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Abstract

Antimicrobial resistance (AMR) is on the rise; the only solution for overcoming this is 
through accelerated drug discovery. At current, bacterial evolutionary rates is still clearly 
the undisputed winner in this war. To circumvent this, evolution of resistance need to be 
curbed and this can only be effective via novel approaches, one of which includes the use 
of a resistance modifying agent. The criterion to qualify as a resistance modifier neces-
sitates the co-administration of the agent with an inhibitor that deactivates the bacterial 
resistance mechanism, restoring its original effectiveness. Natural products such as plant 
extracts and essential oils (EOs) have been viewed as a privileged group for investigation 
of their potential roles to combat antibiotic resistance, due to their compositions of active 
chemical compounds. The route for multidrug resistance development in Gram-negative 
bacteria is primarily mediated by the sophisticated inner and outer membrane barriers, 
which function to protect the cell against external toxic compounds; hence, bypass of 
these bacterial membranes would successfully restore or improve efficacy of the antimi-
crobials. The aim of this chapter is to concisely describe some examples for recent strate-
gies used in the screening of possible resistance modifiers from essential oils specifically 
against MDR Escherichia coli.

Keywords: essential oils, combination therapy, drug synergism, resistance modifying, 
membrane permeability

1. Introduction

Antimicrobial resistance is an especially pressing problem in the clinical setting today. 
The pinnacle of secondary infections due to convergence between communicable disease 
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(CD) and noncommunicable diseases (NCD) further complicates the problem [1]. There is 

a two-sided role for antibiotics; and although their uncontested and unquestionable role 

was recognized to significantly reduce the statistics of the infectious diseases burden world-

wide, their rampant use also contributed to the unexpected emergence of antibiotic resis-

tant microorganisms attributed to over‐prescription and misuse, hence, the emergence of 
the multidrug resistant Enterobacteriaceae, especially Escherichia coli (E. coli). Adversely, 

the last line of antibiotics, colistin, which had only been recently revived since 1959 amidst 

the fairly new emergence of carbapenem-resistant Enterobacteriaceae, had been reported by 

Chinese researchers to be inefficacious against E. coli recently, in infected pigs from a farm 

near Shanghai, and the spread of colistin resistance had increased significantly especially in 
the agriculture industry over time, which may be escalated to a global scale [2, 3]. With the 

establishment of new resistance, the Chinese authors have emphasized the urgent need for 

coordinated global action in the fight against pan‐drug‐resistant Gram‐negative bacteria and 
one of these strategies proposed included investigation into natural products, in this case, 

essential oils. This chapter aims to introduce the usage of synergistic combinatorial therapy 

between different classes of antibiotics and essential oils against multidrug resistant E. coli 

(MDR E. coli) and to detail the methodologies used to establish synergism as well as the 

mechanisms involved.

2. Antibiotic classes and multidrug‐resistant E. coli

2.1. Antibiotic classes and their respective natures

From the discovery of penicillin by Alexander Fleming in the early nineteenth century, 

approximately 20 classes of antibiotic have been discovered in time. However, only antibiotic 

classes that are effective against E. coli would be thoroughly discussed in this subsection.

2.1.1. β‐lactam antibiotics

β‐Lactam antibiotics are one of the most common yet diverse classes of antibiotics and 
are the first class of antibiotics discovered in the 1930s. They were effective against both 
Gram-positive and Gram-negative bacteria and were categorized into four main groups, 

carbapenems, cephalosporins, monobactams, and penicillins, with each group sharing 

structural similarity in the β‐lactam ring within the antibiotic molecule [4]. The β‐lactam 
antibiotics mainly target the bacterial cell wall synthesis pathway, and are thus termed 

“broad spectrum antibiotics.” Under normal physiological conditions, bacteria constantly 

renew their cell wall in order to replace broken ones. A unit of peptidoglycan cell wall 

consists of two subunits, the alternating N-acetylglucosamine and N-acetylmuramic acid. 

Each subunit contains an identical pentapeptide chain, which links both subunits together 

via the action of a transpeptidase, penicillin‐binding protein (PBP) [5, 6]. β‐Lactam antibi-
otics would act as an irreversible inhibitor toward PBP. The β‐lactam ring of the antibiotic 
mimics the structure of the pentapeptide chain and thus is able to bind with PBP, acylating 
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it’s active site and rendering it inactive [7, 8]. Hence, the action of β‐lactam antibiotic halts 
cell wall synthesis of bacteria, which eventually compromises the rigidity of the cell wall, 

leading to cell lysis.

