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Abstract

The chapter presents a new strategy to improve the precision of the inertial navigators 
processing in a fuzzy manner the signals provided by the miniaturized sensors equipping 
their inertial measurement units (IMU). To apply the developed technique, the hardware 
component of the inertial measurement units was specifically designed to include some 
redundant clusters of inertial sensors disposed in linear configurations on the measure-
ment axes. The algorithm acts at the level of each detection cluster designed to measure 
an acceleration or angular speed along with an IMU axis by fusing the data obtained from 
the sensors in respective cluster. Based on the standard deviations of the sensors signals 
estimated for a data frame with a well-known size, the fuzzy logic mechanism provides 
a set of weights associated with each sensor in cluster, which are further used to fuse the 
data acquired from sensors at the current time. The algorithm has an adaptive charac-
ter, the data frame used to estimate the standard deviations of the sensors signals being 
permanently updated with the new sensors measurements, and, in this way, the weights 
associated with each sensor are reestimated at each measurement step.

Keywords: inertial navigation, miniaturized sensors, data fusion, fuzzy logic, 

redundant configurations, noise reduction, precision improvement

1. Introduction

The permanent change at the level of the sensor fabrication technologies in the last two decades 

aiming especially toward miniaturization produced a significant change in the  navigation and 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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positioning systems field from the point of view of strap-down inertial  navigation systems 
(SDINS). Therefore, more and more applications have been developed and are currently devel-

oped starting from this concept and based on miniaturized inertial measurement units and 

 miniaturized data processing systems. These new technologies, MEMS ( micro-electro-mechanical 

systems), NEMS (nano-electro-mechanical systems), MOEMS (micro-opto- electro-mechanical 

systems), or NOEMS (nano-opto-electro-mechanical systems), are currently successfully 

applied in the inertial sensors, dedicated to a large part of the SDINS applications. Actually, due 

to the miniaturization, the SDINS systems application field has been seriously extended beyond 
the classical navigation systems equipping the vehicles in the aerospace industry, at the level 

of land-vehicle applications, robotics, medicine, and assisted living [1–4]. The distribution of 

the inertial sensor fabrication technologies on future applications accuracy classes can be orga-

nized as in Figure 1 [1]. It can be easily observed that the accuracy level for NEMS technologies 

(possibly NOEMS) are still at the commercial applications level; IOG—integrated optics gyro, 

IFOG—interferometric fiber optic gyro, HRG— hemispherical resonant gyro, PCF-FOG—pho-

tonic crystal fiber-fiber optic gyro.

Included in the dead-reckoning navigation systems category, the SDINS was succeeded 

on the market due to its availability to provide the vehicle speed and position with abun-

dant dynamic information, due to the possibility to calculate at an extremely high rate com-

paratively with the GPS system, and due to its excellent short-term performance. Having 

Figure 1. Inertial sensor technologies on the application accuracy classes.

Modern Fuzzy Control Systems and Its Applications258



 characteristics complementary to satellite positioning systems, in time, it became an impor-

tant component of the modern navigation systems near the GPS [5–6]. If the two systems are 

used in an integrated configuration, for a short time, derived from the quality of the used 
inertial sensors, the inertial navigator can overcome the nonavailability of GPS signals and 
can maintain in this way the navigation solution at a high quality; a well-designed INS/GPS 
navigator provides improved performance in terms of accuracy, availability, and reliability in 

front of a simple GPS system.

From another point of view, the inertial navigators are subjected to various error sources, 

their main deficiency residing in the great accuracy degradation over time mainly due to the 
quality of the used inertial sensors [7–9]. New miniaturization technologies plays an impor-

tant role in the reduction of the cost and the volume of the inertial sensors, which, apparently, 

offers an important advantage for the miniaturized inertial sensors, but, in fact, the fabrica-

tion processes of such sensors make these very sensitive to the changes of the environmental 

conditions: temperature, pressure, electric and magnetic fields, and vibrations. Therefore, the 
sensors output can vary quickly, widely, and sometimes randomly and is very hard to be 

modeled. In many cases, this sensitivity leads to the decreased sensor performance, adding 

more error types, and possibly, with higher values than those of classical sensors [3, 9].

