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Abstract

The amygdala plays a central role in both acquisition and expression of conditioned fear
associations and dysregulation of the amygdala leads to fear and anxiety disorders such
as posttraumatic stress disorder (PTSD). Computational modeling has served as an
important tool to understand the cellular and circuit mechanisms of fear acquisition
and extinction. This review provides a critical appraisal of existing computational
modeling studies of the amygdala and extended circuitry in acquisition and extinction
of learned fear associations. It gives a broad overview of the computational techniques
applied to amygdala modeling with an emphasis on how computational models could
shed light on the neural mechanisms of fear learning, inform experimental design, and
lead to specific, experimentally testable hypotheses. It covers different types of published
models including rule-based models, connectionist type models, phenomenological spiking
neuronal models, and detailed biophysical conductance-based models. Specific attention is
given to the evolution of amygdala models from simple rule-based and connectionist type
models to more sophisticated and biologically realistic models. Future direction on compu-
tational modeling of the amygdala and associated networks in emotional learning is also
discussed.

Keywords: learning, plasticity, biophysical, neuron, network

1. Introduction

Anxiety and fear are normal human emotional states and the ability to efficiently learn about

and appropriately respond to cues and contexts that predict or signal danger is critical for

survival across species [1]. However, when fear becomes too generalized, this response mech-

anism might become very harmful [2]. Over-generalized fear could lead to anxiety disorders,

especially disorders of fear regulation, including phobia, panic disorder, and posttraumatic

stress disorder (PTSD). Posttraumatic stress disorder (PTSD), in particular, posts a great threat

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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to human health. Posttraumatic stress disorder (PTSD) is a serious psychiatric disorder that

develops after exposure to a terrifying event or ordeal in which grave physical harm occurred

or was threatened. People with PTSD may startle easily, become emotionally numb, more

aggressive, or even violent [2]. In addition, they lose interest in life and have great difficulty

in feeling affectionate. If not treated appropriately, PTSD may also lead to other mental

complications such as depression, causing great suffering to the patients and their families.

Posttraumatic stress disorder (PTSD) is the fifth most common psychiatric disorder with an

occurrence rate of about 8% in the United States [3]. Overall, PTSD affects about 7.7 million

American adults, but it can occur at any age, including childhood [4].

As the gateway to understand the pathophysiology of PTSD and other anxiety disorders,

researchers used the fear conditioning paradigm, based on Pavlovian classical conditioning,

which involves pairing an emotionally neutral conditioned stimulus (CS) with an innately

aversive unconditioned stimulus (US). Animals appear to respond to the US with a constella-

tion of physiological changes collectively known as the unconditioned response (UR). Follow-

ing pairing of the CS in presentation with the US, the CS comes to elicit a conditional response

(CR), which is generally similar to the UR [5]. Pavlov also noted that after successful condi-

tioning, repeated presentation of the CS in the absence of US causes conditioned fear responses

to rapidly diminish, a phenomenon termed fear extinction [6, 7]. Following extinction training,

the animal would no longer respond to a CS that no longer predicts aversive stimuli [5]. The

classical Pavlovian fear conditioning paradigm is the most valuable model to understand the

pathological neural mechanism of PTSD and other anxiety disorders. Studies indicated that

patients with PTSD demonstrate behavioral sensitization to stress and over-generation of the

CS-US responses [8–10]. In addition, PTSD patients show delayed or impaired extinction

learning as compared to controls [11, 12]. Thus, understanding the neurobiological mecha-

nisms of fear conditioning and extinction is of great significance to understand the pathogen-

esis of PTSD and other fear-related mental disorders.

Taking advantage of the tractability of the fear conditioning paradigm, numerous studies have

identified that the amygdaloid complex, an almond-shaped brain structure located within the

medial temporal lobe, plays a central role in the acquisition and expression of learned fear

associations [13, 14]. Indeed, damage of the amygdala impairs fear acquisition and expression,

while electrical stimulation of the amygdala produces autonomic fear behaviors [15]. Anatom-

ically, the amygdala receives sensory inputs from a wide range of cortical and subcortical areas

including the thalamus, olfactory bulb and sensory cortex and polymodal sensory information

from the prefrontal cortex (PFC), perirhinal cortex and hippocampus [16]. The projection of the

amygdala is also widespread including cortical regions (especially PFC and the medial tempo-

ral lobe), striatum, hypothalamus, and brain stem areas [16, 17]. The amygdala could thus

integrate a variety of sensory information and influence executive, motor, and memory func-

tions via its divergent projections to downstream brain areas. The interactions between the

amygdala, PFC and hippocampus are particularly important for the regulation and mainte-

nance of fear memory [18, 19]. Indeed, subjects with PTSD show hyperactivation in the

amygdala as well as reduced volume and activation of PFC and hippocampus [18, 20]; the

reduced top-down control from the PFC and hippocampus may lead to hyper-responsive

amygdala output to fearful stimuli [21].
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Due to the central role of amygdala in mediating fear acquisition and expression, computa-

tional modeling of signal processing within the amygdala circuit and its interactions with

other brain areas such the PFC and hippocampus has been a subject of continuous interest.

