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Abstract

A fractal is an object or a structure that is self-similar in all length scales. Fractal
geometry is an excellent mathematical tool used in the study of irregular geometric
objects. The concept of the fractal dimension, D, as a measure of complexity is defined.
The concept of fractal geometry is closely linked to scale invariance, and it provides a
framework for the analysis of natural phenomena in various scientific and engineering
domains. The relevance of the power law scaling relationships is discussed. Fractal
characteristics of porous media and the characteristic method of the porous media are
also discussed. Different methods of analysis on the permeability of porous media are
discussed in this chapter.

Keywords: fractal geometry, fractal structure, fractal dimension, porous media, perme-
ability

1. Introduction

Fractal is one of the subjects, which recently attracted attention in natural science and social

science. A fractal is defined as a geometric object whose fractal dimension is larger than its

topological dimension. Many fractals also have a property of self-similarity; within the fractal

lies another copy of the same fractal, smaller but complete. Mandelbrot [1] referred to fractals

as structures consisting of parts that, in some sense, are similar to integers; fractals are of a fine

(non-integer) dimension (D) that is always smaller than the topological dimension. In the past

40 decades, fractal theory has significantly contributed to the characterization of the distribu-

tion of physical or other quantities with a geometric support. In science and engineering,

fractal geometry provides a wide range and powerful theoretical framework that is used to

describe complex systems, which have been successfully applied to the quantitative descrip-

tion of microstructures such as surface roughness and amorphous metal structure [2].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Typically, microstructure elements can be explained using the Euclidean dimension (d). With

respect to point defects (e.g., vacancies and interstitial atoms), d¼ 0; with respect to linear defects

(dislocations), d ¼ 1; with respect to planar defects (twins), d ¼ 2; and with respect to three-

dimensional (3-D) formations, d ¼ 3. Nonetheless, the Euclidean dimension cannot be used to

illustrate structural elements differing from standard ones (e.g., points or straight lines). Thus, a

well-known grain boundary, being the most significant element of the microstructure, is curvi-

linear, and this form can be described by the fractal dimension (D) correlating to 1 ≤ D ≤ 2.

Surface defects may also be illustrated using the fine dimension that will commensurate to the

range 2 ≤ D ≤ 3 [3]. Therefore, fractal theory introduces a new quantitative parameter-fractal

dimension for illustrating structures, which, because of its universal nature, is appropriate for

illustrating structures in systems types. With a system such as a deformed solid, the fractal

concept provides the possibility of quantitatively illustrating the elements of the initial micro-

structure (e.g., phases, grain, boundaries, etc.) and the structures formed during deformation [3].

Fractal theory thus provides a new and effective method for characterizing complex structure of

the engineering materials. The theory of fractals is considered a basis for quantitative description

by means of the fractal dimension of various structures.

An extremely disordered morphology, such as surface roughness and porous media having the

self-similarity property, is scrutinized by fractal geometry. This implies that the morphology

stays similar in magnification over a broad range. Another significant attribute of natural

fracture is that their formation needs the supply of a large amount of energy externally [3]. If

microstructure formation is preferentially caused by a phenomena taking place outside of

thermodynamic equilibrium, they are also characterized by fractal property. This implies that

the description of highly disorderedmicrostructures on the basis of conventional approach is not

sufficient [3]. Thus, most of the objects that occur in nature are disordered and irregular, and

they do not follow the Euclidean illustration because of the scale-dependent measures of length,

area, and volume [4, 5]. Examples of such objects are the surfaces of mountains, coastlines,

microstructure of metals, and so on. These objects are termed fractals and are illustrated by a

non-integral dimension known as fractal dimension [1]. The fractal property is a physical

property expressed at the super-molecular level, at a microscopic scale, and at a macroscopic

scale.