In this context, the need to develop low-cost, small-size, and high-precision INS/GPS integrated 
navigators, which are able to be used also in GPS challenging environments, generated few 
research directions in the field; the main two being [4–6, 10–14]: (1) to develop standalone accu-

rate SDINS structures with miniaturized IMUs; (2) to develop new INS/GPS data-fusion meth-

ods based on artificial intelligence algorithms, having objectives to overcome the limitations 
in terms of model dependency, prior knowledge dependency, and linearization dependency.

The increase of the SDINS accuracy in standalone configuration targets, in fact, the improve-

ment of the quality for the signals provided by the IMUs to the navigation processor through 

the obtaining of high quality miniaturized sensors or through the development of various 

IMU hardware architectures accompanied by right numerical algorithms able to produce sen-

sor errors estimation and compensation [9, 13, 14]. Two categories of errors parasitize the 

inertial sensors: deterministic errors and stochastic errors. For the deterministic errors, the 

specialists conceived various calibration procedures, which can easily estimate and eliminate 

it. Unfortunately, the stochastic error estimation necessitates a more complex process and 

they cannot be fully removed from the sensors data. For both categories of inertial sensors 

(accelerometers and gyros), the most important stochastic errors are caused by noise and by 

instability of bias and of scale factor [7].

The main difficulty with the noise is related to the impossibility to apply a direct filtering pro-

cedure by using classical methods, because, in terms of frequency spectrum, it is superimposed 

on the band 0–100 Hz of the navigation useful signal [7]. As a consequence, many researches 

have been initiated to find alternative solutions to limit its impact on the solution of navigation. 
On the other way, it must not forget that at the level of the noise there are present two compo-

nents, long term noise (low frequency noise) and short term noise (high frequency noise), each 

one with its own spectral characteristics and with its own compensation mechanism: optimal 

low pass filtering or using algorithms that fusing the data from multiple sensors [13, 15–19].
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Our identified way to improve the quality of the inertial sensor signals is based on the use of 
redundant detection clusters with the sensors disposed in linear configurations along each 
detection axis in IMU (Figure 2) [9, 13]. For each cluster, the measured data are subsequently 

fused to provide to the navigation processor a better measured signal of acceleration or angu-

lar speed for the respective axis in IMU. Simultaneously, this structure provides the advan-

tage to have a redundant inertial navigator in terms of the detection unit components, i.e., 

when one or more sensors in a detection cluster break down they are removed from calcula-

tion process but the system still remains operational. The inertial sensors in the same cluster 

have the sensitivity axes parallel and oriented in the same sense with the detection axis.

The proposed fuzzy logic procedure was mainly designed to produce effects at the level of the 
sensor noise, but some benefits were also noted at the level of bias effects reduction.

The work exposed here is related to a research project developed in Romania and financed by 
the Executive Unit for the Financing of Higher Education and University of Scientific Research, 
which aimed at the strap-down inertial navigators’ precision improvement by using redun-

dant sensor networks for their IMUs and new adaptive numerical algorithms for data fusion.

In this chapter, the information is structured as follows: Section 1 is constituted by a short 

introduction; Section 2 exposes the algorithm basic elements and structure, including the 

fuzzy logic mechanism; Section 3 shows the numerical simulation results obtained with the 

developed algorithm for detection clusters with various sizes and sensors types; Section 4 

provides the results obtained with some experimental data acquired with detection clusters 

with six MEMS sensors each (assisted by an integrated GPS/INS navigator as reference posi-
tioning system) and processed for a bidimensional INS navigator; and Section 5 highlights the 

benefits brought by the algorithm in the form of the conclusions.