With improved understanding of the neurobiology of fear learning and rapid advance in

computational power, computational models of the amygdala and extended circuits have

evolved from the early simple rule-based models (e.g., [22]) to anatomically constrained

connectionist type models (e.g., [23, 24]), to large-scale spiking neuron models (e.g., [25]), and

more biophysically realistic conductance-based models [26–31]. These models addressed the

various aspects of the functional roles of the amygdala in emotional learning including relative

contribution of the thalamo-amygdala and cortical-amygdala pathways in fear condition-

ing [23, 32], contextual modulation of fear acquisition and extinction [25, 33], neural mecha-

nisms of extinction [26], impact of infralimbic cortex in fear suppression [27, 34], and the role of

competitive synaptic interactions in fear memory formation [28, 29]. These computational

studies have significantly improved our understanding of the acquisition, maintenance, and

regulation of learned fear associations. Below is a brief description of the amygdala circuitry

critical for fear learning followed by a detailed review of the major computational studies of

the amygdala in acquisition and extinction of conditioned fear.

2. The amygdala circuit

The amygdala consists of four major components that are critical for the acquisition and

expression of conditioned fear including lateral amygdala (LA), basal amygdala (BA), central

amygdala (Ce), and the intercalated (ITC) cell clusters (Figure 1A; [15, 35]). In auditory fear

Figure 1. The amygdala circuitry for processing conditioned fear. (A) Scheme showing connectivity of the amygdala

(adapted from Ref. [27]). The LA receives thalamic inputs conveying CS and US information. LA projects to the BA, and

ITC neurons located dorsally (ITCD), which in turn project to ITC cells located more ventrally (ITCV). Intercalated cells

located more ventrally (ITCV) contribute GABAergic projections to CeM. The BA sends excitatory inputs to both ITCD and

ITCV cells and to CeM. The infralimbic (IL) cortex also projects to both ITCD and ITCV cells. The CeM projects to brainstem

structures mediating fear responses. (BS) Brainstem; (Glu) glutamate. (B) In auditory fear conditioning, convergence of tone

(CS) and foot-shock (US) inputs in LA leads to potentiation of CS inputs, resulting in larger tone responses in LA. Increased

LA responses are relayed to the Ce via the BA and the ITC cell clusters, eliciting fear responses via successive projections to

brain stem and hypothalamic sites. As a result, rats learn to freeze to tones that predict foot shock. MGm: medial genicular

body; PIN: posterior intralaminar nucleus.
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conditioning, paring of the tone (CS) and foot-shock (US) inputs in LA potentiates the CS

inputs, resulting in larger tone responses in LA (Figure 1B; [36–38]). Increased LA responses

are relayed to the Ce via the BA [39] and the ITC cell clusters [35], eliciting fear responses via

successive projections to brain stem and hypothalamic sites [13]. As a result, animals learn to

freeze to tones that predict foot-shock. Those four nuclei (LA, BA, Ce, and ITC) have different

physiological properties and serve distinct roles in fear conditioning and extinction, which are

descried below.

2.1. The lateral amygdala (LA)

The LA is widely accepted to be a key site of synaptic events that contribute to fear learn-

ing [26, 35, 40]. It contains pyramidal-like glutamatergic projection neurons and local circuit

γ-aminobutyric acid (GABA)-ergic interneurons [41]. In auditory fear conditioning, the tone

(CS, auditory information) and foot-shock (US, somatosensory information) inputs are deliv-

ered to LA from the auditory cortex and auditory thalamus [37, 42]. Individual neurons within

the LA respond to both auditory and somatosensory stimuli, suggesting convergence of CS

and US inputs at the cellular level [40]. Conditioning significantly enhances the responses of

LA neurons to CS input, which correlates tightly with the freezing behaviors of animals [36, 37].

Consistent with the anatomical data, lesioning or functionally inactivating the LA prior to

training leads to deficits in fear conditioning [43, 44], suggesting that the LA is critically

involved in the formation and storage of conditioned fear memories [13, 15, 40].

2.2. The basal amygdala (BA)

The BA plays an important role in contextual fear conditioning, fear extinction, and context-

dependent fear renewal [44–46]. First, the BA constitutes a major route to relay CS and US

information from LA to Ce, the output station of the amygdala that generates fear

responses [39]. Consistently, posttraining BA lesions block the expression of conditioned fear

responses [47]. Second, the BA receives contextual information from the hippocampus, a brain

structure responsible for assembling contextual representations and transmitting these repre-

sentations to the amygdala for association with US [15, 48]. Indeed, pharmacological inactiva-

tion of the BA prevents context-dependent fear renewal [45, 46]. Last, the BA also receives

afferent inputs from the infralimbic (IL) cortex, a cortical region in the medial prefrontal cortex

(mPFC) that is implicated in extinction of conditioned fear responses [49]. When BA is

inactivated in a targeted and controlled manner, fear extinction is blocked completely, demon-

strating that BA is necessary for the acquisition of extinction [46].

Interestingly, the differential functional roles of BA in fear acquisition and extinction are

mediated by distinct neuronal circuits within the BA. Herry et al. identified that BA contains

two distinct subpopulations of neurons (fear neurons and extinction neurons) whose activi-

ties correlate tightly with expression of high and low fear [46]. The fear neurons acquire CS

responses as a result of fear conditioning but lose them following extinction training. By

comparison, extinction cells remain unresponsive during fear conditioning, but become CS

responsive during extinction training. The study demonstrated that a switch in the balance

of the activity of fear and extinction neurons is essential to trigger behavioral transition
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between fear and extinction. It was further revealed that fear and extinction neurons are

differentially connected with the hippocampus and mPFC, respectively, consistent with the

well-documented roles of these two structures in contextual fear conditioning and extinction

[50–52].