The phenomenon of fractal is ubiquitous in a wide array of materials, such as the fracture of

nanoparticle composites [6–8], the growth of crystal [9–12], the quasicrystal structure [13], the

fracture of martensite morphology [14, 15], the porous materials [16–19], and the deposited

film [20–25]. These materials are of uncommon class of disordered materials and usually show

complex microstructures. Fractal theory has been widely used in many fields of modern

science since it was presented by Mandelbrot [1] in 1982. It has been used in studying perme-

ability of porous media [17, 26–28], dual-porosity medium [29, 30], evaluating dislocation

structure [31], simulating the failure of concrete [32–35], analyzing fracture surfaces or net-

work [36, 37], and thermal conductivity performance [38]. Fractal has also been used to

establish the morphology of highly irregular objects imbedded onto two- and three-dimen-

sional spaces and is defined as two- and three-dimensional fractal dimensions [39].
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2. Fractal structure

Fractal structure is a structure that is characterized with self-similarity, that is, it is composed of

such fragments whose structural motif is repeated if the scale changes. Fractal structure

outlined the degree of occupancy of a structure in a space (dimension), which is not an integer

value. Therefore, n-dimensional fractal occupies an intermediate position that lies between the

n-dimensional and (n þ 1)-dimensional objects. Recursive functions are used to construct a

fractal object. An important characteristic of fractal structure is the scale independence [40].

Thus, fractal structures do not have a single length scale, and fractal processes (e.g., time series)

cannot be characterized by a single time scale [41]. Fractal structures are associated to rough or

fragmented geometric structures [42]. The complexity of a fractal structure is described by its

fractal dimension; this is greater than the topological dimension. It is much easier to obtain

fractal dimension from datasets by using fractal analysis, for example, digital images, obtained

from the investigation of natural phenomena, and from theoretical models. Different tech-

niques to perform fractal analysis include box-counting, lacunarity analysis, multifractal anal-

ysis, and mass methods. An interesting application of fractal analysis is the description of

fractured surfaces [43]. Mandelbrot et al. [42] have shown that fractured surfaces are fractal.

Zhang [44] reported a quadratic polynomial relationship between the rock burst tendency and

fractal dimension of fracture surface. A fractal dimension threshold of d̂f was found, and there

was a positive correlativity between the rock burst tendency index and the fractal dimension

when df ≤ d̂f , an inverse correlativity when df ≤ d̂f . In the investigation of fractured surfaces,

Liang andWu investigated the relationship between the fracture surface fractal dimension and

the impact strength of polypropylene nanocomposites. A strong correlation was observed, and

it indicated that the fracture surface of the composites was fractal, and the relationship

between the impact strength and fractal dimension of the composites obeyed roughly expo-

nential function [7]. Lung et al. have also demonstrated that there is a relation between the

roughness and the fractal dimension of the surface [45].

3. Fractal analysis

Fractal analysis is defined as a contemporary method of applying non-traditional mathematics

to patterns that defy understanding with traditional Euclidean concepts. It means assessing the

fractal description of data, and it is a common technique to study a variety of problems. It

consists of different methods assigned to a fractal dimension and other fractal characteristics to

a dataset. It, in essence, measures complexity using fractal dimension. In fractal analysis, other

different parameters can also be assessed [43], for instance, lacunarity and succolarity, and can

be used to classify and segment images [46]. Whatever type of fractal analysis has to be done, it

always rests on some kind of fractal dimension. In fractal analysis, complexity is a change in

detail with change in scale. The simplest form of fractal dimension is described using the

relation in Eq. (1).
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N ¼
1

S
D

ð1Þ

where N is the number of self-similar “pieces,” S is the linear scaling factor (sizes) of the pieces

to the whole, D is the dimension that characterizes the (invariant) relationship between size

and number. Rearranging the elements in Eq. (1), one can solve for D.

D ¼ �
logN

logS

� �

ð2Þ

D is an algebraic equation, that is, Eq. (1) can give a dimension, which is the concept of

geometry, not algebra. Let’s say, one-dimensional line is cut into pieces, each of which is a

fraction (S) of the original line, like making S ¼ 1/4. For example, one-dimensional line can be

cut into pieces such that each one-fourth will be the size of the original line, then N will be

equal to four little lines. Then one can say that Eq. (1) gives the line a fractal dimension D ¼ 1,

because N ¼ 1= 1
4

� �1
. If a two-dimensional square area is cut into pieces, the side of which is

one-fourth the size of the original square, then N ¼ 16 little squares. Eq. (1) will then tell that

the area of the square has a fractal dimensionD¼ 2, becauseN ¼ 1= 1
4

� �2
. If a three-dimensional

cube volume is cut into pieces, such that the side of which is one-fourth the size of the original

cube, then N will be equal to 64 little cubes. Eq. (1) then tells that the volume of the cube has a

fractal dimension of D ¼ 3, because N ¼ 1= 1
4

� �3
. No matter the value of S, N will still be found

as 1=SDpieces when one-, two-, and three-dimensional objects have been cut into pieces. Thus,

Eq. (1) gives the correct fractal dimension for one-dimensional line, two-dimensional area, and

three-dimensional volume [47].

