. They are nonbiodegradable and

can survive in aquatic environments for long periods. So they can bio-accumulate in the

environment [3]. Also antibiotics in the environment may contribute to the emergence of

antibiotic-resistant bacteria [17]. And they cause endocrine-disrupting effects when they are

consumed by living organisms. They interfere with the synthesis, secretion, transport, binding,

action, and elimination of hormones in the human body [6].

Releasing of antibiotics into the aquatic environment by human beings and animals depends

mainly on the consumption rates of antibiotics [14, 18]. According to the investigations, some
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antibiotics have toxic effects on humans, animals, and also microorganisms even at low

concentrations. At the same time, they are nonbiodegradable and can survive in the environ-

ment even in the conventional wastewater treatments. So they cause bio-accumulation [3].

Therefore, the presence of antibiotics in the environment can cause the occurrence of antibi-

otic-resistant bacteria [17]. They are not treated in the conventional wastewater treatment

plants completely. According to the recent studies, advanced oxidation processes (AOPs) are

useful to remove these toxic compounds completely from waters.

2.1. Sources of antibiotics in the environment

In these last years, the use of antibiotics in veterinary and human medicine has been wide-

spread, and consequently, the possibility of water contamination with such compounds has

been increased [19]. These pollutants are continually discharged into the natural environment

as parent compounds, metabolites/degradation products, or both forms by a diversity of input

sources as shown in Figure 1 [5].

Fertilizers present in the fields can contaminate soil and consequently surface and groundwater

through runoff or filtration [20]. Likewise, human antibiotics which are present into the environ-

ment through discharge, entering in the sewage and reaching the Waste-water treatment plants

(WWTP). Despite most ofWWTPs are not projected to remove highly polar micropollutants [19],

they can be transferred to surface waters and reach groundwater after leaching.

The sludge produced in WWTPs is utilized as soil manure and can cause problems when used

as a fertilizer. Some other significant pollution source is the direct delivery of veterinary anti-

biotics through the implementation in aquaculture. Inappropriate elimination of unused/expired

Figure 1. Pathways of antibiotics in the environment [5, 16].
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drugs can also be considered as significant points of contamination. These are derived directly

from sewage discharge or landfills deposition, waste effluents from manufacture, or accidental

spills during manufacturing or distribution [5].

2.2. Occurrence

Research has quite extensively studied the presence of antibiotics in the environment (for a

short overview, see Table 1). With respect to other pharmaceuticals, the concentrations of

antibiotics measured in different countries were found in the same range of concentrations in

the different compartments [14, 21–23]. The antibiotic groups that have been analyzed up to

now include a number of different important classes of antibiotics. They include primarily

macrolides, aminoglycosides, tetracyclines, sulfonamides, sulfanilamides, and quinolones to

name just a few [14, 23–29].

Antibiotic Sewage treatment plant

effluent (ng L�1)

Surface water

(ng L�1)

Ground water*/bank

filtrate (ng L�1)

References

Penicillins

Penicillin up to 200 up to 3 [32]

Flucloxacillin 7 [33]

Piperacillin 48 [33]

Macrolides

Macrolide up to 700 up to 20 up to 2* [32]

Azithromycin up to 3 [33]

Erythromycin-H2O up to 287 [34, 35]

up to 49 [36]

up to 6000 up to 1700 [8]

up to 190 [33]

up to 15.9 [37]

up to 220 [38]

up to 400 [30]

Clarithromycin up to 328 up to 65 [34, 35]

up to 240 up to 260 [8]

up to 37 [33]

up to 20.3 [37]

up to 20.3 [39]

up to 38 [30]

Roxithromycin up to 68 [30]

up to 72 [34, 35]

up to 26 [36]
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Antibiotic Sewage treatment plant

effluent (ng L�1)

Surface water

(ng L�1)

Ground water*/bank

filtrate (ng L�1)

References

up to 1000 up to 560 [8]

up to 14 [33]

up to 180 [38]

up to 350 [31]

Chinolones

Fluorchinolone up to 100 up to 5 [32]

Fluorchinolone up to 106 up to 19 [34, 35]

Ciprofloxacin 9 [33]

up to 30 [38]

up to 26.2 [37]

up to 1300 [31]

up to 26 [39]

Norfloxacin up to 120 [38]

Ofloxacin up to 82 [30]

20 [33]

Sulfonamides

Sulfamethoxazole up to 370 [30]

up to 2000 up to 480 up to 470 [8]

up to 52 [33]

up to 1900 [38]

up to 2000 [31]

Sulfamethazin up to 160 [8]

up to 220 [38]

Sulfamethizole up to 130 [38]

Sulfadiazine up to 17 [36]

Sulfadimidine up to 23 [36]

up to 7 [33]

Tetracyclines

Tetracycline (no more

specified)

up to 20 up to 1 [32]

Tetracycline up to 110 [38]

Chlortetracycline up to 690 [38]

up to 600 [31]

up to 100 [38]

Oxytetracycline up to 340 [38]

up to 19.2 [37]
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3. Advanced oxidation processes (AOPs)

During the oxidation of organic contaminants, the ultimate goal is to produce simple, rela-

tively harmless inorganic molecules [40]. Advanced oxidation processes are characterized by

their production of the hydroxyl radical (�OH), a very strong oxidant, in sufficiently high

concentrations to affect water quality. The symbol “�”represents the radical center, a single

unpaired electron [41].

At optimum operation conditions, for instance sufficient contact time, it is possible to mineral-

ize the target contaminant to CO2 and H2O, the most stable end products of chemical oxida-

tion. For this reason, the extraordinary definition of AOPs on chemical processes is that they

are completely described as “environmentally friendly” [42].

The basic treatment of AOPs can be explained in two steps: one is the generation of hydroxyl

radicals and the other is the oxidative reaction of these radicals with molecules [43]. The

dissolved organic pollutants can be converted into CO2 and H2O by AOPs. The generation of

hydroxyl radical might be by the use of UV, UV/H2O2, UV/O3, TiO2/H2O2, Fe
þ2/H2O2 and one

or two processes [44].

Antibiotic Sewage treatment plant

effluent (ng L�1)

Surface water

(ng L�1)

Ground water*/bank

filtrate (ng L�1)

References

Others

Trimethoprim up to 38 [30]

up to 24 [36]

up to 660 up to 200 [8]

up to 12 [33]

up to 710 [38]

Ronidazol up to 10 [36]

Chloramphenicol up to 68 [30]

up to 560 up to 60 [8]

Clindamycin up to 110 [30]

up to 24 [33]

Lincomycin up to 730 [38]

up to 248.9 [39]

Spiramycin up to 74.2 [37]

Oleandomycin up to 2.8 [37]

Tylosin up to 280 [38]

up to 2.8 [37]

*Directly impacted by surface water.