Figure 2. Inertial sensors disposed in linear configurations along each detection axis in IMU.
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2. Data fusion algorithm basic elements and structure

To describe the generalized form of the proposed algorithm, it is denoted with n the num-

ber of collinear sensors included in a detection cluster, as in Figure 2. On the other way, if x
i
 

(i = 1 ÷ n) are the measurements of the x quantity provided by the n sensors, characterized by 

the standard deviations σ
i
 (i = 1 ÷ n), then the weighted mean obtained by applying the data 

fusion algorithm conducts to the x
e
 estimate of the x quantity under the next form [14]:
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e
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1
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w
i
 (i = 1 ÷ n) are the weights of the x

i
 (i = 1 ÷ n) measurements. For each sensor, the standard 

deviation is evaluated starting from the last m samples acquired from it. The algorithm has 

an adaptive character, the data frame used to estimate the standard deviations of the sensors 

signals being permanently updated with the new sensor measurements, and, in this way, the 

weights associated with each sensor are reestimated at each measurement step. The estima-

tion of the new weight set is realized based on a fuzzy logic mechanism. The necessary data 

frame used in the estimation of sensors standard deviations is built using a FIFO (first in first 
out) buffer with n channels and able to memorize m successive samples on each channel. In 

this way, at each measurement time, the last column in the data frame goes out from the buf-

fer and a new one comes in; two consecutive data frames are superposed with (m − 1) samples 
[13]. The standard deviations of the n-independent channels result with the next equation 

[13, 14]:

   σ  
i
  (k ) =  √ 

__________________

    1 __ m    ∑ 
j=1

  m     [  x  
i
  (j ) −    x ¯¯    

i
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x
i
(j) is the jth measurement provided by the ith sensor in the kth data frame; σ

i
(k) is the stan-

dard deviation for the kth data frame, which characterize the ith sensor; and     x ¯¯    i     x   ′   
i
    (  k )     is the 

arithmetic mean of the ith sensor data for the kth data frame [14]. The value of σ
i
(k) is used to 

fuse the data at the next sensor reading.

According to the proposed algorithm, a fuzzy logic controller is used in each channel of a 

detection cluster, and, based on the standard deviation, σ
i
(k) of the m consecutive samples 

acquired from the sensor in the kth data frame provides a weight   w  
i
  fuzzy   (  k )     (  i =   ̄  1, n  1, n )     for the 

respective sensor. Based on the fact that in a weighted sum, the sum of all parts weight should 

be equal to 1, the sensors weights are recalculated and result with the equations [13, 14]):
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As a consequence, by calculating the weighted sum from the data fusion equation, at the time 

t
k+1,

 the x
e
 estimate of x is [13, 14]:
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i.e.,
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Based on the previous considerations, the architecture of the data fusion algorithm results 

as in Figure 3 [14]. The chosen fuzzy logic controllers are based on rules set that created 
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a proportional dependence between the quality of the sensor signals and their associated 

weights, e.g., a “P” fuzzy logic controller. Therefore, the implemented fuzzy logic control-
lers established an inverse proportionality between the calculated standard deviations and 

sensor-associated weights.

The aim is to obtain a simpler fuzzy controller in order to reduce at minimum the computing 

time at each sample in order to implement the controller on a cheaper microcontroller. The 

way to reduce the computing time is to reduce on one hand the number of the membership 

functions and on the other hand to simplify these functions. The structure of fuzzy controller 

realized in Matlab/Simulink is presented in Figure 4 [20, 21].

The universe of discourse for the controller input has considered a [0, 2] interval, where nine 

membership functions (in1 to in9) with Gaussian shapes were uniformly distributed. In the 

same time, nine membership functions (out1 to out9) with similar shapes were considered in the 

[0, 1] interval, taken as universe of discourse for the output. Figure 5 presents the input/output 

membership functions.

Figure 4. Fuzzy controller structure.

Figure 3. Data fusion algorithm.
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In the fuzzification process, the next nine rules were defined as: (1) If (input is in1) then (output 

is out9); (2) If (input is in2) then (output is out8); (3) If (input is in3) then (output is out7); (4) If 

(input is in4) then (output is out6); (5) If (input is in5) then (output is out5); (6) If (input is in6) 

then (output is out4); (7) If (input is in7) then (output is out3); (8) If (input is in8) then (output 

is out2); and (9) If (input is in9) then (output is out1). Widely accepted for capturing expert 

knowledge, a Mamdani controller type was used due to its simple structure of “min-max” 
operations [21]; and for defuzzification, the centroid method was applied.