3.1. Concepts of the fractal dimension

The ratio that gives statistical index of intricacy and compares how detailed a shape (fractal

pattern) changes with the scale at which it is measured is called fractal dimension. It is

sometimes identified by a measure of the space filling volume of a pattern that states how a

fractal scale is different from the space it is rooted in; a fractal dimension is not always an

integer [48–50]. There are several different concepts of the fractal dimension of a geometrical

configuration [5].

There are several ways of measuring length-related fractal dimensions. Mandelbrot [51] first

proposed the concept of a fractal dimension to describe structures, which look the same at all

length scales. His concept takes into account the measuring of the perimeter of an object with

several lengths of rulers (spans or calipers) (using a trace method). For a fractal object, the plot

of the log of the perimeter against the log of the ruler lengths will give a straight line with a

negative slope S. This plot will then result to D ¼ 1 – S [52]. Although this is mainly mathe-

matical concept, many examples in nature that can be closely approximated to fractal objects

are available for only over a particular range of scale. The likes of these objects are generally

named self-similar in order to indicate their scale invariant structure. The common attribute of

such objects is that their length (for a curve object, otherwise it could be the area or volume)
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mainly rests on the length scale used for measuring it, and the fractal dimension provides the

exact nature of this reliance [53]. Fractal dimensions (D) are numbers used to quantify these

properties [5]. In fractal geometry [1], the fractal dimension, D, is given as:

D ¼ lim
r!0

logðNrÞ

logð1=rÞ
ð3Þ

This is a statistical quantity that shows how a fractal totally fills the space when viewed at finer

scales.

The second concept was proven by Pentland on the basis that the image of a fractal object is also

a fractal [54], which has made scientific investigations on the methods of estimating the fractal

dimensions of images. Many researchers have put great efforts into this field of fractal geometry,

and manymethods for estimating fractal dimensions of certain objects have been proposed since

the establishment of fractal geometry theory. Typical methods of this concept involve the use of

spectral analysis and box-counting. Usually, spectral analysis method applies fast Fourier trans-

formation (FFT) to image in order to obtain the coefficients and mean spectral energy density.

The fractal dimension can be evaluated by analyzing the power law reliance of spectral energy

density and the square size [55]. The box-counting method is the widely used method for

calculating fractal dimensions in the natural sciences; this is called box-counting dimension. It is

a method based on the concept of “covering” the border, it is also known as the grid method.

Sets of square boxes (i.e., grids) are used here in order to cover the border. Each set is represented

by a box size. The number of boxes essential to cover the border is considered a function of the

box size. Figure 1 is an example of the log of the number of covering boxes of each size times the

length of a box edge plotted against the log of the length of a box edge. Furthermore, a straight

line with slope Swhich is equal to the dimension Dwill be obtained [52]. The slope is defined as

the amount of change along the Y-axis, divided by the amount of change along the X-axis. Any

result with a steeper slope shows that the object is more “fractal,” which means it gains in

complexity as the box size reduces. Any result with a lower-valued slope shows that the object

is closer to a straight line, less “fractal,” and that the amount of detail does not grow as quickly

with an increase in magnification. Again, the 3-D space containing a specific object, partitioned

into boxes of a certain size and how many boxes could fill up the object, is also accounted for.

With the use of ratio r in Eq. (1), in order to decide the box size, the box-counting method will

account for the total number of boxes (i.e., Nr of Eq. (1)) that are needed to form the object. The

fractal dimension D of Eq. (1) can then be estimated from the least square linear fit of log(Nr)

versus log(1/r) by counting Nr for different scaling ratio r [56].