2.3. The central amygdala (Ce)

The Ce is the output station of the amygdala, which constitutes the interface to fear response

systems [15]. Electrical stimulation of Ce generates fear behavioral responses [53], while

lesions of the Ce impair both the acquisition and expression of conditioned fear [54, 55]. The

Ce receives projections from both the BA and the ITC cells and sends dense projections to various

brain stem structures involved in generating the behavioral and autonomic fear responses [56].

Anatomically, Ce can be divided into two subnuclei, the lateral sector of the Ce (CeL) and the

medial sector of the Ce (CeM) (Figure 1A; [56]). Both the CeL and CeM contain GABAergic

inhibitory neurons and CeL inhibits CeM [56].

2.4. The intercalated (ITC) cell cluster

Another component that is critical for conditioned fear responses is the intercalated (ITC) cell

cluster that is located at the basolateral amygdala (LA & BA; BLA) and Ce border [57, 58].

Intercalated (ITC) cell clusters are GABAergic neurons and constitute an important alternate

pathway (besides the BA) to relay CS/US information from the LA to Ce (Figure 1B; [35]).

When ITC cells are damaged with pharmacological manipulation in rats, extinction memory is

disrupted, mimicking the behaviors observed in anxiety disorders [59, 60]. Intercalated (ITC)

cell clusters are ideally positioned to control Ce excitability because they receive glutamatergic

inputs from principal LA and BA neurons and in turn generate feedforward inhibition in Ce

cells (Figure 1B; [61, 62]). In addition, ITC neurons located dorsally (ITCD) at the BLA-Ce

border inhibit more ventral ones (ITCV) [63], thereby allowing for a spatiotemporally differen-

tiated gating of impulse traffic between BLA and Ce [62]. Moreover, ITC neurons receive

massive projection from the IL cortex [64, 65] and stimulation of the IL substantially reduces

conditioned fear responses [50, 66, 67], an inhibitory process believed to be mediated by ITC

clusters [19, 35].

3. Computational models of the amygdala

3.1. Early computational models of fear conditioning

Early computational models of fear conditioning focused on learning theory or rules that

describe the association between CS and US, i.e., associative learning theories (for an excellent

review, see Ref. [68]). One representative early model of associative learning is the Rescorla-

Wagner model, which proposed a learning rule based on prediction error [22]. Based on the

Rescorla-Wagner rule, the change in associative strength of the individual components of a

compound CS (e.g., AB) when paired with the US can be represented as:
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ΔVA ¼ αAβðλ� VABÞ
ΔVB ¼ αBβðλ� VABÞ

ð1Þ

where VAB is the associative strength of the compound AB and must be specified in terms of

the strengths of the individual components, e.g., VAB ¼ VA þ VB. The parameters αA and αB

represent the stimulus salience, β is the learning rate, and λ represents the asymptotic value of

associative strength for a particular US. According to Eq. (1), the associative change for the

stimulus A after the compound AB is reinforced with the US is determined by the difference

between the asymptotic value λ and the combined associative strength of A and B. Thus, the

predictive error for associative strength change of a particular stimulus is governed by the

combined associative strength of all stimuli present on a trial instead of that particular stimu-

lus only. The introduction of such combined predictive error enables the model to explain the

phenomena of blocking and conditioned inhibition [22].

Following the Rescorla-Wagner model, many other models of associative learning have been

developed to extend or improve the Rescorla-Wagner rule [69–71]. For example, to account for

the variations in the associability of stimuli with reinforcement, Mackintosh proposed a theory

of selective attention by incorporating the notion of variable associability [69]. The learning

rule is slightly modified from the Rescorla-Wagner rule:

ΔVA ¼ SαAðλ� VAÞ ð2Þ

where S is the learning rate parameter. The main difference between the Mackintosh rule and the

Rescorla-Wagner rule (Eq. (1)) is that the associability parameter αA is modifiable dependent on

the predictability of the stimulus A. If the stimulus A can predict the outcome better than other

stimuli present on a particular trial, αA will increase and decrease otherwise. With that modifica-

tion, the Mackintosh model ensures that the associative change is not only dependent on a cue’s

associative strength, but also on the past relative predictive power of the cue. As each of those

rule-based models attempts to best explain certain phenomena of the classical conditioning, they

fail to offer a complete and satisfactory account of varying effects of associative history. To

overcome this limitation and construct a “unified” theory of associative learning, Le Pelley pro-

posed a hybrid model of associative learning that reconciles the effects of associative history [68].

Most of the early computational models of fear conditioning can be categorized as behavioral

models in the sense that they attempted to reproduce many observed phenomena in classical

conditioning such as generalization, blocking, and conditioned inhibition. Although these early

models are useful in describing the associative process between the CS and US, they did not

address how the CS and US information is processed within the amygdala circuit nor they took

into account the neuroanatomical substrates underlying associative learning. Hence, these

models provide little insights on the neuronal mechanisms of fear conditioning and extinction.