2.1.2. Fluoroquinolone

Fluoroquinolones is another class of antibiotics that exert their effect on both Gram‐positive 
and -negative bacteria. The main structural feature of this particular antibiotic class is the 

presence of the fluorine atom within these antibiotics. It exhibits a broad spectrum activity 
against a large panel of bacteria as this group of antibiotic inhibits DNA synthesis by locking 
both the DNA gyrase and topoisomerase IV with the DNA strand during DNA replication. 
This prevents the action of other enzymes such as the RNA polymerase and DNA helicase for 
normal DNA replication, which eventually leads to cell death [9, 10]. Commonly prescribed 

fluoroquinolones include ciprofloxacin, gemifloxacin, levofloxacin, and moxifloxacin, which 
had relatively low adverse effects.

2.1.3. Aminoglycosides

Aminoglycoside is another major group of antibiotics showing enhanced potency toward 

Gram-negative bacteria. As the name suggests, this compound comprises of sugar units 

bounded to an amino group. Aminoglycosides exhibit high potency as well as a broad 

spectrum of action as it disrupts protein synthesis by binding only to the prokaryotic 30S 

ribosomal subunit, which then impairs the proofreading mechanism during protein transla-

tion [11, 12]. This disruption produces dysfunctional proteins, either due to misreading or 

premature termination, and eventually causes cell death. Even though aminoglycosides are 

specific toward prokaryotic ribosome, toxicity had been observed and reported in mamma-

lian cells when a high dosage was applied [13]. Hence, aminoglycosides are only prescribed 

during life-threatening infections. Commonly prescribed aminoglycosides includes amika-

cin, gentamicin, and streptomycin.

2.1.4. Nitrofurans

Nitrofurans are a highly potent antibiotic class, which contain a furan ring and a nitro group. 
They are only used against urinary tract infections, especially when the infection is caused by 

an antibiotic-resistant pathogen. This is due to the high metabolism rate of the liver in partially 

breaking down the ingested nitrofuran. The remaining nitrofuran is then concentrated in the 

urinary bladder and thus suitable to be used in urinary tract infection, enabling targeted deliv-

ery [14]. High potency of nitrofuran is contributed by its diverse mode of actions when used 

against bacteria. In the presence of bacterial nitroreductases, nitrofuran is converted into reac-

tive intermediates such as peroxynitrite and nitric oxide, which attack the bacterial ribosome, 
thus halting the protein synthesis in bacteria [15]. It was also reported that these reactive inter-

mediates of nitrofuran can attack bacterial DNA as well as acting as a quorum sensing inhibi-
tor [16, 17]. Due to the attribute of their multiple‐action mode, resistance toward  nitrofurans 
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has yet to be observed in pathogens. Nonetheless, the exact mechanism of nitrofuran has yet 
to be fully understood. Nitrofurantoin is the common form of nitrofuran, which is prescribed 
generally.

2.1.5. Polymyxin

Polymyxin is a lipopeptide antibiotic that had been sidelined previously due to its high 

toxicity against mammalian cells. However, the emergence of multidrug-resistant patho-

gens has caused a resurgence in the use of polymyxin in treatments for bacterial infections 

as last resort. Polymyxin consists of a cyclic peptide bounded to a long hydrophobic fatty 
acid tail and it targets mainly Gram‐negative bacteria [18, 19]. Potency is only targeted 

toward Gram‐negative bacteria due to their mode of action, whereby the fatty acid tail 
of the antibiotic specifically targets and binds to the lipid moiety of a lipopolysaccharide, 
Lipid A that can only be found in Gram‐negative bacteria. This results in the insertion the 
cyclic peptide of the antibiotic into the cell membrane, thus compromising its integrity 

and increasing the permeability of the cell membrane. This eventually causes cytoplasmic 

leakage and leads to cell death [20–22]. Commonly prescribed polymyxin includes colistin 

and Polymyxin B.

2.2. Antibiotic resistance mechanisms in MDR E. coli

The introduction of antibiotics as therapeutic agents to treat bacterial infection or as a growth 

promoter in molecular engineering had adversely propelled bacterial evolution, forcing bac-

teria to develop resistance mechanisms in order to survive within an antibiotic‐filled environ-

ment. This gave rise to multidrug-resistant (MDR) pathogens, especially E. coli as they are 

commensal microorganisms and often used as the model bacteria in research. The emergence 

of MDR E. coli has posed a great threat toward the survivability of mankind, thus, the in-

depth understanding of the strategies used by MDR E. coli to bypass antibiotic treatment is 

necessary to address this issue.

