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Abstract

An alternative formulation for the low wind speed-meandering autocorrelation function
is presented. Employing distinct theoretical criteria, this mathematical formulation,
from a physical point of view, is validated. This expression for the meandering autocor-
relation function reproduces well-observed wind-meandering data measured in a
micrometeorological site located in a pampa ecosystem area (South Brazil). The compar-
ison shows that the alternative relation for the meandering autocorrelation function is
suitable to provide meandering characteristic parameters. Employing MacLaurin’s
series expansion of a lateral dispersion parameter that represents cases in which turbu-
lence and oscillatory movements associated to the meandering events coexist, a new
formulation for the turbulence/meandering dissipation rate has been presented.

Keywords: wind meandering, meandering autocorrelation function, physical and
mathematical criteria, turbulent energy spectrum, meandering period

1. Introduction

The autocorrelation function is a physical quantity important both for diffusion investigation

and to provide basic relations concerning the turbulence processes in the planetary boundary

layer (PBL). The employment of autocorrelation functions derived from observed data for

distinct movement patterns in the PBL allows to evaluate relevant quantities used to under-

stand complex phenomena in geophysical flow. Therefore, the utilization of the autocorrelation

function in the Taylor statistical diffusion theory provides directly the dispersion parameters

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



and also formulations for the turbulence dissipation rate, which are utilized, respectively, in

Eulerian (Gaussian diffusion plume) and Lagrangian dispersion models.

Simulating turbulent diffusion and species scalar and vector transport in low wind speed

situations is a challenging problem. For conditions, in which the mean wind speed tends to

be negligible [1], it is very difficult to identify a defined mean wind direction. In this case,

large-scale motions, such as submeso motions, control, in a dominate manner, the atmospheric

contaminant dispersion [2]. These large horizontal wind oscillations are called meandering

and are responsible for the fact that measured autocorrelation functions of the horizontal wind

velocity components show a looping behavior, characterized by the presence of negative lobes

[3]. This looping pattern with the presence of negative lobes in autocorrelation functions,

which characterize the meandering observed phenomenon, can be well reproduced by partic-

ular mathematical formulations. With this good fit, it is possible to estimate the principal

physical variables that specify the meandering flow [4, 5].

Recently, Moor et al. [6] proposed to utilize a new mathematical formulation to fit the observed

low wind speed-meandering autocorrelation functions. This functional form for the horizontal

wind velocity components u and v may be written as follows:

RðτÞ ¼
cos mτ

ðm2þ1ÞTL

� �

1þ τ

ðm2þ1ÞTL

� �2
ð1Þ

where τ is the time lag, TL is the decorrelation time scale, and m is the loop parameter. The

mathematical formulation, as provided by Eq. (1), is composed of the product of the binomial

function (describing the autocorrelation function for the turbulent degrees of freedom [7]) by

the cosine (describing the influence of the submeso motions in the autocorrelation function [8]).

Therefore, this formulation presents a heuristical flexibility that allows describing the observed

characteristics of the atmospheric multiple-scale interaction. Eq. (1) can also be written in a

distinct way, namely

RðτÞ ¼
cosðqτÞ

ð1þ pτÞ2
ð2Þ

with

p ¼
1

ðm2 þ 1ÞTL
ð3Þ

and

q ¼
m

ðm2 þ 1ÞTL
ð4Þ

q and p are hybrid relations described in terms of the turbulent (TL) and meandering parame-

ters (m) and are originated from the Frenkiel autocorrelation function [9]. Furthermore, a

meandering characteristic time scale (meandering period) can be represented as
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T� ¼
2π

q
ð5Þ

and will be calculated by

T� ¼
2π ðm2 þ 1ÞTL

m
ð6Þ

The purpose of this study is to verify that the expression given by Eq. (1) fills the mathematical

and physical requirements that must be fulfilled by an autocorrelation function. An additional

aim is to employ the best-fitting curves, obtained from Eq. (1), to calculate the loop parameter

and the meandering characteristic time scale. The present investigation also provides a new

relation for the turbulence/meandering dissipation rate.