Table 1. Examples of measured concentrations of antibiotics in the aquatic environment [14, 18, 30, 31].
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AOPs can be classified in two groups: (1) nonphotochemical AOPs and (2) photochemical

AOPs. Nonphotochemical AOPs include cavitation, ozonation, Fenton and Fenton-like pro-

cesses, wet air oxidation, ozone/hydrogen peroxide, etc. Photochemical oxidation processes

include homogeneous and heterogeneous processes [45].

3.1. Nonphotochemical oxidation processes

Nonphotochemical oxidation processes can be classified as follows: ozonation, peroxide,

Fenton process, ozone/hydrogen, supercritical water oxidation, electrochemical oxidation, cav-

itation, gamma-ray, X-ray, electrical discharge-based nonthermal plasma, and electron beam.

3.1.1. Ozonation

Ozone is a powerful oxidizer and has been increasingly used for the treatment of wastewater

[46]. High pH values (>11.0) causes high efficiency and ozone behaves randomly with all

organic and inorganic compositions present in the reacting medium [45]. Ozone reacts with

substances in two different ways: indirect and direct. These two reaction pathways are man-

aged by different type of kinetics and lead to different oxidation products [47].

Simplified reaction mechanism of ozone at high pH is given in below:

OH�

3O3 þH2O ! 2OH•þ 4O2
ð1Þ

3.1.2. Ozone/hydrogen peroxide (peroxone) process (O3/H2O2)

The principle of peroxonation is based on the coupling between ozone (O3) and H2O2, resulting

in the generation of oxidizing radicals. As pointed out by Zaviska et al. [47], the peroxonation

mechanism could be more productive than ozonation alone, and H2O2 impacts on increasing

the decomposition percentage of O3 in water, which generates a larger number of very reactive

•OH radicals [49]. Because of the high cost of ozone generation, this combination makes the

process economically feasible [50]. Several factors limit the usefulness of the peroxonation

process such as important energetic consumption, low water solubility of ozone, and its

sensitivity to several factors [51]. A general mechanism of peroxon process is given below:

H2O2 þ 2O3 ! 2OH•þ 3O2 ð2Þ

Solution pH is critical as well for the process output like other AOPs. Higher production rates

of hydroxyl radicals will be obtained by the addition of hydrogen peroxide to the aqueous O3

solution at high pH conditions. Independence of peroxone process from any light source or UV

delivers a certain benefits to this operation [44].

3.1.3. Fenton process

Fenton's reaction is known as the dark reaction of ferrous iron (Fe(II)) with H2O2 (Eq.(15)) [6].

•OH radical is generated through the agency of reaction between H2O2 and Feþ2 salts as

described below.
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Feþ2 þH2O2 ! Feþ3 þOH� þ •OH ð3Þ

Thus, composed hydroxyl radical can react with Fe(II) to develop ferric ion (Fe(III)) (Eq. (16))

�OHþ Feþ2 ! Feþ3 þOH� ð4Þ

As an alternative, hydroxyl radicals are able to react with organic pollutants and start oxidation

in a waste stream,

RHþ �OH ! R � þH2O ð5Þ

Reactions can result into the degradation of Feþ3 to Feþ2 at a value of pH between 2.7 and 2.8.

Fe2þ þH2O2 ! Fe3þ þ •OHþOH� ð6Þ

Fe3þ þH2O2 ! Fe2þ þ •OOHþHþ ð7Þ

In these circumstances, iron can be considered as a true catalyst [156].

Process efficiency is closely related to the solution pH whose optimal values are between 2 and

4 as well as the COD:H2O2:catalyst ratio in the feed [52].

Basically, the Fenton process possesses several important advantages for water/wastewater

treatment [48, 53]:

• A plain and adaptable operation permitting easy execution in existing plants

• Easy-to-use and relatively cheap chemicals

• No need of energy input

3.2. Photochemical oxidation processes

3.2.1. Homogeneous photochemical oxidation processes

3.2.1.1. Vacuum UV (VUV) photolysis

The vacuum ultraviolet (UV) is absorbed by all the materials from water to air, therefore can

only be transferred in a vacuum. The absorption of a VUV photon causes breaking of one or

more bond. As an example, water is decomposed by

H2Oþ hνð< 190 nmÞ ! H•þHO• ð8Þ

H2Oþ hνð< 190 nmÞ ! Hþþe�þHO• ð9Þ

VUV photolysis has a high feasibility for the oxidative degradation of organic pollutants in

water. In spectral domain (approx. 140–200 nm), it produces hydrogen atoms and hydroxyl

radicals. Due to the high absorption cross-section of water and quantum yields of water homol-

ysis of 0.45–0.3 at stimulation wavelengths (between 140 and 185 nm) provide productive local

concentrations of hydroxyl and hydrogen radicals. VUV photolysis is a new technique for water
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treatment and suggests the benefit to generate unusually high local concentrations of oxidative

reactive intermediates without the addition of supplementary oxidant [44, 54].

3.2.1.2. Hydrogen peroxide/UV (H2O2/UV) process

Hydrogen peroxide can be photolyzed by UV radiations by producing the homolytic scission of

theO–Obond of theH2O2 and resulting the formation of•OHradicalswhich can also be supplied

to the decomposition of H2O2 by secondary reactions [48]. The main reaction is given below:

H2O2 þ hν ! 2HO• ð10Þ

UV/H2O2 process is effective in mineralizing organic pollutants. As an disadvantage the

process cannot use solar light as the source of UV light owing to the fact that the required UV

energy is not available in the solar spectrum [55]. Over and above, H2O2 has poor UV absorp-

tion characteristics. At last, special reactors designed for UV illumination are required [56].

The major factors influencing the process are the amount of H2O2 used, presence of bicarbon-

ate, wastewater pH, the initial concentration of the object compound, and reaction time [57].

3.2.1.3. Ozone/UV (O3/UV) process

The advanced oxidation process with ozone and UV radiation is initiated by the photolysis of

ozone. Hydroxyl radicals can be composed by those in hydrogen peroxide under UV and/or

ozone. The equations are given below:

O3 þ hvþH2O ! H2O2 þO2 ð11Þ

H2O2 þ hv ! 2 �OH ð12Þ

2O3 þH2O2 ! 2 �OHþ 3O2 ð13Þ

All kinds of UV light origins can be utilized for this process, especially low-pressure mercury

vapor lamps. The O3/UV process does not have the same limitations as that of H2O2/UV

process. Many variables (temperature, pH, UV intensity, tubidity, lamp spectral characteristics,

and pollutant type, etc.) affect the performance of the system [42, 44].

