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Abstract

In sensitivity-based finite element model updating, the eigensolutions and eigensensi-
tivities are calculated repeatedly, which is a time-consuming process for large-scale
structures. In this chapter, a forward substructuring method and an inverse sub-
structuring method are proposed to fulfill the model updating of large-scale structures.
In the forward substructuring method, the analytical FE model of the global structure is
divided into several independent substructures. The eigensolutions of each independent
substructure are used to recover the eigensolutions and eigensensitivities of the global
structure. Consequently, only some specific substructures are reanalyzed in model
updating and assembled with other untouched substructures to recover the eigen-
solutions and eigensensitivities of the global structure. In the inverse substructuring
method, the experimental modal data of the global structure are disassembled into
substructural flexibility. Afterwards, each substructure is treated as an independent
structure to reproduce its flexibility through a model-updating process. Employing the
substructuring method, the model updating of a substructure can be conducted by mea-
suring the local area of the concerned substructure solely. Finally, application of the pro-
posed methods to a laboratory tested frame structure reveals that the forward and inverse
substructuring methods are effective in model updating and damage identification.

Keywords: structural health monitoring, substructuring method, damage identifica-
tion, eigensolutions, eigensensitivity
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1. Introduction

Accurate finite element (FE) models are essential in damage identification and condition

assessment for structural health monitoring. In vibration-based model-updating process, the

FE model of a structure is iteratively updated to guarantee its vibration properties to reproduce

the measured counterparts in an optimal manner [1]. In the optimization process, the structural

responses are usually used to construct the objective function. The response sensitivities, which

are the first derivatives of the structural responses to some structural physical parameters, are

used to indicate a rapid searching direction. In this regard, the eigensolutions and their associ-

ated sensitivity matrices of the analytical model are required to be gained repeatedly in each

iteration [2, 3]. The majority of the practical structures in civil engineering are large in scale,

thus their FE models usually consists of a large number of degrees of freedom (DOFs) and

uncertain updating parameters. The conventional model updating methods of large-scale

structures are expensive in terms of computation time and computer memory [2].

It has been proved that the substructuring methods are efficient in dealing with large-scale

structures, as it takes the local area as an independent structure [4–9]. First, the global structure

is divided rationally into several smaller substructures to make it much easier and faster to

analyze the small substructures independently. Second, the FE model of a substructure has

much fewer uncertain parameters than the global structure, which helps to accelerate the

convergence of optimization process to identify these parameters and alleviates the ill-

condition problems. Third, the substructuring method is required to measure the local area of

the practical structure and save the experimental instruments. Finally, the substructuring

method can be more promising if combined with parallel computation.

In this chapter, a forward substructuring method and an inverse substructuring method are

proposed for model updating and damage identification. In the forward substructuring method,

the divided substructures are analyzed independently and are assembled to recover the

eigensolutions of the global structure by satisfying the coordination condition of displacement

at the interfaces. Afterwards, the fast-calculated eigensolutions and eigensensitivities of the

global structure are used for model updating. In the inverse substructuring method, the experi-

mental modal data of the global structure are disassembled into the substructural flexibility by

satisfying the coordination condition of force and displacement at the interfaces. Based on the

extracted substructural flexibility, the model-updating process is performed on the concerned

substructure by treating it as an independent structure. In the following part, the forward and

inverse substructuring methods will be explained first and then the two kinds of substructure-

based model updating methods will be verified by a laboratory-tested frame structure.

2. Forward substructuring method

2.1. Eigensolutions

In the forward substructuring method, the eigensolutions and eigensensitivities of a substruc-

ture are calculated and assembled to recover those of the global structure. The global structure

Structural Health Monitoring - Measurement Methods and Practical Applications2



is divided into NS independent substructures, and the number of DOFs of each substructure is

nj (j = 1,2,…,NS). Treated as an independent structure, the eigenequation of the jth substructure

is expressed as

K
ðjÞfφ

ðjÞ
i g ¼ λ

ðjÞ
i M

ðjÞfφ
ðjÞ
i g ð1Þ

where K(j) and M(j) are the stiffness matrix and mass matrix of the jth substructure, respec-

tively. (φi(j), λi(j)) are the ith eigenpairs of the jth substructure. The n(j) pairs of eigenvalues and

eigenvectors are expressed as [10]