3.2. Connectionist models

As the neurobiological data of fear conditioning accumulated, connectionist or artificial neural

network models of the amygdala were developed by researchers (e.g., [23, 24, 32]). Compared
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with early rule-based models, these connectionist models consist of multiple connected compu-

tational units (corresponding to a single neuron or a group of neurons) and take into consider-

ation the anatomical structures of the amygdala circuit. There are two main features of

connectionist-type models. First, the output of computational or neural units usually represents

the firing rate or activation level of individual neurons, neural populations or a brain region.

Second, the connection strength between computational units is usually modified based on

Hebbian-type learning algorithm. For example, the activation levels of all neural units in a

connectionist model of amygdala-hippocampal-prefrontal interaction [33] are computed as:

AjðtÞ ¼ f

 

X

n

i¼1

ujiðtÞxiðtÞ

!

ð3Þ

where ujiðtÞ is the connection weight from unit i to unit j, n is the number of input units, and

xiðtÞ is the input unit with binary value of either 0 (inactive) or 1 (active); f is the logistic

sigmoid function

f ¼
1

1þ e�x
ð4Þ

Another way to capture amygdala activation is to use the classical mean-field formalism [72]:

dV i

dt
¼

F

�

X

j
W

Input
ij �U

Input
j

�

� V i

τ

ð5Þ

Ui ¼ f sigmoidðV iÞ �
X

k

W IN
ik �UIN

k ð6Þ

where τ is the time constant, V i and Ui represent membrane potential and firing rate of neuron

i, U
Input
j and UIN

k are the firing rates of input neuron j and inhibitory neuron k, respectively;

W
Input
ij and W IN

ik are the synaptic weights of the input and inhibitory connections; and F and f

are nonlinear threshold and sigmoid functions, respectively. The synaptic weight is updated

according to a Hebbian-type learning rule, which depends on the firing rates of pre and

postsynaptic neurons [72]:

dW ij

dt
¼ ERR � αUPre

j UPost
i ð7Þ

where ERR is the prediction error (difference between the US value and amygdala output),

α is the learning rate, UPre
j and UPost

i are the firing rates of pre and postsynaptic neurons,

respectively.

Early connectionist models of fear conditioning focused on the relative contribution of the

thalamic versus the cortical pathway in fear conditioning. Armony et al. developed an ana-

tomically constrained neural network model of fear conditioning based on known anatomical
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and physiological observations [23]. The connectionist model focused on areas of convergence

of CS and US pathways and specifically examined information processing via the two parallel

sensory pathways to the amygdala from the auditory thalamus and the auditory cortex. The

model considered tone input with a specific frequency associated with a mild foot-shock and

was trained by a modified Hebbian-type learning rule. The model was able to reproduce

frequency-specific changes of the receptive fields known to exist in the auditory thalamus and

amygdala. In a following study [32], the model was used to simulate processing capacity of the

thalamo-amygdala pathway by making lesions of the auditory cortex. The model predicted

that lesions of the cortical pathway would not affect the specificity of the behavioral response

to a range of frequencies centered on the training frequency and were consistent with experi-

mental observations. However, in both studies [23, 32], extinction and other related phenom-

ena were not included in the model.

Later connectionist models of fear conditioning aimed to replicate a wide range of condition-

ing phenomena. For example, Balkenius and Morén [24] proposed a model for emotional

learning dependent on classical conditioning, which relied on crude representations and math-

ematically oriented circuits. The neural network model focused on the amygdala and the

orbitofrontal cortex and their interactions. The amygdala was the locus of conditioning acqui-

sition, and the orbitofrontal cortex was the site for extinction learning. Using two arbitrary

subsystems (a base system and an auxiliary system) for reinforcement prediction and error

tracking, respectively, the model simulated basic phenomena related to emotional condition-

ing including acquisition, extinction, blocking, and habituation. More recently, Burgos and

Murillo-Rodríguez [73] used a neural-network model to simulate two context-dependent

phenomena in Pavlovian conditioning: context specificity and renewal. Prior to that, the

computational framework was used to simulate a wide range of conditioning phenomena

such as reacquisition savings [74], reinforcement reevaluation [75], superstition [76], and latent

inhibition [77]. Although these neural-network models were inspired by biological data of

Pavlovian fear conditioning, there was no correspondence between the models and exact

neural structures, and the amygdala circuit was not modeled explicitly.

Earlier connectionist models treated the amygdala as a “black box” or one homogeneous

structure characterized by input-output function (e.g., [24]). With the advance of neurophysi-

ology, we now know the amygdala can be divided into several functionally distinct nuclei in

the processing of CS/US information (reviewed above). In keeping with new emerging neuro-

biological data, recent connectionist models of fear learning have started to model finer details

of the amygdala circuitry and evolved from modeling only one or two brain structures to

multiple regions and their interactions [33, 34, 72, 78]. For example, to understand the cogni-

tive-emotional interaction mediating flexible behaviors, John et al. [34] developed an amygdala

circuit model that consists of three subnetworks: (1) the BLA subnetwork; (2) the ITC

subnetwork; and (3) the central output subnetwork. The BLA subnetwork contains LA and