MDR E. coli exhibits the ability to resist multiple antibiotics simultaneously due to the acqui-

sition of several genes that confer abilities such as antibiotic inactivation, multidrug efflux 
pump, target modification, or overproduction and reduction of cell membrane permeability. 
The multidrug efflux pumps are energy‐dependent and have been reported to be overex-

pressed in the presence of antibiotics, helping it to expel antibiotics that had successfully 

permeated into the cell [23]. The multidrug efflux pumps indicated low specificity enabling 
the removal of antibiotics beyond the same class, rendering the antibiotics ineffective. For 
instance, efflux pump AcrAB‐TolC of RND family is able to expel β‐lactam antibiotic, fluo-

roquinolones, tetracycline, and glycylcycline [23–26]. Furthermore, MDR E. coli can alter 

their outer membrane permeability by modifying the structure of porins and/or reduce or 

stop their expression, which would be ultimately responsible for antibiotic access into the 

cell [27]. It has been reported that porins observed in MDR E. coli had narrower channels 

when compared to normal strains, which prevents the antibiotics from entering the cell 

[28]. MDR E. coli had been reported to be able to deactivate antibiotic with the production 

of antibiotic‐targeting enzymes. β‐Lactamase is one example of enzymes produced by MDR 
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E. coli, which has the ability to cleave β‐lactam antibiotic, rendering it nonfunctional [29]. 

Antibiotic target modification had also been observed in MDR E. coli. Penicillin-binding 

protein (PBP), a transpeptidase, which links peptidoglycan subunit together, is the main 

target of the β‐lactam antibiotic. It has been observed that isolated PBP from MDR E. coli had 

conformational differences when compared to nonresistant strains of E. coli. This slight con-

formational change prevents effective binding of β‐lactam antibiotic but allows the trans-

peptidase to carry out its normal physiological function [30].

3. Synergistic potential of essential oils and antibiotics: challenges

The emergence of multidrug-resistant pathogens, especially E. coli, have caused an interest 

shift from the onerous development of novel classes of antibiotics to the more straightfor-

ward application of synergism or combinatory therapy in the hope of reviving the effi-

cacy and effectiveness of existing antibiotics. Quite a number of publications regarding 
the usage of essential oils and antibiotics as a combinatory therapy have indicated great 

success, with significant reductions in the dosage of antibiotics required to completely 
annihilate multidrug‐resistant pathogens [31–36]. Despite this, the usage of essential oils 

as a component for combinatory treatment posed a few challenges in its application. For 

instance, solubility of the hydrophobic essential oil in the aqueous medium is one of the 

greatest challenges faced. To solve this problem, emulsifiers such as dimethyl sulfoxide 
(DMSO) and polysorbate 80 (Tween 80) had been used to increase the solubility of essential 

oils in the aqueous medium. This would ensure maximum contact between the test organ-

ism as well as the test compound used throughout the experiment [37]. The concentration 

of such emulsifiers should also be taken into consideration as high concentration would 
cause toxicity to the test organism, resulting in false positivity during testing. For example, 

usage of DMSO at a concentration of more than 4% would reduce the viability of Salmonella 
paratyphi A, Staphylococcus epidermis, Shigella flexneri, Vibrio cholerae, and Pseudomonas oleo‐
vorans to less than 50% [38]. To better address the solubility issue, there is need to standard-

ize the method used to determine synergism. The broth microdilution method has been 

shown to be the most accurate when compared to other susceptibility tests such as the disk 

diffusion and agar dilution methods, which are less informative [39]. In order to further 
maximize solubility, the incubation parameter should be standardized to shake at 200 rpm 

to ensure the formation of consistent emulsion, a crucial attribute in indicating the solubil-
ity of essential oils.

Another challenge faced when using essential oils in combinatorial therapy would be the 

volatility of essential oils. It has been well documented that essential oils consist of 20–60 com-

pounds, which are highly volatile, but none of which are actually lipid in nature [40]. Thus, 

with the solubility problem solved, volatility of essential oils is the next problem to tackle in 

order to achieve accurate determination of synergism in combinatorial therapy. Volatility of 
essential oils can be affected by several factors. For instance, exposure to light can accelerate 
the degradation as well as volatility of essential oils. It has been demonstrated that in the 
presence of light, the autoxidation process of essential oil was accelerated, leading to the loss 
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of several compounds within the essential oil itself [41, 42]. Another factor that can affect the 
volatility of essential oils would be the temperature. As temperatures increases, the autoxida-

tion and degradation process of essential oils are markedly increased [43]. However, little can 
be done about the temperature factor as heat is still required for the test organism to grow 

optimally. At the least, testing should be carried out with minimal light to reduce the autoxi-

dation and degradation of the essential oils.