2. Discussion of the physical and mathematical criteria to the

autocorrelation function

In this part of the chapter, we use four established criteria [10] to validate the autocorrelation

function, as given by the mathematical formulation described in Eq. (1). Therefore, these

criteria are applied to stationary and homogeneous turbulence, which are mathematical

descriptions of respective physical requirements for the validation of the autocorrelation func-

tion applied to the studies of turbulence. Eq. (1) is described in terms of a parameter m, which

indicates the intensity of the meandering phenomena. This parameter is responsible to intro-

duce variations in the usual results that are those normally expected in the classical forms that

represent the autocorrelation functions. In sequence, the four criteria are discussed in detail as

follows:

(I) R(τ) is an even function, and it has the following properties:

a. |R(τ)| ≤ = R(0), it is limited in the origin and its maximum value 1 occurs in τ = 0. This

fact agrees with the theoretical consideration presented in [11, 12]. The authors sug-

gest that R must osculate the theoretical parabolic form of R in the origin (τ ≈ 0).

b. The next property takes into account the qualitative behavior to large values of

autocorrelation time. In this case, R(τ) ! 0 when |τ| ! ∞. In Eq. (1), this consider-

ation results of confront theorem applied in jRðjτjÞj ≤ ð1þ pjτjÞ�2;

c. To define the integral time scale, it is necessary to calculate the integral

ð

∞

0

RðτÞdτ,

namely the integral must be convergent. Thus,

ð

∞

0

RðτÞdτ ≤

�

�

�

�

ð

∞

0

RðτÞdτ

�

�

�

�

≤

ð

∞

0

�

�RðτÞ
�

�dτ ¼
1

p
¼ ðm2 þ 1ÞTL ð7Þ

is a finite value.
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(II) RðτÞ∈C0ðRÞ, wherever the smoothness is not valid in τ because the lateral derivatives in

origin are not defined. This fact yields the angular functional form of the autocorrelation

function to τ = 0, and its physical implication is that this autocorrelation function is not

suitable to investigate the viscous microstructure of turbulence [13]. Therefore, to practi-

cal applications, where the hypothesis of fully developed turbulence is admitted (Re≫ 0),

the validity of this criteria is not relevant by the fact that the energy-containing and the

characteristics scales of eddies in this region are not relevant in the scalar diffusion

process.

(III) As already mentioned, the integral time scale TL is well defined and its value is obtained

as

ð

∞

0

RðτÞdτ. Here, it is necessary to make some considerations:

- the integral resolution is1

ð

∞

0

cos ðqτÞ

ð1þ pτÞ2
dτ ¼ ð1þm2ÞTL 1�m sinðmÞCiðmÞ � cos ðmÞ SiðmÞ �

π

2

� �� �h i

¼ ð1� βmÞð1þm2ÞTL

ð8Þ

- to m = 0, the result obtained is TL, in agreement with [7] and attends the given interpre-

tation of [10] to these criteria, and, following [14], this result is expected because the

argument of the autocorrelation function has dimensions of length inverse and after

integration recovers dimensions of integral scale;

- but to m 6¼ 0. There is the factor (1 � βm), which goes to zero when m goes to infinity.

This fact tells us that it does not have significant correlation to large values of m;

Therefore, using the above considerations, this result suggests the following interpreta-

tion: the case m = 0 will establish the autocorrelation time TL to a fully developed

turbulence hypothesis. On the other hand, when m 6¼ 0, the time scale will be propor-

tional to TL by the following correction factor (1 � βm) yielding

TLm ¼ ð1� βmÞð1þm2ÞTL ð9Þ

(IV) To validate these criteria, basically, we must verify the following relation [15]:

EðωÞ ¼
2〈u2〉

π

ð

∞

0

RðτÞcos ðωτÞdτ ≈ω
�2 ð10Þ

1Ci(m) is the cosine integral function and Si(m) is the sine integral function.
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In this case, applying the Fourier transform in Eq. (1) results

EðωÞ

〈u2〉TL

¼
ðm2 þ 1Þ

π

2� A cos ðAÞ
π

2
� SiðAÞ

� �

þ sin ðAÞCiðAÞ
h in

�B cos ðBÞ
π

2
� SiðBÞ

� �

þ sin ðBÞCiðBÞ
h io

ð11Þ

with A ¼ ðm2 þ 1ÞðωTLÞ þm and B ¼ ðm2 þ 1ÞðωTLÞ �m:

Eq. (11) does not express the form ω
�2, explicitly, but this behavior is founded in its

graphic representation (see Figure 1).