3. Numerical simulation results

To simulate the algorithm, some models in Matlab/Simulink for detection clusters with vari-

ous sizes and sensors types were realized. An example of such model is shown in Figure 6, 

being realized for a cluster with four sensors by the same type, with errors software modeled 

by the blocks “Model Acc” placed at the input of the simulation model. These models, real-
ized by the authors, are based on the sensor data sheets and on the IEEE equivalent models for 

the inertial sensors [22, 23]. Accelerometers were modeled as in Figure 7, the obtained model 

having inputs, such as acceleration a
i
, applied along the sensitive axis, and the  cross-axis 

acceleration a
c
, and as output the perturbed acceleration a [22, 23].

Figure 5. Membership functions (mfs) for input and output.

Figure 6. Simulation model with four sensors in cluster.
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Studying the data sheets for various acceleration sensors, it was observed that a part of the 

included parameters is provided by using an interval inside which they can vary arbitrary. 

For example, for the bias it is provided a maximum absolute value (B) which is considered 

as percent from span, for the cross-axis sensitivity it is provided a maximal value (k
c
) consid-

ered as a percent from the cross-axis acceleration (a
c
), for the scale factor calibration error the 

producers give a maximum absolute value (ΔK) under the form of a percent from the scale 

factor (K), and for the noise is provided the maximum value of its density. Therefore, accord-

ing to Figure 7, in the model, the “rand(1)” MATLAB function is used three times to generate 
a random value in the (−B, B) interval for the bias, a random value in the (0, k

c
) interval for the 

cross-axis sensitivity, and a random value in the (−ΔK, ΔK) interval for the scale factor calibra-

tion error. The noises are realized using the SIMULINK block “Band-Limited White Noise” 
and MATLAB function “RandSeed” through the generation of a random value of the density 
in the (80%⋅ν

d
, ν

d
) interval [24].

In a simulation example at null accelerations as inputs, graphical characteristics resulted are 

shown in Figures 8–10. Figure 8 shows the sensor measurements from “Acc-1” to “Acc-4” and 
also the results of the accelerometer data fusion “Acc-f”. In the simulation, there was consid-

ered just the sensor noise overlapped on an ideal null input for four sensors with a span of 18 g, 

a bandwidth of 2500 Hz each, and with various noise densities taken aleatory between 280 and 
380 μg/Hz1/2. The noise pattern of the data fusion resulted a signal that proves an important 
reduction of the noise level, a similar observation resulting from Figure 9 also depicting the 

evolution in time of the standard deviations for the sensors signals and for the estimate x
e
. On 

the other way, Figure 9 proves that the adaptive character of the algorithm is maintained, the 

standard deviations values being updated at each simulation time step. The best sensor in 

the cluster was sensor #3, the standard deviation of the fused signal being two times smaller 

(approx. 3⋅10–3 m/s2) than the raw values of the standard deviations of the sensors signals 

(approx. 6⋅10–3 m/s2). Figure 10, depicting the values of the sensor weights estimated at each 

calculation step, also proves that the best sensor in the cluster was the sensor #3, and it receives 

the biggest values from the four weights during the entire numerical simulation.

Figure 7. Accelerometers Matlab/Simulink model and its interface.
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The sample time for the numerical simulation was 0.01 s, which means a data processing rate 

of 100 samples/s. Moreover, the data frame size for one detection channel was established to 

be m = 100, i.e., the buffers allow to be obtained data frames of 100 consecutive samples for 
each channel. In this way, any two consecutive data frames for one channel are overlapped 

with 99 samples. From Figure 9, the initialization phase of the algorithm with a duration of 

1 s, time necessary for the first buffer to be full with 100 samples can be easily observed. All 
simulation results proved a good functioning of the algorithm which provided an important 

reduction of the sensor noise level, with a higher potential in the improvement of the solution 

of navigation accuracy when it is used in an inertial navigator.

Figure 8. The sensor measurements and the data fusion results.