4. Establishment of synergism

In combination therapy, synergy is said to occur when the combined effect of two agents is 
greater than the sum of the individual effects. Currently there is no clear standardization or 
regulation of the methodology in combination therapy [44], further complicated by differ-

ent test methods, different EOs extraction methods and test assays. The most widely used 
techniques to detect synergy are the checkerboard and time‐kill curve methods [33, 45–48]. In 
checkerboard assay, in which two test agents are tested individually in serial dilutions and in 

all combinations of these dilutions together to find the concentration of each test agent, both 
alone and in combination, that produce some specific antimicrobial effects i.e., minimal inhib-

itory concentration (MIC). In antibiotics and EOs synergistic testing, the combined effects of 
the antibiotics and EOs are calculated and expressed in its fractional inhibitory concentration 

(FIC) using the following formula:

  FIC  =     MIC of EOs or antibiotic in combination   _______________________________   MIC of EO or antibiotic alone    (1)

The sum of these fractions is expressed as fractional inhibitory concentration index (FICI) 
where:

  FICI = FIC of EO + FIC of antibiotic  (2)

When FICI is less than or equal to 0.5, the combination is said to be synergistic; when FICI is 
between 0.5 and 4.0, the combination is said to have no interaction while FICI is more than 4.0, 
the combination is antagonistic [49]. Although checkerboard assay is by far one of the most 

reliable methods for demonstrating synergy, culture conditions predominantly influence the 
outcome of the study hence determinant factors should be precisely reported in manuscripts 

to better facilitate reproducibility of these experiments.

4.1. Investigations into membrane‐specific effects in combination therapy

Bacterial peptidoglycan/ cell wall disruption remains one of the most promising approaches 

for EO‐mediated cell death. Numerous data are already available on membrane disruptive 
effects of EOs against the Gram‐negative bacteria including E. coli [50–54]. In our previous 
work, several encouraging synergistic combinations of EOs and antibiotics against beta-lac-

tam resistant E. coli were obtained. Our understanding of how EOs synergies antibiotic action 

and induce bacterial cell death is focused on the generalized membrane disruptive effects of 
the EOs.
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4.1.1. Assessing bacterial surface charge using zeta potential measurement

The zeta potential is a consequence of the existence of surface charge; it provides the informa-

tion on the electrophoretic mobility of the dispersed particles. Zeta potential measurement can 

be used to investigate the membrane potential, which reflects the inherent metabolic state of the 
bacteria. Zeta potential reflects the electrical potential interface between the aqueous solution and 
the layer of such fluid attached to the bacterial cell, suggesting that loss of bacterial cell charge 
is related to the metabolic energy loss [55]. It has been found that the values are more negative 
at higher growth rates [56, 57]. The bacterial cell surfaces are negatively charged under normal 

physiological conditions, owing to the presence of anionic groups such as carboxyl and phos-

phate in their membranes. The magnitude of the charge varies between species and it fluctuates 
in response to various culture conditions such as the pH and ionic strength of the culture [58, 59]. 

More recently, we have employed technology using a Nano Zetasizer (Malvern Instruments, UK) 
to investigate the influence of antibiotic‐EO combinations on the cell surface physiology of E. coli. 

Different concentrations of piperacillin exerted different degree of zeta potential reduction in E. 

coli J53 R1. It has been observed that when the concentration of the antibiotic increased, the cells 
became less negatively charged (Figure 1). The cells’ zeta potential also responded differently 
to different types of EOs treatments at different test concentrations (Figure 2). The technique of 

electrophoretic light scattering offers advantages on the study of membrane potential with accu-

racy, measurement time and ease of use [60]. The work of Halder et al. further validated the use 

of zeta potential measurement as a measurable variable for membrane permeability studies [61].