The present analysis, based on mathematical and physical criteria extensively discussed in

the literature, showed that the meandering autocorrelation function, as given by Eq. (1), can

be employed to investigate the physical patterns associated to the meandering multiple-

scale flow.

3. Reproducing observed meandering autocorrelation functions

In this part of the study, we use meandering data observed in a low wind speed PBL to

calculate the experimental autocorrelation functions. These experimental meandering autocor-

relation functions were obtained from the following relation:

Figure 1. Turbulent energy spectrum from the autocorrelation functions (Eq. (1)) for distinct values of the m parameter.
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RðτÞ ¼
〈uðtÞuðtþ τÞ〉

〈u2〉
ð12Þ

where 〈u2〉 ¼ σ
2
u
is the variance of the velocity. These observed functions are fitted by Eq. (1).

Therefore, Eq. (1) is evaluated as a mathematical representation to reproduce the observed

negative lobes in the meandering autocorrelation functions and utilized to calculate the loop

parameter and the meandering period.

The low wind speed data were collected at the Federal University of Santa Maria (Rio Grande

do Sul, Brazil) meteorological site. The wind velocity components were sampled at a frequency

of 10 Hz by a sonic anemometer installed at a height of 3 m located in a pampa ecosystem area.

Figures 2 and 3 establish the comparison among the autocorrelation function obtained from

the low wind speed data set (continuous line) and the correspondent best fit (dashed line)

Figure 2. Autocorrelation function for the horizontal wind-velocity component u.
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provided from Eq. (1). These figures were calculated from 1-h time series presenting the mean

horizontal speed ðu ¼ 0:96 ms�1Þ. They show that the autocorrelation function, provided by

the mathematical formulation (Eq. (1)), represents fairly well the observed form of the

meandering autocorrelation functions including their negative lobes. This oscillatory behavior,

generating negative lobes in the autocorrelation functions, calls attention for the presence of

multiple scales in the horizontal wind-meandering flow. The action of the submeso [8] and

turbulent scale motions provoke, for short-time intervals, large variations in the horizontal

wind direction.

Employing Eqs. (3)–(5) and a best-fit curve condition, it is possible to calculate, respectively,

the magnitudes for the looping parameter and meandering period (a complete discussion

about this development can be seen in [1]). These values are presented in Table 1.

Figure 3. Autocorrelation function for the horizontal wind-velocity component v.
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The magnitudes for mu and mv in Table 1 agree very well with the results obtained by Moor

et al. [6] that employed wind-meandering data which were collected in a nocturnal stable PBL

in a Brazilian Amazon Large Scale Biosphere-Atmosphere Project. The meandering periods T�
u

and T�
v in Table 1 present similar magnitudes with the mean values found by [4]. The charac-

teristic values of the meandering phenomenon are exhibited in Table 1, which can be used in

Eqs. (6) and (9) to obtain the new turbulent scales, yielding TL,mu
≈ 70 s and TL,mv

≈ 62 s. These

magnitudes of TL,m are in agreement with the results estimated by Moor et al. [6].

4. Turbulence/meandering dissipation rate

The lateral dissipation parameter σy is a statistical quantity fundamental for the dispersion

modeling and for the derivation of turbulence/meandering dissipation rate functional form

[16, 17]. From the Taylor statistical diffusion theory, this relevant parameter may be described as

σ
2
yðtÞ ¼ 2σ2v

ðt

0

ðt� τÞRvðτÞdτ ð13Þ

where σv is the standard deviation of the turbulent lateral velocity.

Taylor [18] considered an exponential form for the autocorrelation function and first derived

an expression for σ2y

σ
2
yðtÞ ¼ 2σ2vT

2
Lv

t

TLv
� 1þ e

�t
TLv

� �

ð14Þ

where t is the travel time of the fluid particle, TLv is the lateral Lagrangian integral time scale

(defined in Criteria III).