3.2.1.4. Ozone/hydrogen peroxide/UV (O3/H2O2/UV) process

This method is considered to be the most effective and powerful method, which provides a fast

and complete mineralization of pollutants [42, 50]. The addition of H2O2 to the O3/UV process

accelerates the decomposition of ozone, which results in an increased rate of ·OH generation.

The main short mechanism of the O3/H2O2/UV process is given below:

2O3 þH2O2 !
UV

2 HO � þ 3O2 ð14Þ

The capital and operating costs for the system vary widely depending on the wastewater flow

rate, types, and concentrations of contaminants present and the degree of removal required [58].

Physico-Chemical Wastewater Treatment and Resource Recovery184



3.2.1.5. Photo-Fenton process

The Photo-Fenton process occurs by the combination of H2O2 and UV radiation with Fe(II) or

Fe(III). The main factor of the mechanism is that iron salts act as photocatalysts and H2O2 as an

oxidizing agent. It offers a productive and cheap method for wastewater treatment and pro-

duces hydroxyl radicals to a greater extent [59].

The reaction is given below:

FeðOHÞþ2 þ hv ! Feþ3 þHO� ð15Þ

A highly low reaction time is required for the photo-Fenton process, and depending on the

operating pH value, the concentrations of H2O2 and iron are added.

3.2.2. Heterogeneous photochemical oxidation processes

Widely investigated and applied heterogeneous photochemical oxidation processes are semi-

conductor-sensitized photochemical oxidation processes.

A semiconductor consists of two energy bands: one is high energy conduction and the other is

low energy valence band. This kind of photolytic chemical oxidation is used for the generation

of OH radical in heterogeneous processes. Zinc oxide, strontium titanium trioxide, and TiO2

have been used for commercial implementation. Valance and conduction bands of a semicon-

ductor material are distinguished by energy gap/band gap [60].

Moreover, the photocatalyst TiO2 is a wide band gap semiconductor (3.2 eV) and is success-

fully used as a photocatalyst for the treatment of organic pollutants [61, 62]. To summarize, in

the TiO2 process, the photon energy given to achieve the band gap energy and to induce an

electron into the transmission band from the valence band can be fed with a wavelength

shorter than 387.5 nm. Clarified reaction mechanisms of TiO2/UV process are given below

[Eq. (16)–(19)].

TiO2 þ hv ! e�CB þ hþVB ð16Þ

H2Oþ hþVB ! OH•þHþ ð17Þ

O2 þ e�CB ! O2•
� ð18Þ

O2•
� þH2O ! OH•þOH� þO2 þHO2

� ð19Þ

The basic reason of this reversal is the production of photons. The reversal mechanism impor-

tantly decreases the photocatalytic efficiency of a semiconductor. Main benefit of TiO2/UV

process is low energy consumption thus sunlight can be utilized as a light source [44].

AOPs have been examined in terms of limitations and summarized below.

As an example, UVoxidation process with H2O2 is just effective at low wavelengths (especially

under 200 nm).The treated aqueous flux must supply good transmission of UV light. Scaven-

gers and high doses of chemical subscriptions may limit the process. Insoluble oil and grease,
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heavy metal ions, insoluble oil and grease, carbonates, and high alkalinity may cause clogging

of the UV quartz handle. Air emission problems with O3 may arise. The cost of the AOPs is

expensive when compared to rival technologies [42].

3.3. Assessment of AOPs performance for antibiotic removal

Ozonation and AOPs are required for efficient degradation of antibiotics in water and waste-

water. These treatment processes have an advantage of elimination of such pollutants through

mineralization or conversion to the products that are less harmful to human health and the

aquatic environment.

Various studies have published the effective AOPs treatment for the removal of antibiotics

from wastewater [63–67]. High-quality and effective publications relevant with the AOP stud-

ies on the mechanisms and applications of water and wastewater treatments have been pro-

nounced for last two decades. From the theoretical, environmental, and economical point of

view, they demonstrate a great and increasing interest. As shown in Table 2, several studies

have been conducted on the applicability of AOPs on different antibiotic classes.

Ozone is a potent oxidant and has been progressively applied for the treatment of wastewater.

Ozone and/or hydroxyl radicals passivate bactericidal characteristics of antibiotics by dis-

rupting or modulating their pharmaceutically active functional groups, such as N-etheroxime

and dimethylamino groups of macrolides [68, 69], aniline moieties of sulfonamides [70],

thioether groups of penicillins, unsaturated bonds of cephalosporin, and the phenol ring of

trimethoprim [69]. High removal rates (>90%) were achieved by ozonation of the compounds

with electron-rich aromatic systems, such as hydroxyl, amino (e.g., sulfamethoxazole),

acylamino, alkoxy, and alkyl aromatic compounds, as well as those compounds with depro-

tonated amine (e.g., erythromycin, ofloxacin, and trimethoprim) and nonaromatic alkene

groups, since these structural moieties are highly amendable to oxidative attack [1]. Ozonation

process was found to be effective for the removal of b-lactams, macrolides, sulfonamides,

trimethoprim, quinolones, tetracyclines, and lincosamides [5].

The performance of ozone treatment can be improved providing ozone is combined with UV

irradiation, hydrogen peroxide, or catalysts such as iron or copper complexes [52]. Regardless,

optimum process and operational circumstances have still been determined for the different

water and wastewater types together with various types of antibiotics [152].

In general, Fenton process has been widely used successfully for the oxidation of many groups

of antibiotics, including b-lactams, quinolones, trimethoprim, and tetracyclines. Fenton's oxi-

dation is a homogeneous oxidation process and considered to be a metal-catalyzed oxidation

reaction, in which iron acts as a catalyst [65, 153]. The main handicap of the process is the low

pH value. It is required to avoid iron precipitation that takes place at high pH [154, 155].