Figure 9. Standard deviations for the sensor signals and for the data fusion signals.
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4. Results obtained with experimental data

The proposed algorithm was also tested using some experimental data acquired with an IMU 

equipped with detection clusters, which included six MEMS sensors each (assisted by an 

integrated GPS/INS navigator as reference positioning system). For the used IMU structure, 
with six sensors in each detection cluster, the Matlab/Simulink implementation of the data 

fusion algorithm resulted as shown in Figure 11 [14]. Grouping the algorithm model resulted 

in “Fuzzy-logic data fusion” block from the right side of the figure. The data fusion block 
inputs are the measured data obtained from the sensors in the cluster (“Si” correspond to the 

Figure 11. Matlab/Simulink implementation of the data fusion algorithm for experimental data.

Figure 10. Sensor weights.
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measurements x
i
, i = 1 ÷ 6), whereas its outputs are the fusion signal “S_f” (the estimate x

e
), the 

sensor weights “w1–w6” (w
i
, i = 1 ÷ 6), the standard deviation of the fusion signal “Std_f”, and 

the standard deviations of the sensor data “Std1–Std6”.

After the fusion, the obtained data were processed in a bidimensional INS navigator in hori-

zontal plane, software implemented as in Figure 12 [14]. Therefore, in this testing mechanism, 

three detection clusters were implied: two accelerometers clusters along the longitudinal and 

lateral axes of the vehicle and a gyro cluster along the vertical axis of the vehicle. The model 

included the “Flat Earth to LLA” Matlab/Simulink block in order to obtain the vehicle coordi-
nates also in terms of latitude and longitude. The block “Horizontal plane navigator” in the 
right side of the figure has been obtained by grouping the navigator software model in the left 
side of the figure. The inputs of the navigator are the inertial measurements provided by the 
accelerometers and by the gyro: longitudinal (f_xv) and lateral (f_yv) accelerations in vehicle 

reference frame, and the angular speed (w_zv) along the vertical axis of the vehicle reference 

frame. As outputs, it provides information related to the angular orientation of the vehicle 

in horizontal plane (yaw angle—psi), to the vehicle speed and position components in local 

horizontal frame, v_xl (North speed), v_yl (East speed), x_l (position in North direction), and 

y_l (position in East direction), and to the latitude and longitude coordinates of the vehicle 

(Lat and Lon).

During tests, the IMU data were acquired simultaneously with the data from an integrated 

GPS/INS navigator used as reference positioning system; both equipments were boarded 
on a test car. The sensor acquired data were offline processed through fusion but also used 
together with the fusion signals in a Matlab/Simulink software model implementing seven 

bidimensional INS navigators (“Horizontal plane navigator” blocks) as in Figure 13 [14]. It 

also includes three “Fuzzy-logic data fusion” blocks used to fuse the acquired data in each of 
the three detection clusters.

The sensors in IMU were organized in six groups, with three sensors each (two accelerometers 

and one gyro), one sensor from each of the three detection clusters. To avoid the complica-

tions in the data processing, the detection groups included sensors with the same number in 

Figure 12. Software model of the bidimensional INS navigator in horizontal plane.
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the detection clusters. Six of the seven navigators in Figure 13 (“Nav1” to “Nav6”) processed 
data from the six detection groups, whereas the seventh navigator (“Horizontal plane naviga-

tor – Fused signals”) processed data resulted from the fusion procedure applied on each of 
the three detection clusters. In this way, the evaluation model allows the obtaining of seven 

solutions of navigation, six solutions based on inertial sensor raw data (nonredundant INSs) 

and one solution based on inertial sensor fused data. All these solutions are further compared 

with the navigation solution provided by the integrated GPS/INS navigators which are used 
as reference positioning system.

For an evaluation situation, the experimental data acquired in each of the three detection clus-

ters and the data fusion results for each cluster are shown in Figure 14 for the accelerometers 

in the x-axis cluster, in Figure 15 for the accelerometers in the y-axis cluster, and in Figure 16 

for the gyros in z-axis cluster. The data fusion signals are the last ones in each figure.