Several traditional box-counting methods have been used for the calculation of the fractal

dimensions of images, this includes differential box-counting (DBC) method [57], Chen et al.’s

approach [58], the reticular cell counting method [59], Feng’s method [60], and so on. DBC

method has been proved to have better performance than other methods [61]. Many analyses

have been done in order to improve the DBC method [62–64].

A third concept was developed by Flook [65], and the method of this concept is called the

dilation method. Dilation, in this case, means a widening and smoothing of the border. This
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can be accomplished by convolution operation with a binary disk, that is, all the non-zero

components of all the convolution kernels have a (Boolean) unitary value. The result is a thick-

ened, but grey-scale border. All non-zero pixels are thresholded to a Boolean one when returning

this border to Boolean one values. The speed at which the total surface area of the border raises as

a function of the diameter of the convolution kernel relies on the dimension D. The log of each

resulting area, divided by the kernel diameter, is plotted against the log of the kernel diameter

[52]. A straight line results with a negative slope S, and D can be further estimated.

3.2. Power law scaling relationship

A functional relationship between two quantities is known as power law. This relationship takes

place when a relative change in one quantity results in a proportional change in the other

quantity and independent of the initial size of those quantities; thus, one quantity varies as

power law to another. The characteristic of fractals is known as power law scaling. Therefore, a

relationship, which yields a straight line on log-log coordinates, can often identify an object or

phenomena as fractal. Although not all power law relationships are due to fractals, an observer

needs to consider the existence of such relationship in order to know if the system is self-similar

[66]. Self-similarities indicate the existence of scaling relationship which implies the type of a

relationship called “power law.” Thus, self-similarities give rise to the power law scaling. The

power law scalings are shown as a straight line when the logarithm of the measurement is

plotted against the logarithm of the scale at which it is measured. Fractal dimension is based on

self-similarities; thus, power law scaling can be used to determine the fractal dimension. For a set

to achieve the complexity and irregularity of a fractal, the number of self-similar pieces must be

related to their size by power law [47]. The power law scaling describes how the property L(r) of

the system depends on the scale r at which it is measured using the relation in Eq. (4).

LðrÞ ¼ Ar
α ð4Þ

The fractal dimension describes how the number of pieces of a system depends on the scale r,

using the relation in Eq. (5).

Figure 1. Example of fractal dimension of a material.
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NðrÞ ¼ Br�D ð5Þ

where B is a constant. The similarity between Eqs. (4) and (5) means that one can determine the

fractal dimension D from the scaling exponent α if one knows how the measure property L(r)

depends on the number of pieces N(r). For example, for each little square of sides of an object

with two-dimensional area, the surface area is proportional to r2. Thus, one can determine the

fractal dimension of the exterior of such an object by showing that the scaling relationship of

the surface area depends on the scale r. For example, to determine the fractal dimension D

from the scaling exponent is to derive the function of the dimension f(D), such that the

property measured is proportional to rf(D) [66]. If the experimentally determined scaling of the

measured property is proportional to rα, then the power of the scale r can be equated to the

relation in Eq. (6):

f ðDÞ ¼ α ð6Þ

Then, one can solve for D.

4. Fractal characteristics of porous media

Porous media include many manmade as well as natural materials. All solid substances are in

fact porous either to some degree or at some length scale [67]. A porous medium is a randomly

multi-connected medium with channels randomly obstructed. The quantity that measures

how “holed” the medium is due to the presence of these channels, and it is called the porosity

of the medium. A pore network description can represent the porous medium as an ensemble

of pores and throats of different geometries and sizes that can take values from appropriate

distributions [68]. Therefore, fractal theory gives a favorable layer of structures of different

models that will address the complexity of the disordered, heterogeneous, and hierarchical

porous media like soil, materials with fracture networks. Theoretically, Yu et al. [69] provided

an overview of the physical properties of ideal fractal porous media and explained how

natural heterogeneous materials can exhibit both mass- and pore-fractal scaling. Cihan et al.

[70] reported new analytical models for predicting the saturated hydraulic conductivity based

on the Menger sponge mass fractal. They tested their model predictions against lattice

Boltzmann simulations of flow performed in different configurations of the Menger sponge.