Heterogeneous photocatalysis with TiO2 semiconductor is generally accomplished by the

illumination of a suspension of TiO2 in aqueous solution with light energy which is greater

than its bandgap energy. This causes the generation of high energy electron-hole pairs (e�/hþ),

which may migrate to the surface of the catalyst and may either reunite producing thermal

Physico-Chemical Wastewater Treatment and Resource Recovery186



Compound name AOP Concentration Reaction conditions References

Amoxicillin, sulfamethoxazole, and

ciprofloxacin

Direct photolysis with UV 1 mgL�1 250 W lamp (254 nm), UV doses: 0–2.5 � 104 μW

s cm�2, urban wastewater

[71]

β-Lactam antibiotics (amoxicillin and

ampicillin)

Ferrate (VI) 0.1 mM Fe(VI): 0.1–10 mM, pH 7.0, synthetic wastewater [72]

Amoxicillin and cloxacillin Photo-Fenton 150 mgL�1 Solar intensity 0.85 kWm�2, pH 3, synthetic

wastewater

[73]

Enrofloxacin Wet air oxidation and ozonation 0.2 mM Wet air oxidation: 50 mL Teflon-lined stainless steel

autoclave, 0.5 MPa,150�C stirring speed: 300 rps

Ozonation: Pyrex glass tubular photoreactor, flow

rate: 7.3 L h�1, OGV-500 catalyst, synthetic

wastewater

[74]

Amoxicillin, ampicillin, and

cloxacillin

Fenton AMX, AMP, CLX:104,

105, 103 mgL�1

pH 3, COD: 520 mgL�1, synthetic wastewater [75]

Amoxicillin, ampicillin, and

cloxacillin

Photo-Fenton AMX, AMP, CLX: 104,

105, 103 mgL�1
UV lamp, 230 V, 0.17 A, 6 W, 365 nm, synthetic

wastewater

[76]

Amoxicillin, ampicillin and

cloxacillin

UV/TiO2 and UV/H2O2/TiO2 AMX, AMP, CLX: 104,

105, 103 mgL�1
pH ~ 5, COD: 520 mgL�1, BOD5/COD ~0 and DOC

145 mgL�1, synthetic wastewater

[77]

Amoxicillin and cloxacillin UV/TiO2/H2O2 AMX: 138 mgL�1

CLX: 84 mgL�1
6-W lamp, wavelength ≈ 365 nm, pharmaceutical

industry wastewater

[67]

Amoxicillin UV-A/TiO2 2.5–30 mgL�1 Degussa P25 TiO2, TiO2: 100–750 mgL�1, pH 5 or

7.5, photon flux of 8 � 10�4 E/(L min), 9 W lamp,

350–400 nm, 25�C, synthetic wastewater

[78]

Amoxicillin, ampicillin, and

cloxacillin

Fenton, photo-Fenton, TiO2

photocatalytic and UV/ZnO

AMX, AMP, CLX: 104,

105, 103 mgL�1
UV lamp, 230 V, 0.17 A, 6 W, 365 nm, synthetic

wastewater

[77]

Amoxicillin O3/OH�, H2O2/UV, Fe2þ/H2O2, Fe
3þ/

H2O2, Fe
2þ/H2O2/UVand Fe3þ/H2O2/UV

AMX: 400 mgL�1 O3 generated from O2, 21W Hg lamp (253.7 nm),

flow rate: 1.3 L/min, light intensity: 3.65 WL�1 (1.73

� 10�4 EinsteinL�1s�1), effective pathlength: 1.72

cm, pharmaceutical wastewater

[3]

Amoxicillin and cloxacillin Fenton AMX and CLX: 150

mgL�1

pH 3.0, H2O2/COD: 1.0–3.0, H2O2/Fe
2þ: 2–150 and

reaction time: 60–120 min, synthetic wastewater

[79]

Amoxicillin, oxacillin, and ampicillin Nonthermal plasma OX, AMX, AMP: 100

mgL�1

Discharge was generated at the gas-liquid interface

at room temperature and atmospheric pressure, in

[80]
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oxygen flow rate: 600 sccm, power: 2 W, pH 8,

synthetic wastewater

Amoxicillin UV, O3, Fenton, Fenton-like, photo-

Fenton, UV/O3/H2O2, TiO2, Fe(II), and

Fe(III)

1 μM Temperature: 20�C, 15 W Hg lamp (254 nm), light

intensity: 1.81 micro Einstein s�1, optical path: 5.09

cm, O3was generated from O2.flow rate of O3: 16

mgh�1photo-Fenton and photo-Fenton: pH 3 and

other experiments were carried out at natural pH

for Fenton and photo-Fenton Fe(II) and H2O2

concentration:10 μM, ultra-pure water, reservoir

water, groundwater, secondary effluents from

municipal WWTP

[81]

Amoxicillin Photo-Fenton 0.1 mM 15-W black-light fluorescent lamp (365 nm),

pharmaceutical solution flow rate: 80 mL min�1,

pH 2.5, ferric nitrate or FeOx conc.: 0.2 mmol L�1,

H2O2 conc.: 1.0–10.0 mmol L�1, sewage treatment

plant effluent

[82]

Amoxicillin Microwave assisted Fenton 450 μg L�1 H2O2 conc.: 2 g L�1, FeSO4.7H2O conc.: 0.2 g L�1,

pH 3.5, microwave-assisted oxidation reactions

were performed with a modified version of the

domestic electric oven: power of 1200 W, of 2450

MHz, synthetic wastewater

[83]

Amoxicillin Ozonation 5.0 � 10�4 M Ozonation were performed in a semicontinuous

stirred gas–liquid reactor. 25�C, flow rate: 361 h�1,

synthetic wastewater

[84]

Amoxicillin Photo-Fenton 50 mg L�1 Solar simulator: 1100-W xenon arc lamp (290 nm),

minimum intensity (250 W m�2) pH 6.2, TOC: 26.3

mg C L�1, FeSO4.7H2O or FeOx conc.: 0.05 mM,

H2O2 concentration used was 120 mg L�1, pH 2.5–

2.8, synthetic wastewater

[85]

Amoxicillin Sulfate radicals under ultrasound

irradiation

0.095 mmolL�1 Ultrasonic generator: 20 kHz, Ti probe, synthetic

wastewater

[86]

Amoxicillin UV and UV/H2O2 00 μM Low-pressure Hg arc-UV (254 nm)

Photon fluence rate: 8 � 10�7 Einstein L�1 s�1,

effective light path: 5.5 cm, T: 20 � 2�C pH 7

[87]
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H2O2: 0.4, 2, 3, 4, 5, and 10 mM, synthetic

wastewater

Trimethoprim, sulfamethoxazole,

clarithromycin, erythromycin, and

roxithromycin

Ozonation and UV TMP:0.34 μg L�1

SMX: 0.62 μg

L�1CMI: 0.21 μg

L�1EMC: 0.62 μg L�1

RXM:0.54 μg L�1

pH: 7.2, DOC: 23.0 mg L�1, COD: 30.0 mg L�1

AOX: 100 mg L�1, BOD5: 2.8 mg L�1, low-pressure

UV unit (254 þ 185 nm, 110 W power rating, 400 J

m�2 by a flowrate: 2 m3 h�1), municipal

wastewater

[88]