BA; the ITC subnetwork includes both the dorsal (ITCD) and ventral groups (ITCV), and the

central network consists of the medial subnucleus of Ce (CeM). In the model, simultaneous

presentation of the CS and US potentiated the cortical synapses on LA cells, LA synapses on

BA, and LA synapses on ITCD. This led to inhibition of ITCV and excitation of CeM resulting in

fear response. In contrast, presentation of the CS in the absence of US decreased the synaptic
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weight at LA-ITCD synapses while potentiating the synaptic weight at BA-ITCV synapses. As a

result, CeMwas inhibited and fear responses were suppressed. Besides normal fear acquisition

and extinction, the model showed that cortical inputs from IL could bidirectionally modulate

the circuit’s behavior toward fear or extinction: stronger IL inputs to ITCD could further

disinhibit CeM promoting fear responses, while larger IL inputs to ITCV enhanced the inhibi-

tion on CeM facilitating extinction. Moreover, model simulation indicated that if learning in

ITC was faster than the BLA, the system could rapidly switch between the states of fear and

extinction. Interestingly, cortical modulation from IL can be used to bias the system toward the

“cautious” fear mode or the “rapid switch” mode.

In another study [78], the authors constructed a conceptual and computational neural model of

fear conditioning (referred to as “FART”) that included the structures and interactions of the

amygdala, hippocampus, and PFC. Guided by a number of design targets based on known

physiological data, the model was designed specifically to replicate many salient phenomena

of fear conditioning including conditioning, extinction, secondary reinforcement, blocking, the

immediate shock deficit, renewal, and a range of functional manipulation effects such as pre

and posttraining inactivation of amygdala and hippocampus components. This model repre-

sents the first attempt to use one conceptual and computational model to simulate a wide

range of empirically observed phenomena and effects of fear conditioning. One potential issue

of such approach is that the model was designed specifically to account for those phenomena,

which were not generated naturally from a biologically constrained model. It remains unclear

whether the assumptions and parameters adopted by the model are biologically valid.

3.3. Phenomenological spiking neuron models

Though connectionist models are able to capture certain phenomenon of fear conditioning,

such models have inherent limitation in that the output of computational units represents the

firing rate or general activation, rather than the spiking activities of real neurons. Due to this

limitation, connectionist models cannot be used to study specific spike patterns of individual

neurons, nor the correlation in spike timing. On the other hand, although detailed conduc-

tance-based compartmental models can accurately reproduce the spiking dynamics of real

neurons, these models are difficult to analyze because of intrinsic complexity. Phenomenolog-

ical spiking neuron models have the advantage of emulating spiking behaviors while

remaining analytically tractable and computationally feasible. As such, spiking neuron models

are widely used to study neural coding, network dynamics, and learning and memory. Phe-

nomenological spiking neuron models of fear conditioning are sparse with the exception of a

large-scale spiking network model of the basal amygdala [25].

As mentioned earlier, the basal amygdala (BA) contains two types of neurons (fear neurons

and extinction neurons) whose activation is correlated with the fear and extinction states,

respectively [46]. However, the neural mechanisms underlying the differential activation of

these two neuronal subpopulations remain unclear. To elucidate possible neural mechanisms

involved in the encoding of fear and extinction memories in BA, Vlachos et al. [25] developed a

large-scale spiking network model of the BA consisting of 3400 excitatory and 600 inhibitory

neurons interconnected with both feedback and recurrent synapses. The excitatory neurons
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were divided into two subpopulations, A and B, each receiving a different context input (CTXA

and CTXB). In addition, all neurons in the network received CS-US input. The BA neurons

were modeled with leaky-integrate-and-fire (LIF) scheme. Specifically, the subthreshold

dynamics of the LIF neurons is described by the following differential equation:

τm
dV

dt
¼ ðE0 � VÞ þ gexcðEexc�VÞ þ ginhðEinh�VÞ ð8Þ

where V is the membrane potential, τm is the membrane time constant, gexc and ginh are the

excitatory and inhibitory conductance, and E0, Eexc, and Einh are resting membrane potential,

excitatory, and inhibitory reversal potentials, respectively. When the membrane potential V

crosses a static threshold θ in the upward direction, a spike is generated and the membrane

potential is rest to a value Ek and clamped for 2 ms [25].

In simulation, conditioning was trained in context Awhile extinction was performed in context

B. The strength of the CS and contextual inputs to excitatory neurons is modifiable according

to a phenomenological rule, which specifies that the synapses are strengthened if the CS and

contextual inputs overlap within a temporal window of ∼100 ms. Based on this learning rule,

the CS and CTXA inputs to population A neurons were potentiated during fear conditioning

leading to increased firing rates of population A cells. On the other hand, presentation of CS

and CTXB inputs to population B neurons during extinction potentiated those inputs resulting

in activation of population B cells, which suppressed the activity of population A neurons

through increased competitive inhibition. Since the behaviors of population A and B neurons

resembled the fear and extinction neurons observed in [46], they were interpreted as fear and

extinction neurons, respectively [25]. The model was also used to study renewal, extinction

over-training, and extinction of contextual conditioning. In particularly, the model predicted

that gamma oscillations will be generated if the connectivity between the excitatory and

inhibitory neurons in BA is high. The main conclusion of this modeling study is that differen-

tial activation of fear and extinction neurons is a result of context specificity, i.e., fear and

extinction neurons are innervated by different contextual inputs. Questions remain whether

fear and extinction neurons would emerge differentially if both conditioning and extinction are

trained in the same context. Also, the model assumes that both the CS and contextual inputs

are potentiated if they are temporally coincided. This suggests that fear could be developed

even without US inputs, which is not consistent with experimental observation.