Fractal models have been used to describe the solid volume, the pore volume, or the interface

between the two phases of porous media. In the past three decades, fractal models of pore space

were developed and used in the petroleum physics with application in hydraulic system and in

engineering communities with the application electrical conductivity [71, 72]. Turcotte [73]

proposed a fractal fragmentation model, which identified a physical basis for the existence of

fractal soils in the scale invariance of the fragmentation of soil particles. Hence, his model

elucidated a mechanism in which scale-independent fragmentation processes could form fractal

distribution of particles, giving theoretical legitimacy to the study of fractal models on porous

media. Fragmentation can be viewed as the chief mechanism of physical weathering [67].
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4.1. Characteristic method of porous media

Hunt [67] stated that model characteristics are defined so that the porosity and water retention

functions are identical to those of the discrete and explicit fractal model of Rieu and Sposito

[74] (called hereafter the RS model). They began with a description of virtual pore size frac-

tions in a porous medium that permits a facile foundation that conceptualized the fractal of

solid matrix and pore space. These concepts resulted in equations used in solving the porosity

and bulk density of both the size fractions and the porous medium in terms of a characteristic

fractal dimension, D.

A porous medium with a porosity from a broad range of pore sizes was considered,

the porosity decreases in mean (or median) diameter from p0 � pm�1ðm ≥ 1Þ. A bulk ele-

ment of the porous medium has the volume V0, massive enough to contain all sizes

of pore; it has porosity φ and the dry bulk density σ0. They divided the pore-volume

distribution of V0 mathematically into m virtual pore size fractions, with the ith virtual

size fraction defined by:

Pi � V i � V iþ1 ði ¼ 0,…, m� 1Þ ð7Þ

where Pi represents the volume of pores entirely made of size pi contained in V i which is the

ith partial volume of the porous medium, which itself has all pores of size ≤ pi. The partial

volume V iþ1 is therefore incorporated in V i and the partial volume Vm�1 is then incorporated

in the smallest pore-size fraction Pm�1, together with the residual solid volume symbolized by

Vm. They stated that the solid material whose volume is Vm will not be chemically or mineral-

ogically homogeneous. Its mass density, symbolized by σm, represents an average “primary

particle” density. Eq. (7) gives the bulk volume of the porous medium which can mathemati-

cally be represented as the summation ofm increments of the basic pore-size fraction P0 � Pm�1

added to a residual solid volume Vm:

V0 ¼
Xm�1

i¼1

Pi þ Vm ð8Þ

The porosity of the medium can then be given as [74]:

φ �
ðV0 �NmVmÞ

V0
ð9Þ

¼ 1� ð1� ΓÞm ð10Þ

Going by the fractal dimension of Eq. (3), proposed by Mandelbrot [1], the fractal dimension is

related closely to the pore coefficient, Γ [74].

Γ ¼ 1�Nr3 ð11Þ

which, with Eq. (3), results to:
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Γ ¼ 1� r3�D ðΓ < 1, r < 1Þ ð12Þ

It was shown from Eq. (12) that in a fractal porous medium where pore sizes are scaled by the

same ratio r < 1, the fractal dimension increases with the decrease in the magnitude of the pore

coefficient [74]. Thus, the relation between the porosity and the fractal dimension from Eqs. (10)

and (12) gives:

φ ¼ 1� ðr3�DÞm ð13Þ

For a given value of the exponent m, the porosity of a fractal porous medium decreases as the

fractal dimension increases. Further, Eq. (13) shows that the fractal dimension of a porous

medium must be < 3.

Moreover, integration over the continuous pore size distribution between qr and r, where q is

the ratio of radii of successive pore classes in fractal soil, r is the pore radius, q < 1 is an

arbitrary factor, yields the contribution to the porosity from each size class obtained by

RS model. The distribution of pore sizes is defined by the following probability density

function [75]:

WðrÞ ¼
3�Dp

r
3�Dp
m

r�1�Dpr0 ≤ r ≤ rm ð14Þ

where r0 and rm refer explicitly to the minimum and maximum pore radii, respectively. The

power law distribution of pore sizes is bounded by a maximum radius, rm, and truncated at

the minimum radius, r0. Eq. (14), as written, is compatible with a volume, r3, for a pore of

radius r and Dp describes the pore space. The result for the total porosity derived from Eq. (14)

is given in [75] as:

φ ¼
3�Dp

r
3�Dp
m

ðrm

r0

r3r�1�Dpdr ¼ 1�
r0
rm

� �3�Dp

ð15Þ

Eq. (15) is exactly as in RS (Eq. (13)). If a particular geometry for the pore shape is envisioned, it

is possible to change the normalization factor to maintain the result for the porosity and also

maintain the correspondence to RS [67].