Beta lactam antibiotics Sulfate radical oxidation - Linear accelerator (LINAC) electron pulse

radiolysis system was used, T: 20–22�C, 4–6 ns

pulses of 8.0 MeV electrons generating sulfate

Radical concentrations of 5–10 μM per pulse were

used, synthetic wastewater

[89]

Flumequine, ofloxacin, and

sulfamethoxazole

Photo-Fenton 100 μg L�1 pH 5, Fe2þ conc.: 5 mg L�1, natural water [90]

Cefalexin Electro Fenton 50, 100, 200, and 300

mgL�1

Cathode: activated carbon fiber (ACF), resistivity:

18.2 MΩ cm, T: 25�C, FeSO4�7H2O conc.: 0.5–1 mM,

pH 2–5, wastewater

[91]

Cefazolin TiO2/UV and sunlight 1.0 � 10�2 mol L�1 TiO2 Degussa P25 and the N-doped TiO2 were

used; 5 � 8 W blacklight

Fluorescent lamps (max. 365 nm), photonic fluence:

3.1 � 10�7 Einstein s�1, T: 23 � 2�C, pH 6.4 � 0.1,

synthetic wastewater

[92]

Ceftriaxone, cephalosporine,

penicillin VK, penicillin group,

enrofloxacin, and quinolone

O3 and O3/H2O2 COD: 450 mg L�1 Ozone generated from O2, pH 3, 7, and 10.6,

oxygen flow rate: 100 Lh�1, T: 20�C � 2, synthetic

wastewater

[93]

Chloramphenicol Photo-Fenton 200 mg L�1, 400 W high-pressure Hg vapor lamp (295–390 and

295–710 nm), photonic flux: 6.0 � 10�7 and 3.3 �

10�6 Einstein s�1, T: 25–30�C, synthetic wastewater

[94]

Chloramphenicol Solar photoelectro-Fenton 245 mg L�1 pH 3.0, T:35�C, synthetic wastewater [95]

Chloramphenicol UV/H2O2 100 mg L�1
T: 20�C � 2, 6-W low-pressure Hg lamp (254 nm),

pH 5.5 � 0.1, synthetic wastewater

[96]

Chloramphenicol Direct photolysis (UVC), hydrogen

peroxide/UVC and solar radiation

20 mg L�1 30W three UVC lamps, illuminance: 2500 lux, 53

μW cm�2 (290 and 390 nm) and 18.6 μW cm�2 (254

nm), synthetic wastewater

[97]
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Chlortetracycline, doxycycline,

oxytetracycline

Ozone 5 � 10�6 M Flow rate: 80 cm3/min, T: 20–21�C, synthetic

wastewater

[98]

Chlortetracycline, sulfamethoxazole UV, electron beam, ozone 30 mgL�1 pH 4.63 and 4.33, atmospheric pressure

T: 22 � 2�C, 6-W single UV-C lamp (254 nm), ozone

was produced from O2, electron accelerator (1 MeV

and 40 kW), synthetic wastewater

[99]

Chlortetracycline Photocatalytic ozonation 0.15 mM Ozone generated from O2 (air pressure: 5 bar, air

flow rate: 1200 L h–1), ozone input: 20 g m�3 and

flow rate of the ozone/air: 20 L h�1, T: 25�C, 15-W

UV low-pressure lamp (254 nm), synthetic

wastewater

[100]

Chlortetracycline Photocatalytic ozonation 0.5 mM Ozone generated from pure oxygen. flow rate: 20

mg min�1, T: 20 � 2�C, 125-W high-pressure UV

lamp (260, 275, 290, 302, 307, 315, 336, 366, 406, and

434 nm), TiO2: Degussa P25 and 0.1 g L�1,

synthetic wastewater

[101]

Ciprofloxacin and sulfamethoxazole persulfate 0.15 mM Initial pH 6 and decreased to 3–4.K2S2O8 and Fe

(II)/Fe(II)-chelate: 4.8 and 4.8 mM, river water

[102]

Ciprofloxacin, moxifloxacin UV and TiO2/UV CIP:45.3 μM and

MOX: 37.4 μM

Photocatalyst: TiO2-P25, TiO2: 0.5 g L�1,T: 298 �

1�K, synthetic wastewater

[103]

Ciprofloxacin Electron ionization 100 mg L�1 10 MeV, 10-kW electron ionizing energy unit,

synthetic wastewater

[104]

Ciprofloxacin O3/H2O2 45.27 μM A bubble reactor was used for ozonation. Ozone

generated from O2. T: 6.0–62
�C, ozone conc.: 2500

ppm, gas flow rate: 120 mL min�1, T: 27.5�C, H2O2:

2–990 μmol L�1, synthetic wastewater

[105]

Ciprofloxacin UV, TiO2/UV, O3 and H2O2 200 μgL�1 Photocatalyst: TiO2-P25, 125W medium-pressure

Hg lamp, pH 3 (UV and TiO2/UV), TiO2 conc.: 571

ppm, ozone generated from O2,flowrate: 8 Lmin�1,

pH 9 (O3 and H2O2), H2O2 conc.: 500 and 1000

mgL�1, hospital wastewater

[106]

Ciprofloxacin Photo-Fenton 0.15 mM T: 298 K, 125-W high-pressure lamp, photonic flux

(9 � 104 μEs m�2 s�1), synthetic wastewater

[100]
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Ciprofloxacin Pulsed radiolysis, UV 100 mM Electron pulse radiolysis

8-MeV TBS-8/16–1S linear accelerator, pulse

lengths: 2.5–10 ns, λ ¼ 472 nm, ((Ge) ¼ 5.2 � 10�4

m2 J�1,3–5 Gy per 2–3 ns pulse, 8–12 replicate

pulses, T: 25 � 1�C, 125-W high-pressure Hg lamp

(Emax ¼ 365 nm)

Light intensity: 0.38 mWcm�2, TiO2: 1.5 gL�1

(Degussa P25), synthetic wastewater

[107]

Amoxicillin and cloxacillin Photo-Fenton AMX: 138 � 5 mgL�1

CLX: 84 � 4 mgL�1

230 V, 0.17 A, 6-W UV lamp (365 nm), antibiotic

wastewater

[67]

Dicloxacillin and ceftazidime Ozonation 1.5 mg L�1 Ozone gas-phase concentration (mg L�1): 5 � 0.5–

30 � 0.5, volumetric ozone-gas flow rate (mL

min�1): 40 � 0.5, ozone inlet pressure (bar): 2.5 �

0.1, transmembrane pressure (TMP) (bar): 2.1� 0.1,

volumetric cross-flow rate (Lmin�1): 0.55 � 0.05,

temp. (�C): 24 � 1, surface water

[108]

Doxycycline and norfloxacin UV C, ozonation 5 � 10�5 M Ozone was produced from pure oxygen, gas flow

rate: 30 L h�1, 15-W low-pressure Hg vapor lamp

(254 nm), commercial activated carbon Hydraffin

P-110 was used in granular form. Titanium dioxide

Degussa P-25 was also used. Synthetic wastewater.