3.4. Biophysically realistic models

Although phenomenological spiking neuron models (e.g., LIF models) are able to simulate

neuronal spiking activities, they do not take into account the morphological and electrophys-

iological properties of actual neurons, thus neglecting the biophysical constraints on neural

learning and computation. To accurately model the underlying processes responsible for fear

learning, biophysical Hodgkin-Huxley type models are required. The first biophysically real-

istic model of fear conditioning was developed by Li et al. [26] to study the neural mechanisms

of fear acquisition and extinction in LA neurons. In this pioneering study, conductance-based

compartmental models of LA pyramidal cells and interneurons are first developed by incor-

porating detailed ionic channels and kinetics observed in LA neurons. The schematic
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representation of the two-compartment LA pyramidal cell and interneuron models is shown in

Figure 2A, and the equivalent electrical circuit of two basic neural compartments is shown in

Figure 2B. Each compartment has a membrane capacitance Cm, a fixed membrane resistance

Rm, and an equilibrium potential Em associated with the ohmic leakage current that flows

across Rm. Based on the equivalent circuit, one can derive the current-balance equations for the

two compartments:

cm
dVs

dt
¼ �

ðVs � EmÞ

Rm

�
X

i

GkiðVs � EkiÞ � gcðVs � VdÞ

cm
dVd

dt
¼ �

ðVd � EmÞ

Rm

�
X

i

GkiðVd � EkiÞ � gcðVd � VsÞ
ð9Þ

where Vs and Vd are the transmembrane potentials for the soma and dendrite compartments,

respectively. Gki and Eki are the conductance and reversal potential for the channel i and gc is

Figure 2. Conductance-based compartmental model of LA neurons. (A) Schematic representation of the LA pyramidal

cell and interneuron models with distribution of active ionic conductances in each of its two compartments (adapted from

Ref. [26]). (B) Equivalent electrical circuit of two interconnected neural compartments used to simulate LA cell excitability.

Cm is the membrane capacitance, Rm is the membrane resistance, and Em is the leakage reversal potential. Subscripts k1,

k2, ⋯, ki denote i different active (variable) conductances and their associated reversal potentials (GNa, GDR, etc., with

reversal potentials ENa, EK, etc.).
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the coupling conductance between the soma and dendrite compartments. All ionic conduc-

tances in the LA model are modeled using the Hodgkin-Huxley kinetics [79]. Specifically, the

conductance for channel i, Gki, is modeled as:

Gki ¼ gkim
phq ð10Þ

where gki is its maximal conductance density, m its activation variable (with exponent p), and h

its inactivation variable (with exponent q). The kinetic equation for the gating variable x (m or

h) satisfies a first-order kinetic model,

dx

dt
¼ ∅x

x
∞
ðVÞ � x

τxðVÞ
ð11Þ

where φx is a temperature-dependent factor, x
∞
(V) is the voltage-dependent steady state, and

τx(V) is the voltage-dependent time constant. Equivalently, Eq. (11) can be written as:

dx

dt
¼ φx

�

αxðVÞð1� xÞ � βxðVÞx
�

ð12Þ

where αx(V) and βx(V) are the voltage-dependent rate constants. The detailed kinetic parame-

ters can be found in Ref. [26]. With careful parameterization, the LA neuronal models were

able to accurately reproduce the firing properties of LA neurons as observed in experimental

recording (Figure 3).

After successfully constructing single-cell models of LA neurons, Li et al. [26] developed a

small network model consisting of eight pyramidal cells and two interneurons (Figure 4A).

The network model was trained with a behavioral protocol including a sensitization, condi-

tioning and two extinction phases (Figure 4B). In addition, the model implemented a biophys-

ical learning rule termed “calcium control hypothesis” [81] to precisely model synaptic

potentiation and depression during fear acquisition and extinction (Figure 4C). The biophysi-

cal realism enables the LA model to accurately replicate conditioning- and extinction-induced

Figure 3. Biophysical LA neuronal models reproduce salient firing patterns of LA pyramidal cells. (A) Firing properties

of three types of pyramidal cells (Type A, Type B, and Type C) recorded in vitro (adapted from Ref. [80]). (B) Responses of

three types of LA model neurons to current injections (adapted from Ref. [26]).
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changes in tone responses of LA neurons in behaving rats during the classical auditory fear

conditioning experiment [37] (Figure 5). By closely matching experimental data, the model has

provided in-depth insights into the neural mechanisms of fear conditioning and extinction.

First, the LA model demonstrates that both conditioning and extinction can be learned within

the LA circuitry. This has significant implication as the LA, known to be a key site for fear

acquisition [35, 40], can also encode extinction memory. Second, the LA model convincingly

reconciles the two contrastive theories (unlearning versus inhibition) about the extinction

mechanism. In the model, extinction not only causes depression in potentiated thalamic input

Figure 4. Architecture, training protocol and learning rule of the LA network model (adapted from Ref. [26]). (A) The LA

network structure. Triangles represent pyramidal cells and circles representing interneurons. (B) Simulation schedule

showing tone and shock inputs during sensitization, conditioning, and the two extinction phases. (C) Synaptic depression

and potentiation as a function of the Ca2þ concentration. LTD: long-term depression; LTP: long-term potentiation.