Λ
ðjÞ ¼ Diag λ

ðjÞ
1 ,λ

ðjÞ
2 ,…,λðjÞ

nj

h i

,ΦðjÞ ¼ φ
ðjÞ
1 ,φ

ðjÞ
2 ,…,φðjÞ

nj

h i

,

And due to orthogonality, eigenvectors satisfy the two following formulas as

Φ
ðjÞ

h iT
K

ðjÞ
Φ

ðjÞ ¼ Λ
ðjÞ, Φ

ðjÞ
h iT

M
ðjÞ
Φ

ðjÞ ¼ nj

The eigensolutions of the global structure can be recovered by adding constraints at the

interfaces to obey the principle of virtual work and geometric compatibility like [11]

Λ
p � λI �Γ

�Γ
T

0

� �

z

τ

� �

¼
0

0

� �

ð2Þ

where

Γ ¼ CΦ
p½ �T ,Λp ¼ Diag Λ

ð1Þ,Λð2Þ,…,ΛðNsÞ
h i

Φ
p ¼ Diag Φ

ð1Þ,Φð2Þ,…,ΦðNsÞ
h i ð3Þ

Matrix C gives the general implicit constraints to guarantee the nodes at the interface identical

displacement [11]. C contains two nonzero elements in each row, which are 1 and�1 for a rigid

interface connection. Λp and Φ
p are diagonally assembled from the eigensolutions of each

substructure. λ is the eigenvalue of the global structure, which is the square of circular

frequencies. The eigenvectors of the global structure are recovered by Φ ¼ Φ
pfzg. τ indicates

the interface forces between the adjacent substructures. Superscript “p” denotes the primitive

matrices, which is assembled diagonally from the substructural matrices before displacement

constraints at the adjacent substructures are imposed.

It is noted from Eq. (2) that Λp and Φ
p are assembled from all modes of the substructures. It is

inefficient and unworthy with all eigenmodes available, as only the first few eigenmodes are

usually required for a large-scale structure. Here, the first few eigensolutions of each substruc-

ture are selected as “master” modes, and the residual higher modes are the “slave” modes.

Only the master modes are used to gain the eigenequation of the global structure.

From here on, subscript “m” represents the “master” modes and subscript “s” denotes the

“slave” modes, respectively. The eigenequation (Eq. (2)) is then rewritten according to the

master modes and slave modes as

Substructuring Method in Structural Health Monitoring
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Λ
p
m � λI 0 �Γm

0 Λ
p
s � λI �Γs

�Γ
T
m �Γ

T
s 0

2

4

3

5

zm

zs

τ

8

<

:

9

=

;

¼
0

0

0

8

<

:

9

=

;

ð4Þ

where

Λ
p
m ¼ Diag½Λð1Þ

m ,Λð2Þ
m ,…,ΛðjÞ

m ,…,ΛðNsÞ
m �,ΛðjÞ

m ¼ Diag½λ
ðjÞ
1 ,λ

ðjÞ
2 ,…,λ

ðjÞ

mðjÞ �

Φ
p
m ¼ Diag½Φð1Þ

m ,Φð2Þ
m ,…,ΦðjÞ

m ,…,ΦðNsÞ
m �,ΦðjÞ

m ¼ ½φ
ðjÞ
1 ,φ

ðjÞ
2 ,…,φ

ðjÞ

mðjÞ �

Λ
p
s ¼ Diag½Λð1Þ

s ,Λð2Þ
s ,…,ΛðjÞ

s ,…,ΛðNsÞ
s �,ΛðjÞ

s ¼ Diag½λ
ðjÞ

mðjÞþ1
,λ

ðjÞ

mðjÞþ2
,…,λ

ðjÞ

mðjÞþsðjÞ
�

Φ
p
s ¼ Diag½Φð1Þ

s ,Φð2Þ
s ,…,ΦðjÞ

s ,…,ΦðNsÞ
s �,ΦðjÞ

s ¼ ½φ
ðjÞ

mðjÞþ1
,φ

ðjÞ

mðjÞþ2
,…,φ

ðjÞ

mðjÞþsðjÞ
�

Γm ¼ ½CΦp
m�

T ,Γs ¼ ½CΦp
s �
T

mp ¼
X

Ns

j¼1

mj, s
p ¼

X

Ns

j¼1

sj, mj þ sj ¼ njðj ¼ 1, 2,…, NsÞ

ð5Þ

According to the second line of Eq. (4), the slave coordinates can be expressed as