Figure 1. Zeta potential values (mV) of suspensions of E. coli J53 R1 when exposed to different concentrations of 
piperacillin treatments. File represents: (   ) control; (   ) piperacillin (64 µg/mL); (   ) piperacillin (128 µg/mL); (   ) 
piperacillin (256 µg/mL). The mean ± SD for three replicates is illustrated. Data were analyzed by one‐way analysis of 
variance with *P < 0.05 being significant different from the control.
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4.1.2. Illustrations of cell physical changes using electron microscopy

In the study of membrane‐active mechanisms, scanning electron microscope (SEM) is 
employed to directly observe cell morphological changes after treatments. In our work, we 
observed the morphological changes of E. coli after treatment with EOs, namely pepper-

mint, lavender, and cinnamon bark. In the nontreated cells, a rod‐shape morphology that 
is characteristic of E. coli was observed (Figure 3); and cells treated with beta-lactam antibi-

otic at different concentrations did not show any observable alterations in size, shape, and 
surface morphology (Figure 4). Interestingly, cells treated with cinnamon bark EO were 
observed to show surface irregularities and corrugation, as is similar to the cells treated 

with lavender and peppermint EOs (Figure 5). It is important to note that a disturbed 
cell membrane system would affect other cellular structures in a cascade type action. In 
addition to SEM, transmission electron microscope (TEM) is also often employed to study 

the membrane integrity and intracellular alteration of the bacterial cells before and after 

treatments.

4.2. Investigations on antiquorum sensing properties of EOs

N‐acyl‐L‐homoserine lactone (AHL)‐mediated quorum sensing is a widespread system of 
stimuli and responses, which regulates the virulent determinants in most Gram-negative bac-

teria [62]. Antiquorum sensing antimicrobials are unlikely to contribute to the development of 

Figure 2. Zeta potential values (mV) of suspension E. coli J53 R1 when exposed to different EOs alone ( ) or in 

combination with antibiotic ( ). The mean ± SD for three replicates is illustrated. Data were analyzed by one‐way 
analysis of variance with *P < 0.05 being significant different from the control.
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multidrug-resistant pathogens since it does not impose any selection pressure. Consequently, 

quorum sensing has been viewed as an attractive alternative strategy used to combat bacte-

rial antibiotic resistance. The lack of AHL synthase‐encoding gene, which should be naturally 
occurring of E. coli has made this variant a suitable biosensor for the screening of AHL syn-

thase inhibitors. Experimentally, external AHLs are supplied exogenously to induce quantifi-

able quorum sensing traits such as bioluminescence. The antiquorum sensing ability of the 

test compounds are then measured by the significance of light inhibition [63]. In our previ-
ous work, we have employed E. coli [pSB401] and [pSB1075], which produce biolumines-

cence in response to short and long chain AHL respectively as the biosensors [64]. Lavandula 
angustifolia and Cinnamomum verum bark essential oils were found to significantly inhibit the 
light production of the biosensors, indicating the possibility of these EOs as quorum-sensing 

inhibitors [31, 32].

Figure 3. Scanning electron micrograph of the untreated E. coli J53 R1.

Figure 4. Scanning electron micrographs of E. coli J53 R1 after treatment of piperacillin at (a) 64 µg/mL, (b) 128 µg/mL, 
and (c) 256 µg/mL.
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5. Moving forward: present and future prospects

The exploitation of EOs has shed new light on antimicrobial therapeutics research and also 

the resurgence in the use of herbal medicine worldwide. Although possibilities of combina-

tion therapy appear to be extensive, the mode of interaction between two antimicrobials is 

extremely crucial. One of the challenges encountered in the in vitro study on a particular 

antibiotic is that despite proven synergism, it does not guarantee the success of the clinical 

use of the therapeutic agent. A major issue to be addressed is the pharmacology aspects of the 

membrane active properties of the EOs as a candidate therapeutic agent and their precise con-

dition of use. Thus, in line with in vitro susceptibility testing, in vivo experiments are needed 

in tandem to provide sufficient supporting evidence to serve as a basis for new antimicrobials 
to survive through the phases of clinical trials.

In view of current efforts in developing alternative strategies by combining antibiotics with 
other compounds (antibiotic or nonantibiotic) —following the encouraging paradigm in 

Augmentin, this approach needs to be intensified. Besides inhibiting the effector molecules 
such as β‐lactamase or DNA replication, supplementary compounds that interfere with 
regulatory mechanisms such as virulence genes or cell physiology have shown great poten-

tial. Furthermore, targeting nonessential bacterial pathways is also an alternative and very 

possible strategy employed to reduce the risk of developing resistance. Ultimately, just 

because bacteria can evolve in various ways to resist antibiotics at the rate that is insur-

mountable by new antibiotic development, it would be imperative for medical research-

ers to employ multiple strategies in the combat of antibiotic resistance. There is no single 

“magic bullet” to adequately address the phenomenon of multidrug resistance evolution.
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