[109]

Enrofloxacin Anodic oxidation, electro-Fenton (EF),

photoelectro-Fenton (PEF) and solar

photo electro-Fenton

158 mgL�1 Fluorescent lamp (360 nm, 1.4 Wm�2), pH 3.0, T:

35�C, synthetic wastewater

[110]

Enrofloxacin, ciprofloxacin UV/H2O2, UV/H2O2/Fe(II), O3, O3/UV,

O3/UV/H2O2 and O3/UV/H2O2

0.15 mM Ozone, generated from pure oxygen air

Pressure: 5 bar, air flow rate 1200 L h–1

Flow rate of the ozone/air mixture: 20 L h�1, T:

25�C, 15W UV low-pressure lamp (254 nm),

synthetic wastewater

[100]

Ciprofloxacin, erythromycin,

ofloxacin, sulfamethoxazole,

trimethoprim

Ozonation ERYC: 346 ngL�1

CIP: 5524 ngL�1

OFX: 2275ngL�1

SMX: 279ngL�1

TMP: 104 ngL�1

pH 7.54, COD (mgL�1) 269, BOD5 (mgL�1) 42,T:

25�C, ozone was produced by a corona discharge

ozonator (Ozomatic, 119 SWO100) fed by an

AirSep AS-12 PSA oxygen generation unit.gas flow

rate: 0.36 Nm�3h�1, pH value of 8.5 � 0.1 urban

[111]
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wastewaters were taken from Alcala de Henares

(Madrid)

Flumequine, ofloxacin,

sulfamethoxazole

Modified photo-Fenton 100 μgL�1 5 mgL�1 Fe, 35 mgL�1, 50 mgL�1 H2O2, oxalic acid,

initial pH ≈ 7, λ < 400 nm

Solar UV power: 30 Wm�2, municipal wastewater

treatment plant effluent was taken downstream of

the MWTP secondary biological treatment in El

Ejido (province of Almería, Spain). pilot compound

parabolic collector (CPC) was used for photo-

Fenton experiment

[112]

Flumequine Fenton and photo-Fenton 500 μg L�1 Low-pressure mercury lamp, 15 W, λmax ¼ 254 nm,

irradiance: 8.3 mW cm�2, H2O2: 0.5–10.0 mmol

L�1, Fe(II): 0.25–1.0 mmol L�1. NaHSO4/H2O2: 1

[97]

Levofloxacin OzonationandTiO2/UV 20 mgL�1 Ozone flow rate: 3.3 gh�1, oxygen was used as a

feed gas, commercial TiO2 Degussa P25 was used

as catalyst, T: 17�C, pH 6.5, synthetic wastewater

[113]

Metronidazole Electro-Fenton 80 mg L�1
T: 20�C, synthetic wastewater [114]

Moxifloxacin TiO2/UV 37.4 and 124.6 μM T: 25�C, pH: 3.0, 7.0 and 10.0, stirring speed: 13.2

rps, reactor volume: 200 mL, catalyst loading: 1.0 g

L�1, air flow: 60 mLmin�1, phosphate buffer conc.:

10 mM, light intensity UV-A 104 mW, synthetic

wastewater

[115]

Moxifloxacin TiO2/UV 12.5, 24.9, 37.4, 49.9,

62.3

and 124.6 μM

T: 5, 15, 25, 35, 45, and 65�C, pH 7, stirring speed

2.3, 7.9 and 13.2 rps, reactor volume 200 mL,

catalyst loading 0.25, 0.5, 1, 3, 5, and 8 g L�1,

oxygen, air, nitrogen flow: 60 mL min�1, buffer

concentration 10 mM, light intensity UV-A at 3 cm,

485 W cm�2, ISO concentration μmol L�1 37.4, 374,

3740, 37.4 � 103, 74.8 � 103, and 18.7 � 104, KI

concentration 3.74, 37.4, 374, 3740, and 7480 mol

L�1, synthetic wastewater

[116]

Ofloxacin and trimethoprim Solar photo-Fenton process 100 μg L�1
T: 25�C, UV power: 30 W m�2, secondary treated

domestic effluents

[117]
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Ofloxacin Solar Fenton 10 mg L�1
T: 20�C, H2O2 conc.: 2.5 mg L�1 and Fe2þ conc.: 2

mg L�1,demineralized water, simulated natural

freshwater, simulated effluent from municipal

wastewater treatment plant and pre-treated real

effluent from municipal wastewater treatment

plant

[1]

Oxolinic acid TiO2/UV 20 mg L�1 Titanium dioxide Degussa P-25 with a surface area

of 50 m2 g�1 (size ∼20–30 nm) was used as

provided. 14Wm�2, emission maximum at 365 nm,

synthetic wastewater

[118]

Oxytetracycline Photo-Fenton 20 mg L�1
T: 25�C, I ¼ 500 Wm�2,wastewater [119]

Oxytetracycline TiO2/UV 20 mg L�1
T: 25�C, photocatalyst: Titanium dioxide Degussa

P-25, 1000-W Xe-OP lamp, radiant power: 3.55 J

s�1, synthetic wastewater

[120]

Roxithromycin, sulfamethoxazole,

and trimethoprim

H2O2/UV, Fenton, photo-Fenton, UV,

ozon

50–100 μgL�1 Membrane bioreactor

Hollow-fiber ultrafiltration (UF) membranes,

nominal pore size: 0.04 mm, pH: 7.2 municipal

wastewater

UV radiation, O3 and AOP

T: 20�C, pH: 3.0, synthetic wastewater and MBR

permeate

[121]

Sulfachlorpyridazine, sulfapyridine,

and sulfisoxazole

TiO2/UV 50–200 μM Xe arc lamp, 172 nm, power: 125 W, T: 20�C,

photocatalyst: degussa P25, synthetic wastewater

[122]