Figure 5. The LA network model reproduces conditioned tone response in behaving rats (adapted from Ref. [26]).

(A) Early tone response (100 ms) of three representative pyramidal cells in the LA network during different phases of

the training. S1: first tone in sensitization; C1: first tone in conditioning; C10: 10th tone in conditioning; E1: first tone in

extinction; E30: 30th tone in extinction. (B) Comparison of the experimental data (Figure 4 of Ref. [37]) and the model

conditioned tone responses for the last block of five trials in sensitization and successive five-trial blocks during

extinction.
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synapses, but also potentiates inhibitory GABAergic synapses from local LA interneurons that

inhibit conditioned responding in pyramidal cells. Therefore, both synaptic depression

(unlearning) and potentiation of inhibition are required for a complete extinction of fear.

Importantly, the model suggests that depotentiation induced by extinction is synapse-depen-

dent in that the thalamus-to-LA pyramidal cell synapses will undergo stronger depotentiation

than the LA pyramidal-to-pyramidal cell synapses. This finding agrees with an earlier exper-

imental observation that a unique form of depotentiation during extinction reversed condi-

tioning induced potentiation at thalamic input synapses onto the LA ex vivo [82]. Last, the LA

model makes a number of important predictions that could guide experimental design. For

example, the model makes specific predictions regarding the storage sites of fear and extinc-

tion memory within the LA circuitry. Also, the LA model suggests that while the low sponta-

neous firing rates of LA pyramidal cells serve to preserve the original fear memory, the relatively

high spontaneous firing rates of interneurons lead to extinction decay and spontaneous fear

recovery. The prediction that higher spontaneous firing rates result in faster decay of memory

has been validated by experimental data in vivo [83]. Moreover, the model predicts that

N-methyl-D-aspartic acid (NMDA) currents are required for extinction training, consistent with

an experimental finding that depotentiation of conditioning-induced potentiation at thalamic

input synapses onto the LA ex vivo requires GluN2B-containing NMDA receptors [84].

During conditioning, conditioned fear output in the LA is related to the Ce via both the BA and

ITC cell clusters and generates fear response via successive projection to the brain stem and

hypothalamic sites (Figure 1B). Thus, ITC cells play a critical role in regulating fear expression

by controlling the impulse traffic between the LA and Ce. Also, brief stimulation of infralimbic

cortex (IL) substantially reduces fear expression, an inhibitory process believed to be mediated

by ITC cells [19, 35]. Thus, it is of great importance to understand how activation of ITC

neurons by IL leads to fear suppression. However, ITC neurons are endowed with both

unusual membrane characteristics (prolonged excitation or bistability [85]; Figure 6A) and

synaptic properties (heterogeneous plasticity [86]; Figure 6B), and are embedded in complex

neuronal circuit with both intercluster and within-cluster inhibition (Figure 6C). The func-

tional roles of ITC cells in mediating fear extinction are precluded by such complicated cellular,

synaptic, and circuit properties.

To address this critical issue, Li et al. [27] developed a biophysically realistic ITC neuronal

model that precisely replicated the salient firing patterns and bistable properties of real ITC

cells. By incorporating realistic heterogeneous short-term synaptic dynamics in a biophysical

ITC network (Figure 6C), Li et al. [27] elucidated that: (1) ITC neurons could transform the

transient fear signal arising in the LA/BA into a persistent pattern of activity; (2) over a wide

range of stimulation frequencies and strengths, brief IL activation caused a marked increase in

the firing rates of ITC neurons, resulting in a persistent decrease in Ce output, despite inter-ITC

inhibition (Figure 7); (3) both intrinsic properties (i.e., bistability) and variations in the short-

term synaptic dynamics of ITC neurons contributed to the effectiveness of IL stimulation; and

(4) IL stimulation reduced Ce responses to conditioned stimulus in a temporally specific

manner with the most effective inhibition given shortly after stimulus onset. All these impor-

tant findings significantly improve our understanding of the functional roles of ITC cells in

mediating fear conditioning and extinction. It offers the solid computational support that IL

inputs are in a strategic position to control extinction of conditioned fear via the activation of
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ITC neurons. Thus, targeting ITC neurons with IL stimulation or pharmacological interven-

tions could potentially eliminate fear memories and reduce anxiety, offering new hope for the

treatment of anxiety disorders such as PTSD.

As a pivot study, the network size of the LA model developed by Li et al. [26] was relatively

small (eight pyramidal cells and two interneurons) and focused on the neural mechanisms of fear

extinction. In a subsequent study, Kim et al. developed a large-scale biophysical model of the

Figure 6. Intercalated (ITC) cell clusters neurons are endowed with both unusual membrane and synaptic properties, and

embedded in complex neuronal circuit with both intercluster and within-cluster inhibition. (A) Bistable firing or

prolonged excitation of ITC cells (adapted from Ref. [85]). Transient depolarization induces sustained firing. (B) The

release probability of ITC synapses increases, decreases, or remains constant when the presynaptic stimulation frequency

increases in three different types of synapses (adapted from Ref. [86]). (C) Structure of the ITC network model (adapted

from Ref. [27]).