4.2. Fractal analysis on the permeability of porous media

The fluid flow through porous media is governed by geometrical properties, such as porosity,

properties of the flowing fluid, the connection and the tortuosity of the pore space.

The transport phenomena in porous media, that include single-phase and multiphase fluid

flow through porous media, electrical and acoustical transport in porous media, and heat

transfer in porous media, are focused on common interests and have emerged as a separate

field of study [76–79]. A matrix of a porous medium combined with fractured networks is
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called the dual-porosity medium. In the dual-porosity media, fracture and matrix are generally

considered as different media, each with its own property. Thus, gas flow through these dual-

porosity media could consist of two physically distinguished migration processes: one is

associated to the movement of gas through the larger-scale fractures, that is, a permeability

flow, which can be described by Darcy law, the other is related to the movement of gas inside

matrix blocks, that is, diffusion processes, which may be involved in several different mecha-

nisms, subject to the pore size [30, 74, 80].

In reality, surfaces of capillaries are rough and have great impact on fluid flow behavior and

permeability of a porous medium. Analytically, permeability expression is a function of the

relative roughness, the tortuosity fractal dimensions, capillaries sizes, and surface roughness,

together with the microstructural parameters (such as the characteristic length, the maximum

and minimum pore diameters, and the fractal dimensions) [19].

4.3. Methods of fractal analysis on the permeability of porous media

Fractal, multifractal, Gaussian, and log-normal models have been initiated, perhaps in all scale

range. The validation of unchanging theoretical framework used in calculating transport

properties, at least at some scales, has the capacity of eliminating much confusion regarding

the appropriate theoretical approaches used and the appropriate model to choose [67]. Inves-

tigation on gas flow through a dual-porosity medium, for example, a flow domain made up of

matrix blocks (with low permeability) implanted in a network of fractures, is not common.

Physical and computer modeling are commonly used for permeability of porous media.

Different methods of analysis on the permeability of porous media will be discussed in

this section.

Zheng and Yu [30] studied the permeability of a gas with the use of matrix porous media

embedded with randomly distributed fractal-like tree networks. The scientific expression for

gas permeability in dual-porosity media was obtained based on the pore size of matrix and the

mother channel diameter of embedded fractal-like tree networks having fractal distribution. It

was discovered that gas permeability was a function of structural parameters, which includes

the fractal dimensions for pore area and tortuous capillaries, porosity and the maximum

diameter of matrix, the length ratio, the diameter ratio, the branching levels, and angle of the

embedded networks used for dual-porosity media. The model that was initiated does not

contain any empirical constant. The model predictions were validated with the available

experimental data and simulating results, a fair agreement among them was found. An analy-

sis of the influences of geometrical parameters on the gas permeability in the media was done.

Khlaifat et al. [80] experimentally studied a single-phase gas flow through fractured porous

media of tight sand formation of Travis Peak Formation under different operation conditions.

Their study enhanced gas recovery from low permeability reservoirs by the creation of a single

fracture perpendicular to the flow direction. The porous medium sample that was taken into

account was a slot-pore-type tight sand from the Travis Peak Formation with permeability in

the microdarcy range and a porosity of 7%. A number of single-phase experiments that include

water and gas were performed at different pressure drops conditions ranging from 100 to 600

psig and at overburden pressures of 2000, 3000, and 4000 psig, respectively. It was shown from
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their results that the sample used was very sensitive to overburden pressure. Again, it was

shown from the experimental data that the presence of a fracture in a low permeability porous

media is the main factor responsible for reinforcing the gas recovery from tight gas reservoirs.

The presence of a fracture reinforces the gas flow, due to the increase in overall permeability

and the creation of different flow patterns, which locally shifted the two-phase flow away from

capillary force domination region. Furthermore, the fracture aperture played a significant role

in enhancing flow due to both reconfigurations of connecting pores and joining of the non-

connecting pores to the flow network.