Sulfamethazine Electrochemical incineration 193 mg dm�3 Synthetic wastewater [123]

Sulfamethazine Gamma irradiation/H2O2 20 mgL�1 Dose rate: 339 Gymin�1, pH: 6.0–7.5, H2O2

concentration: 0, 10, and 30 mgL�1, synthetic

wastewater

[124]

Sulfamethoxazole and

acetaminophen

Ozone, Fenton-like 30 mg L�1 Ozone was produced from pure oxygen, gas flow

rate: 20 Lh�1,15-W black light lamps, 365-nm

radiation, synthetic wastewater

[125]

Sulfamethoxazole, ciprofloxacin,

clarithromycin, erythromycin,

sulfamethoxazole

UV 763.31 and 2.32 μgL�1 Two different UV lamps: medium pressure (MP)

lamp with power of 2–10 kW and low-pressure

(LP) UV lamp with power of 0.25 kW

LP lamp wavelengths: 254 nm and 185 nm. MP

[126]
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lamp has polychromatic emission, hospital

wastewater

Sulfamethoxazole, roxithromycin,

erythromycin, ciprofloxacin and

sulfathiazole

UV 1 μgmL�1 Mercury vapor lamp (UV 254 nm) or black light

phosphor bulb (UV 350 nm), xenon lamp (750

Wcm�2, 250 Wcm�2,

pH: 5.5–8.1, T: 20�C, synthetic wastewater

[127]

Sulfamethoxazole, sulfamethazine,

sulfadiazine, trimethoprim

UV and UV/H2O2 4 μM Low-pressure UV lamps, fluence ¼ 540 mJ cm�2,

H2O2 dose ¼ 6 mg L�1, synthetic wastewater,

surface water, wastewater treatment plant effluent

[128]

Sulfamethoxazole Anodic oxidation and electro-Fenton 1.3 mM Catalyst: 0.2 mM Fe2þ and/or 0.2 mM

Cu2þ, pH 3.0 and T: 23 � 2�C, current: 30–450 mA,

synthetic wastewater

[129]

Sulfamethoxazole Photoelectro-Fenton 200–300 mg L�1
T: 20�C, anode: RuO2/Ti, cathode: RuO2/Ti, UV

Lamp SLUV-8, 254/365 nm, energy input: 1407

Wcm�2, current: 0.36 A, synthetic wastewater

[130]

Sulfamethoxazole Ozone 0.150 mM Ozone generated from pure oxygen, pH: 2 and 8,

H2O2: 0.013 M, flow: 3.0 ml min�1, T: 25�C, gas

flow: 8.5 gNm�3, synthetic wastewater

[131]

Sulfamethoxazole Ozone 200 μg L�1 Ozone generated from pure oxygen, 15-W black

light lamps (365 nm), flux of radiation: 7.05 � 0.05

� 10�5 Einstein min�1, primary wastewater

effluent

[132]

Sulfamethoxazole Photo-Fenton 200 mg L�1 Black-light blue lamps with power of 8W (350 and

400 nm), photon flow: 6.85–5.67 Einstein s�1. T: 25

� 0.8�C; TOC ¼ 94.5 mgL�1 and COD ¼ 290 mgO2

L�1, synthetic wastewater

[133]

Sulfamethoxazole Solar photo-Fenton 10 mg L�1 1100-W xenon arc lamp (below 290 nm), intensity:

250 Wm2, T: 25�C, synthetic wastewater, seawater

[134]

Sulfamethoxazole TiO2/UV 100 mg L�1 Catalyst: TiO2 Degussa P25, T: 25�C, xenon lamp

(1000 W), wavelength: below 290 nm, synthetic

wastewater

[135]

Sulfamethoxazole TiO2/UV 2.5–30 mgL�1 9W lamp (350–400 nm), photon flux: 2.81 � 10�4

Einstein min�1, T: 25�C, synthetic wastewater

[136]
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Sulfasalazine Fenton-like 100 mgL�1 Initial pH:3.0, industrial wastewater [137]

Sulfadiazine Gamma irradiation 10–30 mgL�1 The dose rate of gamma-ray: 103 Gymin�1, pH:

5.5–6.5, wastewater

[138]

Sulfamethoxazole Catalytic ozonation 50 ppm Catalysts: commercial activated carbon and

commercial multi-walled carbon nanotubes, pH:

4.8, flow rate: 150 cm3min�1, ozone concentration:

50 g m�3, T: 20�C, synthetic wastewater

[139]

Sulfamethoxazole UV/H2O2 1 mg L�1 0.45-kW polychromatic (200–300 nm) medium-

pressure (MP) Hg vapor lamp, H2O2

concentrations: 0–4.41 mM, synthetic wastewater

[140]

Sulfamethoxazole UV, O3, O3/TiO2, O3/UVA, O2/TiO2/UVA,

O3/TiO2/UVA

30–80 mg L�1 Ozone was generated from pure oxygen. catalyst:

TiO2 Degussa P25, high-pressure mercury lamp

(700 W, 238–579 nm)

Radiation intensity: 0.111 Einstein h�1, synthetic

wastewater

[141]

Sulfamethazine Gamma irradiation 20 mgL�1 Dose rate: 320 Gymin�1, G (Fe3þ): 15.6 (per 100eV),

Fe2þ concentrations: 0, 0.1, 0.2, 0.4, and 0.6 mM,

pH: 6.0–7.5, irradiation: 200, 400, 600, 800, and 1000

Gy, synthetic wastewater

[142]

Sulfamethazine Sonophotolytic goethite/oxalate Fenton-

like

25 mg L�1
T: 20�C, 9-W UVA lamp (λmax ¼ 365 nm), light

intensity: 7.7 mW cm�2, ultrasonic shockwave

Frequency: 20 kHz, purified air flow:1.0 L min�1,

synthetic wastewater

[143]

Sulfanilamide Electro-Fenton and UVA photoelectro-

Fenton

239–2511 mg L�1 6-W fluorescent black light blue tube (320–400 nm),

photoionization energy: 5 Wm�2, synthetic

wastewater

[123]

Tetracycline, chlortetracycline,

oxytetracycline, doxycycline

Electron pulse radiolysis, gamma

radiolysis

0.5 mM Pulse radiolysis

k ¼ 472 nm, dose of radiolysis:3–5 Gy per 2–3 ns

pulse, pH 7, T: 22�C, Xe arc lamp (172 nm),

synthetic wastewater

ɤ-radiolysis

pH 7, T: 22�C, synthetic wastewater

[12]
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Tetracycline Electrochemical oxidation TC ¼ 200 mg L�1 The process was performed using a DSA (mixed

metal oxide, Ti/RuO2-IrO2) anode carbon-felt from

cathode. synthetic wastewater

[144]