The processing of the acquired data with the model in Figure 13 conducted at the naviga-

tion solutions components shown in the next figures. Together with the navigation solution, 
components have shown the associated errors, evaluated vis-à-vis of the reference naviga-

tion solution provided by the GPS/INS integrated navigator. Table 1 centralizes the absolute 

maximal values of the positioning and speed errors for all six nonredundant INSs (“INS1” 
to “INS6” columns) and for the redundant INS (“Fusion” column), and also the mean values 
obtained for all these errors (“Mean value” column). In the same time, by calculating the mean 

Figure 13. The evaluation Matlab/Simulink model.
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of the absolute maximal values of the errors for the six nonredundant INSs in each line of 

Table 1 and dividing it with the corresponding value in the “Fusion” column, the ratios in the 
“Mean/Fus” column have been obtained. Similarly, the “Max/Fus” and “Min/Fus” columns 
show the ratios between the maximal value of the tabled errors for the six nonredundant INSs 

in each line of Table 1 and the corresponding value in the “Fusion” column, respectively, 
between the minimum value of the tabled errors for the six nonredundant INSs in each line of 

Table 1 and the corresponding value in the “Fusion” column.

Figure 14. Experimental data and the data fusion results for accelerometers in the x-axis cluster.

Figure 15. Experimental data and the data fusion results for gyros in the z axis cluster.
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At the level of the vehicle attitude, the characteristics in Figure 17 were obtained for the yaw 

angle. Also, from the point of view of the horizontal positioning, Figure 18 presents the cov-

ered distances in the North direction, and Figure 19 presents the covered distances in East 

direction. The North speed evolutions during time are depicted in Figure 20, whereas the 

speed evolutions during time in the East direction are shown in Figure 21. For each naviga-

tor, the incorporated “Flat Earth to LLA” block allows the calculus of the vehicle Latitude and 
Longitude as shown in Figures 22 and 23. Combining the positioning data in a horizontal 
plane, it resulted the vehicle trajectories (Latitude versus Longitude) and the deviations from 
the reference trajectory (Latitude errors versus Longitude errors), established by all seven 
navigators, as in Figure 24.

Figure 25 depicts the time evolution of the vehicle trajectories estimated with all seven navi-

gators, whereas Figure 26 presents their deviations from the reference trajectory.

Both graphical results and numerical values presented in Table 1 prove an important posi-

tioning precision improvement by using the proposed data fusion mechanism. The errors 

of the navigation solution are substantially reduced comparatively with the nonredundant 

navigation solutions. The numerical data in the “Mean/Fus” column of Table 1 highlighted 

a decrease of the mean of the absolute maximal values of the errors for the six nonredundant 

INSs of approximately 16.6 times for the positioning in the North direction, 5.1 times for the 

positioning in the East direction, 2.8 times for the speed component in North direction, 1.05 

times for the speed component in the East direction, and 3.8 times in the angular positioning in 

the horizontal plane (yaw angle). It is very important to be mentioned that the inertial sensor 

outputs in the experimental model of the inertial measurement unit were not previously cor-

rected with the biases values or with other errors values. The values in the “Fusion” column 
of Table 1, related to the positioning and speed errors for the redundant navigator after 100 

s have shown us that the absolute maximal values of these errors were 32.67 m for the linear 

Figure 16. Experimental data and the data fusion results for gyros in the z axis cluster.
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Abs. max 

error

INS1 INS2 INS3 INS4 INS5 INS6 Fusion Mean value Mean/Fus Max/Fus Min/Fus

North [m] 411.3583 990.5235 599.5493 308.5221 692.1193 266.7808 32.6736 544.8089 16.6742 30.3156 8.1650

East [m] 73.0415 318.1701 262.5502 107.2303 310.4679 132.3827 39.2776 200.6405 5.1082 8.1005 1.8596

V-North 

[m/s]

9.0599 19.4083 11.1598 7.1313 14.0987 7.0160 4.0333 11.3123 2.8046 4.8119 1.7395

V-East [m/s] 10.9701 9.8672 3.4987 13.6819 1.5752 5.5067 7.1445 7.5166 1.0520 1.9150 0.2204

Latitude 
[degrees]

37.019∙10−4 89.141∙10−4 53.955∙10−4 27.765∙10−4 62.286∙10−4 24.008∙10−4 2.940∙10−4 49.029∙10−4 16.6742 30.3156 8.1659