Tennekes [16] used Eq. (14) and inertial subrange similarity arguments [15, 12] to derive the

following fundamental expression for the turbulence dissipation rate ε:

ε ¼
2

C0

σ
2
v

TLv
ð15Þ

where C0 is the Kolmogorov constant.

Following the above development and employing the autocorrelation function as given by

Eq. (1) into Eq. (13) yields

T
�
u
ðsÞ T

�
v
ðsÞ mu mv

1337 1337 5.2 4.2

Table 1. Meandering period and loop parameter values for the u and v components.
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σ
2
yðtÞ

2σ2v
¼ �

cos ðqtÞ

p2
þ
1þ pt

p2
�
qð1þ ptÞ

p3

X

∞

n¼0

ðptÞ2nþ2

2nþ 2
�
ðptÞ2nþ3

2nþ 3

 !

X

n

k¼0

ð�1Þkm2kþ1

ð2kþ 1Þ!

" #

�
1

p2

X

∞

n¼0

ðptÞ2nþ1

2nþ 1
�
ðptÞ2nþ2

2nþ 2

 !

X

n

k¼0

ð�1Þkm2k

ð2kÞ!

" #

ð16Þ

For t ≪ TLv, MacLaurin’s series expansions of the meandering and turbulent dissipation

parameter (Eq. (16)) can be approximated by

σ
2
yðtÞ ¼ σ

2
vt

2 �
2pσ2v
3

t3 ð17Þ

The confrontation of Eq. (17) with the Taylor statistical diffusion theory (Eq. (13)), for disper-

sion periods that are very smaller than the Lagrangian integral time scale, demonstrates that

the negative expression in Eq. (17) represents a term that reduces the hybrid dispersion

parameter. This negative contribution results in the suppression of a number of degrees of

freedom of the turbulent field associated to the high-frequency harmonics [17]. As a conse-

quence, it is reasonable to relate the term
2pσ2v
3 t3 to the Kolmogorov spectrum high-frequency

eddies. This comparison was accomplished by [16] employing the Lagrangian structure func-

tion, the Lagrangian autocorrelation function, and the inertial subrange Lagrangian turbulent

spectrum. Tenneke’s derivation provides the following relationship for the lateral dispersion

parameter in terms of inertial subrange quantities:

σ
2
yðtÞ ¼ σ

2
vt

2 �
C0ε

6
t3 ð18Þ

The comparison of Eq. (17) with Eq. (18) leads to the following fundamental relation:

ε ¼
4

ðm2 þ 1Þ

σ
2
v

C0TLv
ð19Þ

The new expression, as given by Eq. (19), maintains the basic argument that turbulent motion

is dissipated at a rate proportional to the kinetic energy and inversely proportional to the

memory effect associated to the energy-containing eddies. Therefore, Eq. (19) is described in

terms of the looping parameter m. Such a parameter, associated to the meandering phenome-

non, becomes the new dissipation rate distinct of those applied to the purely turbulent cases.

The looping parameter m determines the magnitudes of the dissipation rate. Hence, the

dissipation rate increases when the turbulence is dominant. On the other hand, the dissipation

rate decreases when submeso motions, associated to the meandering phenomenon, control the

geophysical flow.
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5. Conclusion

In this study, a mathematical relation to represent observed meandering autocorrelation func-

tions, derived from the heuristic arguments, is tested and validated using well-known mathe-

matical and physical criteria. Therefore, it is employed to describe experimental wind-

meandering data. From this approach and utilizing best-fitting curves, it was possible to

obtain characteristic values for the loop parameter and the meandering period. These quanti-

ties, which characterize the wind-meandering phenomenon, are shown in Table 1.

An important aspect in the present development has been the derivation of Eq. (11) which

represents a theoretical formulation to model observed wind-meandering spectral data. Thus,

Eq. (8) is able to describe the effect of the submeso and turbulent scales and hence allow to

identify the low frequencies associated to the meandering spectral peaks.