Figure 7. Effect of IL stimulation on amygdala network activity (adapted from Ref. [27]). (A) During fear conditioning,

the LA-ITCD synaptic strength is potentiated. Strongly adaptive LA inputs are transformed into sustained output by ITCD

neurons leading to persistent inhibition on ITCV cells allowing for sustained Ce firing in the high fear state. (B) Brief IL

stimulation increases the excitability of both ITCD and ITCV neurons, with a larger impact on ITCV cells, which signifi-

cantly reduces the Ce firing leading to a low fear state.
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dorsal portion of the LA (LAd) to study the mechanisms contributing to the induction and

storage of Pavlovian fear memories [28]. The spatial LAd network model included 800 principal

pyramidal cells and 200 interneurons placed in a horn-shaped 3D structure. In addition, the

model network integrated spatially differentiated patterns of excitatory and inhibitory connec-

tions within the LA [87]. The model was able to replicate the behaviors of two types of LAd

neurons (transient cells and long-term plastic cells) observed in experimental recording [88] as a

result of differential intrinsic connectivity. Moreover, the model demonstrated that while the

conditioning-induced increases in the CS responsiveness of thalamic/cortical neurons are

required for fear memory formation, they are not necessary for long-term fear memory storage.

Instead, the projecting synapses from thalamic/cortical neurons to LA pyramidal cells play a

more important role in the storage of fear memory. In a following up study, the LAd network

model was used to study an important question of how particular LA neurons are assigned to

fear memory traces [29]. The model showed that LA neurons with higher intrinsic excitability

have a larger chance of being recruited into the fear memory trace. Paradoxically, when the ratio

of more excitably cells changed, the number of plastic cells remained relatively constant. Model

analysis indicated that competitive synaptic interactions play a critical role in assigning the LA

neurons to the memory trace. That is, a subset of pyramidal cells gain advantage in competition

due to stronger excitatory interconnections and suppress the remaining pyramidal cells through

the recruitment of inhibitory interneurons. Hence, assignment of LA neurons to a memory trace

depends on a competitive process, consistent with experimental data [89]. The nature, specificity,

and details of synaptic competition in fear memory trace formation are further examined in two

subsequent biophysical modeling studies [31, 90].

Although the amygdala plays a central role in fear acquisition and extinction, the medial

prefrontal cortex (mPFC) exerts strict top-down control over the amygdala on both the forma-

tion and expression of fear memory [52, 91]. Specifically, while prelimbic (PL) cortex increases

fear expression, the infralimbic (IL) cortex reduces fear expression [67]. There is significant

difference about the neural correlates of fear expression between the LA and PL. Specifically,

the conditioned response in LA neurons is transient, lasting only a few hundred milliseconds

after CS onset [36, 37, 88]. By comparison, the PL neurons have sustained conditioned response

during the entire CS presentation which correlates closely with the fear expression [92]. This

leads to the hypothesis that PL transforms transient fear signal in LA into sustained fear output

in Ce via descending projections to the BA [92]. However, the neural and circuit mechanisms

underlying such transformation are not clear. Using a biophysically realistic model of the BA-

PL network consisting of 850 conductance-based compartmental model cells, Pendyam et al.

[30] investigated three potential mechanisms involved in the LA-PL transformation including:

(1) BA-PL network structure and connectivity; (2) dopaminergic and noradrenergic modula-

tion; and (3) specific microcircuits within the BA-PL network. Model simulation indicated that

BA-induced continuous release of dopamine and norepinephrine, rather than the BA-PL inter-

connections, plays a dominant role in sustaining PL conditioned responses. The model also

predicted that specific microcircuit variations in the BA-PL network significantly modulate

fear expression, which could possibly explain the individual heterogeneity in fear responses.
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4. Summary and future direction

Computational models of the role of the amygdala in fear conditioning and extinction have

enjoyed a long history of success and greatly improved our understanding of the processes

underlying emotional learning and memory. With the advance of neurophysiology and high

performance computation, computational models of the amygdala have evolved from simple

rule-based models to anatomically constrained connectionist models, and to large-scale bio-

logically realistic network models. These different types of models have complementary utility,

and the selection of models depends on the available computational resource and the nature of

the problem being investigated. In particular, the development of biophysically realistic

models of the amygdala and extended circuits has opened up new avenues to study the neural

and circuit mechanisms of acquisition, storage, and regulation of fear memory in the brain. In

the future, large-scale biophysical network models of the amygdala and associated circuits

such as PFC and hippocampus are of particular interest in order to provide an integrated

account of how multiple brain regions work in concert to regulate fear memory formation

and expression.

While much modeling progress has been made, there is still a long way to go to model

pathologies associated with the fear circuit (e.g., PTSD) and assist in the development of new

treatments. To achieve this goal, a new class of translational models need to be developed that

could simulate the systemic neural impairments with resulting symptoms observed in fear and

anxiety disorders such as PTSD. In addition, such models should explore new treatment

paradigms such as invasive deep brain stimulation (DBS) and noninvasive transcranial mag-

netic stimulation (TMS). This may lead to the development of hybrid type models that com-

bine the system-level analysis and detailed cellular-level operation.
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