Tetracycline Electrochemical oxidation, electro

Fenton

100 mg L�1 Three electrodes as anode: commercial pure Pt,

boron-doped diamond (BDD, thin-film deposited

on a niobium substrate), and commercial DSA

(mixed metal oxide Ti/RuO2–IrO2), and a

tridimensional, carbon-felt electrodes as cathode

were used. T: 23�C, synthetic wastewater

[145]

Tetracycline Ozonation 20–100 mgL�1 O3 was generated from oxygen. T: 25�C, synthetic

wastewater

[146]

Tetracycline Photo-Fenton TOC: 13 mg L�1 15-W black-light lamp (365 nm), irradiance: 19

Wm�2, flow rate: 80 mL min�1, synthetic

wastewater, surface water and a sewage treatment

plant effluent

[147]

Tetracycline Photocatalysis 67 mgL�1 Medium mercury lamp, synthetic wastewater [148]

Tinidazole Ozone 30 mgL�1
T: 25�C, synthetic wastewater, surface water and a

sewage treatment plant effluent

[149]

Tinidazole Sonolysis 45, 80, and 100 ppm pH: 3, 5, 7, 9; H2O2 conc.: 83, 167, 250, 333, and 417

mML�1, frequency: 40, 80, 120, and 160 kHz, input

power:750 W, pharmaceutical wastewater (Tehran,

Iran), synthetic wastewater

[150]

Trimethoprim Anodic oxidation, electro-Fenton,

photoelectro-Fenton, solar photoelectro-

Fenton

20.0 mg L�1 6-W fluorescent blacklight blue lamp (350–410 nm),

synthetic wastewater, wastewater

[151]

Trimethoprim BDD, electrochemical oxidation 1.72 � 10� 4 mol L�1
T: 25�C, synthetic wastewater [120]

Table 2. Summary of reaction conditions for antibiotic removal from water by AOP.
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energy or participate in redox reactions with the compounds that are adsorbed on the cata-

lyst's surface [1].

Due to some disadvantages of the heterogeneous photocatalysis (e.g., rather small quantum

efficiency of the process; comparatively narrow light-response reach of TiO2; the requirement

of postseparation and recovery of the catalyst particles from the reaction mixture in aqueous

slurry systems), TiO2 appear to have some interesting properties, such as high chemical

stability in a wide pH range, strong resistance to chemical breakdown and photocorrosion,

and high efficiency. The catalyst is also inexpensive and can be reprocessed [134, 156]. The

characteristics of antibiotics to be treated like pKa and molecular structure will identify not

only the performance of their photocatalytic breakdown but also the mechanisms of the

oxidation products formation.

Ultraviolet (UV) disinfection is progressively discovering practices in UWTPs. Photolytic

breakdown can be either direct or indirect. In direct photolysis, the target pollutant assimilates

a solar photon, which causes to a breakup of the molecule. In an indirect photolysis mecha-

nism, as a matter of course occurring molecules in the system such as dissolved organic matter

(DOM) behave as sensitizing species, which creates strong reactive agents such as hydroxyl

radicals, singlet oxygen, and hydrate electrons under solar radiation [1, 117].

Ultraviolet irradiation has been greatly used for the treatment of waters and wastewaters

worldwide. Different studies have stated the effective treatment of UV irradiation for the

removal of antibiotics in wastewater effluents [63]. It has been lately stated that at high UV

doses of almost 11,000–30,000 mJ cm2, a nearly complete removal of tetracyclines and cipro-

floxacin was obtained. Kim et al. [99] noticed that sulfonamides and quinolones demonstrate

high removal efficiency in the reach of 86–100% throughout the UV process [1].

Many of the antibiotics have aromatic rings, structural moieties (such as phenol and nitro

groups) heteroatoms, and other functional chromophore groups that can either absorb solar

radiation or react with photogenerated transient species in natural. The organic material, UV

dosage, contact time, and the chemical construction of the compound are significant agents

ruling the removal performance of antibiotics throughout direct photolysis. This technique is

only practicable to wastewater-containing photosensitive compounds and waters with low

COD concentrations [5].

Most traditional operation performed in WWTPs and DWTPs (such as coagulation, floccula-

tion, sedimentation, and filtration) were ineffective in the removal of these compounds [63],

taking the improvement of new effective methodologies. Owing to the recalcitrant nature of

the effluents including antibiotics residues, the implementation of the AOPs arises as an

alternate. In fact, ozonation and Fenton's oxidation are the most tried methodologies.

Although ozonation has the benefit of being used to fluctuate flow rates and compositions,

the high cost of material and the energy required to provide the process constitute a primary

disadvantage. Oxyhydroxides produce precipitate (if the pH range is not controlled well)

when a homogeneous process is used and the necessity of recovering dissolved catalyst is a

disadvantage. This is another process that is applied often to the group of beta-lactam antibi-

otics, combined with UV irradiation (photo-Fenton).
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4. Conclusions

The consumption of antibiotics worldwide by human and veterinary uses has been increasing
significantly. This is an important public concern because they have endocrine-disrupting
properties even in trace concentrations and can cause microorganism resistance in aquatic
environments. According to the researches made in recent years, advanced oxidation processes
are promising treatment methods for the removal of the antibiotic compounds from water.

In the event of the photochemical technologies, we can determine that the photochemical
AOPs are usually easy, clean, comparatively inexpensive, and productive against the classical,
chemical AOPs. Four basic types of photochemical AOPs (H2O2/UV, O3/UV, H2O2/Fe

2þ/UV,
and TiO2/UV) have been enforced to reduce and/or mineralize organic pollutants. We have
defined that, within these photochemical processes, the photocatalytic ones had mainly a
better performance.

Furthermore, it is significant to point that heterogeneous photocatalysis has been the aim of an
enormous improvement in the last decade. In fact, TiO2 is a semiconducter approach that
exists, for example, as a chemically very stable, biologically inefficient, very easy to manufac-
ture, cheaper than the photocatalytic viewpoint, active and several important photocalysts
with an energy vacancy comparable to solar photons.

The economic robust of AOPs for full-scale wastewater treatment needs to be extensively
investigated. These technologies should be modified to achieve both technical efficiency and
cost effectiveness so that water industries could afford the adaptation of such technologies.
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