zs ¼ ðΛp
s � λÞ�1

Γsτ ð6Þ

Substitution of Eq. (6) into Eq. (4) gives

Λ
p
m � λI �Γm

�Γ
T
m �Γ

T
s ðΛ

p
s � λIÞ�1

Γs

� �

zm

τ

� �

¼
0

0

� �

ð7Þ

Generally, the lower eigenmodes are usually required by a structure. The eigenvalues λ are

much smaller than Λ
p
s when the size of the master modes is selected rationally. In this regard,

Eq. (7) is approximated as:

Λ
p
m � λI �Γm

�Γ
T
m �Γ

T
s ðΛ

p
s Þ

�1
Γs

� �

zm

τ

� �

¼
0

0

� �

ð8Þ

The above eigenequation can be simplified by denoting τ with zm from the second line of

Eq. (8) and substituting it into the first line as:

½ðΛp
m � λImÞ þ Γmζ

�1
Γ
T
m�zm ¼ 0 ð9Þ

Consequently, λ and zm are available by solving Eq. (9) with commonly used eigensolver such

as Simpson method or Lanczos method [10]. And the eigenvector of the global structure is

recovered from the master modes by Φ ¼ Φ
p
mzm. The size of the simplified eigenequation

(Eq. (9)) is equal to the number of the master modes, which is much smaller than the original

one (Eq. (2)). It is noted from Eq. (9) that only the master eigensolutions of the independent

substructures are used to gain the eigensolutions of the global structure. The contribution of

the slave modes is compensated by the first-order residual flexibility ζ ¼ Γ
T
s ðΛ

p
s Þ

�1
Γs, which is

calculated by the master modes as:
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Γ
T
s ðΛ

p
s Þ

�1
Γs ¼ CΦp

s ðΛ
p
s Þ

�1½Φp
s �
TCT ð10Þ

Φ
p
s ðΛ

p
s Þ

�1½Φp
s �
T ¼

�

Kð1Þ
��1

�Φ
ð1Þ
m

�

Λ
ð1Þ
m

��1

½Φð1Þ
m �T

⋱
�

KðNsÞ
��1

�Φ
ðNsÞ
m

�

Λ
ðNsÞ
m

��1

½ΦðNsÞ
m �T

2

6

6

4

3

7

7

5

2.2. Eigensensitivity

In this section, the eigensensitivity of the ith (i=1, 2,…, N) mode with respect to an elemental

parameter will be derived. The elemental stiffness parameter α in the Ath substructure is

illustrated in the following. Writing Eq. (9) for the ith mode and differentiating it with respect

to parameter α gives [11]

½ðΛp
m � λiImÞ þ Γmζ

�1
Γ
T
m�

∂fzig

∂α
þ

∂½ðΛp
m � λiImÞ þ Γmζ

�1
Γ
T
m�

∂α
fzig ¼ f0g ð11Þ

Premultiplying fzig
T on both sides of Eq. (11) gives

fzig
T ½Λp

m þ Γmζ
�1
Γ
T
m � λiI�

∂zi
∂α

� �

þ fzig
T ∂½Λ

p
m þ Γmζ

�1
Γ
T
m � λiI�

∂α
fzig ¼ 0 ð12Þ

Since ½ðΛp
m � λImÞ þ Γmζ

�1
Γ
T
m�zm ¼ 0 (Eq. (9)) and ½Λp

m þ Γmζ
�1
Γ
T
m � λiI� are a symmetric

matrix, the first item on the left side of Eq. (12) is zero. In consequence, the ith eigenvalue

derivative with respect to the designed parameter α is available by [12]