Longitude 
[degrees]

9.156∙10−4 39.886∙10−4 32.914∙10−4 13.442∙10−4 38.921∙10−4 16.595∙10−4 4.923∙10−4 25.152∙10−4 5.1082 8.1005 1.8598

Yaw 

[degrees]

14.4621 25.2716 18.7894 31.1004 24.9227 19.4309 5.7402 22.3295 3.8899 5.4179 2.5194

Table 1. Error analysis for redundant INS and for nonredundant INSs.
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positioning in North direction, 39.27 m for the linear positioning in East direction, 2.03 m/s for 

the speed component in North direction, 7.14 m/s for the speed component in East direction, 

2.940∙10–4 degrees for the Latitude positioning, 4.923∙10–4 degrees for the Longitude position-

ing, and 5.74 degrees for the angular positioning in the horizontal plane (Yaw angle).

The nonredundant inertial navigation system’s best configuration was switched between 
the detection groups associated with the first sensor in each detection cluster (East channel 
and Yaw angle channel) and with the sixth sensor in each detection cluster (North channel). 

The worst configurations for the nonredundant INSs are for the second sensor in each detec-

tion cluster, the absolute maximal values of errors in North position channel being 990.52 m, 

318.17 m in East position channel, 19.40 m/s in North speed channel, 89.141∙10–4 degrees in the 

Latitude position channel, and 39.886∙10–4 degrees in the Longitude channel. From the point of 
view of East speed channel and yaw angle channel, the worst nonredundant INS is INS4, the 

East speed error being 13.68 m/s and the yaw angle error being 31.10 degrees.

Figure 17. Yaw angle values and errors.

Figure 18. North positions and errors.

Modern Fuzzy Control Systems and Its Applications272



Figure 19. East positions and errors.

Figure 20. North speed evolutions during time.

Figure 21. East speed evolutions during time.
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Figure 23. Longitude and errors.

Figure 24. Vehicle trajectories and deviations from the reference trajectory in horizontal plane.

Figure 22. Latitude and errors.
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5. Conclusions

The chapter exposed a new way to reduce the noise in the inertial sensor data based on a 

fuzzy logic mechanism. As a special need of the developed mechanism is considered to be 

a redundant inertial measurement unit with inertial sensors disposed in detection clusters 

Figure 25. The time evolution of the vehicle trajectories for all seven INSs.

Figure 26. Time evolution of the deviations of the vehicle from the reference trajectory.
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with linear configurations, and measuring the same quantity. The proposed algorithm was 
firstly numerically simulated based on some models in Matlab/Simulink realized for detec-
tion of clusters with various sizes and including various sensor types. All simulation results 
proved a good functioning of the algorithm which provided an important reduction of the 
sensor noise level, with a higher potential in the improvement of the solution of navigation 
accuracy when it is used in an inertial navigator. Second, the algorithm was integrated in 
an INS redundant structure, with an IMU with three detection clusters and six miniaturized 
sensors in each cluster. An integrated GPS/INS navigator was used as reference position-
ing system to estimate the errors of the redundant INS in each channel of the solution of 
navigation. The data acquired from the redundant IMU were used in a software model 
both in nonredundant configuration, to compute the solutions of navigations for six detec-
tion groups which included sensors with the same number in the detection clusters, but 
also for the INS redundant configuration when our data fusion methodology is preliminary 
applied. Both graphical results and tabled numerical values proved an important position-
ing precision improvement by using the proposed data fusion mechanism. The errors of 
the navigation solution were substantially reduced comparatively with the nonredundant 
navigation solutions. The numerical data highlighted a decrease of the mean of the absolute 
maximal values of the errors for the six nonredundant INSs of approximately 16.6 times for 
the positioning in the North direction, 5.1 times for the positioning in the East direction, 2.8 
times for the speed component in North direction, 1.05 times for the speed component in the 
East direction, and 3.8 times in the angular positioning in the horizontal plane (yaw angle). 
It is very important to be mentioned that the inertial sensor outputs in the experimental 
model of the inertial measurement unit were not previously corrected with the biased val-
ues or with other errors values.
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