A well-testing technique for Devonian shale gas reservoirs characterized by a low storage and

high flow-capacity natural fractures fed by a high storage, low flow-capacity rock matrix was

developed by Kucuk and Sawye [81] by using analytical methods and numerical simulator. They

developed analytical solutions in order to analyze the basic fractured reservoir measurable

factors that influence well productivity. These measurable factors are fracture system porosity

and permeability, matrix porosity and permeability, and matrix size. They found that the tradi-

tional way of testing the well does not usually work for fractured Devonian shale gas reservoirs.

Most of the time, the two parallel straight lines with a vertical separation are not shown in the

semi-log plot of the drawdown and build-up data. They further found that the inter-porosity flow

parameter is not the only parameter, which characterizes the nature of semi-log straight line.

A permeability model assumed to be comprised of a bundle of tortuous capillaries whose size

distribution and roughness of surfaces follow the fractal scaling laws has been derived for

porous media [19]. The proposed model includes the effects of the fractal dimensions for size

distributions of capillaries, for tortuosity of tortuous capillaries, and for roughness of surfaces

on the permeability. The proposed model is given by Eq. (16):

KR ¼
πL1�DT

0 Dfλ
3þDT
max

128Að3þDT �Df Þ
ð1� εÞ4 ð16Þ

where KR denotes the permeability for flow in porous media with roughened surfaces. Eq. (16)

indicates that the permeability is a function of the relative roughness ε, the fractal dimensions

DT (the fractal dimension for tortuosity of tortuous capillaries) and Df (the fractal dimension

for pore space), as well as the structural parameters A (cross-sectional area), L0 (the represen-

tative length or straight line along the flow direction of a capillary), and λmax (maximum

capillary diameter). Eq. (16) also shows that the higher the relative roughness, the lower the

permeability value; this can be explained by saying that the flow resistance is increased with

the increase in roughness. This is consistent with a physical situation [19].

The proposed Eq. (16) was found to be a function of the relative roughness ε, the fractal

dimension DT for tortuosity of tortuous capillaries, and structural parameters A, L0, and λmax.

The ratio of the permeability for rough capillaries to that for smooth capillaries follows the

quadruplicate power law of (1 � ε) given by Eq. (17). That is, Eq. (17) indicated that

the decrease of permeability for porous media with roughened surfaces in capillaries follows

the quadruplicate power law of (1 � ε). The authors concluded that the permeability of porous

media with roughened capillaries will be drastically decreased with the increase in relative
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roughness, and the proposed model can reveal more mechanisms that affect the flow resis-

tance in porous media than conventional models [19]. K in Eq. (17) is the permeability of

porous media with smooth capillaries.

η ¼ KR=K ¼ ð1� εÞ4 ð17Þ

Zinovik and Poulikakos [82] evaluated the relationships between porosity and permeability for

a set of fractal models with porosity approaching unity and a finite permeability. Prefractal

tube bundles generated by finite iterations of the corresponding geometric fractals can be used

as a model porous medium where permeability-porosity relationships are derived analytically

as explicit algebraic equations. Their investigation showed that the tube bundles generated by

finite iterations of the corresponding geometric fractals can be used to model porous media

where the permeability-porosity relationships are derived analytically. It was further shown

that the model of prefractal tube bundles can be used to obtain fitting curves of the permeabil-

ity of high porosity metal foams and to provide insight on permeability-porosity correlations

of the capillary model of porous media.

All the methods discussed here have shown that the permeability of a porous media is strongly

affected by its local geometry and connectivity, the matrix size of the material, and the pores

available for flow. All the methods gave concept and knowledge of fractal geometry in relation to

the characterization of the porous structure with respect to the permeability of the porous media.

5. Conclusion

Fractal is considered a self-similar system. It has been confirmed that the fractal technique is a

powerful technique that has been successfully used in the characterization of the geometric

and structural properties of fractal surfaces and pore structures of porous materials. It gives an

understanding on how the geometry affects the physical and chemical properties of systems

since their complex patterns are better described in terms of fractal geometry if the self-

similarity is satisfied. It also builds a bridge between micro-morphology and macro perfor-

mance. This chapter shows that the structural and functional characters of porous materials

depend on the pore structure, which can be described effectively by the fractal theory.
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