Another relevant result is provided by Eq. (19). Therefore, this expression is able to evaluate

dissipation rates generated from complex flows. Complex flows, such as meandering motions,

are those in which there are interactions between distinct circulations characterized by move-

ments presenting different spatial and time scales. As a consequence, Eq. (19) allows to

describe this atmospheric phenomenon type.
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Appendix A

In this appendix, the general criteria to validate mathematical formulation for the autocorrela-

tion function are presented. These criteria are a summary of physical and mathematical

requirements applied in the statistical treatment of the turbulence founded in the classical

literature [10, 13].

In particular, Manomaiphiboon and Russell [10] presented four criteria for the validation of the

ACF to homogeneous and stationary turbulence, as follows:

(I) R(τ) is limited at origin (neighborhood of origin) jRðτÞj ≤ 1 ¼ Rð0Þ. Besides, limjτj!∞RðτÞ

¼ 0 and

ð
∞

0

jRðτÞjdτ < ∞.

In fact, the generic form of the autocorrelation function is given by the Eq. (12)

following R(0) = 1, which indicates that the maximum correlation is τ = 0 and, conse-

quently to any other correlation time, is given by |R(τ)| ≤ 1.

Turbulence Modelling Approaches - Current State, Development Prospects, Applications214



On the other hand, the condition that

ð

∞

0

jRðτÞjdτ must be finite will permit to obtain the

Lagrangian integral scale time, which will be defined in Criteria III.

(II) R(τ) is smooth in τ. At origin dRðτÞ
dτ

�

�

�

τ¼0
¼ 0 and d

2
RðτÞ
dτ2

�

�

�

τ¼0
< 0.

The mathematical properties described by Criteria II result of the Taylor series expansion

of R(τ) in the neighborhood of origin (τ ≈ 0),

RðτÞ ¼
X

∞

n¼0

d
n
RðτÞ

dτn

�

�

�

�

τ¼0

τ
n

n!
: ð20Þ

Due to the parity of R(τ) (stationary turbulence), the odd-order derivatives are null, in

particular, dRðτÞ
dτ

j
τ¼0 ¼ 0. Therefore, from Eq. (20), it results as follows:

RðτÞ ¼ 1þ
1

2

d
2
RðτÞ

dτ2

�

�

�

�

τ¼0

τ
2 þOðτ4Þ ð21Þ

and, consequently, 1
2
d2RðτÞ

dτ2
j
τ¼0 < 0. The test of the second derivative in an interval cen-

tered at the origin (τ ≈ 0) ensures a representation of R(τ) by quadratic polynomial and, at

τ = 0, agrees with the first criteria.

Following [12], to introduce a time scale τL, which contains temporal values close to the

origin, the Taylor’s autocorrelation function can be approximated by

RðτÞ ≈ 1�
τ
2

τ
2
L

ð22Þ

meaning an osculating parabola R(τ) at origin. This expression defines the time scale τL

by the relation

1

τ
2
L

¼ �
1

2

d
2
RðτÞ

dτ2

�

�

�

�

τ¼0

: ð23Þ

(III) The Lagrangian integral time scale given by TL ¼

ð

∞

0

RðτÞdτ is limited and well defined.

It is a direct consequence of Criteria I.

(IV) FromWiener-Khintchin theorem [19], the R(τ) and E(ω) are expressed by a pair of Fourier

cosine transform:

RðτÞ ¼
1

〈u2〉

ð

∞

0

EðωÞcos ðωτÞdω ð24Þ

Testing Physical and Mathematical Criteria in a New Meandering Autocorrelation Function
http://dx.doi.org/10.5772/67920

215



and

EðωÞ ¼
2〈u2〉

π

ð∞

0

RðτÞcos ðωτÞdτ ð25Þ

where ω is the turbulent frequency.

According to the inertial subinterval theory (K41) [20], E(ω) can be expressed by

EðωÞ ¼ κEω�2
∝ ω�2, to 1≪ωTL ≪

TL

τη
, where κ is the dimensional universal constant, E is

the average rate of turbulent energy dissipation, and τη is the Kolmogorov time scale.
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