∂λi

∂α
¼ fzig

T ∂Λ
p
m

∂α
þ

∂ðΓmζ
�1
Γ
T
mÞ

∂α

� �

fzig ð13Þ

where

∂ðΓmζ
�1
Γ
T
mÞ

∂α
¼

∂Γm

∂α
ζ
�1
Γ
T
m � Γmζ

�1 ∂ζ

∂α
ζ
�1
Γ
T
m þ Γmζ

�1 ∂Γ
T
m

∂α
ð14Þ

∂Λ
p
m

∂α
and ∂Γm

∂α
are the eigenvalue and eigenvector derivatives of the master modes of the indepen-

dent substructures, respectively. ∂ζ
∂α

¼
∂

�

Γ
T
s ðΛ

p
s Þ

�1
Γs

�

∂α
is the derivative of the residual flexibility of

the substructures. Considering that the substructures are taken as independent structures,

these derivative matrices are calculated within the Ath substructure solely, while the

corresponding derivative matrices in other substructures are zero matrices, i.e.,

∂Λ
p
m

∂α
¼

0 0 0

0
∂Λ

ðAÞ
m

∂α
0

0 0 0

2

6

4

3

7

5
,
∂Γ

T
m

∂α
¼ C

∂Φ
p
m

∂α
¼ C

0 0 0

0
∂Φ

ðAÞ
m

∂α
0

0 0 0

2

6

4

3

7

5

∂ζ

∂α
¼

∂

�

�

Γ
T
s ðΛ

p
s Þ

�1
Γs

��1
�

∂α
¼ C

0 0 0

0
∂

��

KðAÞ
��1

�Φ
ðAÞ
m

�

Λ
ðAÞ
m

��1

½ΦðAÞ
m �T

�

∂α
0

0 0 0

2

6

6

4

3

7

7

5

CT

ð15Þ
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∂Λ
ðAÞ
m

∂α
and ∂Φ

ðAÞ
m

∂α
can be calculated rapidly by treating the Ath substructure as an independent

structure with Nelson’s method [12, 13].

The ith eigenvector of the global structure is recovered by the master modes as

Φi ¼ Φ
p
mfzig ð16Þ

Eq. (16) is differentiated with respect to the structural parameter α as

∂Φi

∂α
¼

∂Φ
p
m

∂α
fzig þΦ

p
m

∂zi

∂α

� �

ð17Þ

where Φ
p
m and ∂Φ

p
m

∂α
are the master eigenvectors and their derivatives of the Ath substructure,

respectively. {zi} is the eigenvector calculated from Eq. (9). Only ∂zi

∂α

n o

is required to calculate

the eigenvector derivative of the ith mode in Eq. (17).

∂zi

∂α

n o

is rewritten by the sum of a particular part and a general part as

∂zi

∂α

� �

¼ fνig þ cifzig ð18Þ

where ci is a participation factor and {νi} is a residual vector. Substituting Eq. (18) into Eq. (11)

leads to

½Λp
m þ Γmζ

�1
Γ
T
m � λiI�ðfνig þ cifzigÞ ¼ �

∂½Λp
m þ Γmζ

�1
Γ
T
m � λiI�

∂r
fzig ð19Þ

Given that ½Λp
m þ Γmζ

�1
Γ
T
m � λiI�fzig ¼ f0g, Eq. (19) can be simplified into

Ψfνig ¼ fYig ð20Þ

where

Ψ ¼ ½Λp
m þ Γmζ

�1
Γ
T
m � λiI�, fYig ¼ �

∂½Λp
m þ Γmζ

�1
Γ
T
m � λiI�

∂α
fzig ð21Þ

In consequence, Ψ and {Yi} can be calculated from Eq. (21) since all of their items have been

available in the calculation of the eigenvalue derivatives proposed in the former section.

If no repeated roots exist in Eq. (20), Ψ takes the size of mp � mp with the rank of (mp-1). To

solve this rank-deficient equation (Eq. (20)), the kth item (corresponds to the maximum entry in

{zi}) in {νi} is assumed to be zero, and the corresponding row and column in Ψ and

corresponding item in {Yi} are assumed to be zeros as well [14]. The full rank equation is

formed as

Structural Health Monitoring - Measurement Methods and Practical Applications6



Ψ11 0 Ψ13

0 1 0
Ψ31 0 Ψ33

2

4

3

5

νi1

νik

νi3

8

<

:

9

=

;

¼
Yi1

0
Yi3

8

<

:

9

=

;

ð22Þ

In consequence, the vector {νi} is solved from Eq. (22).

The eigenvectors {zi} satisfy the orthogonal condition of

fzig
Tfzig ¼ 1 ð23Þ

Equation (23) is differentiated with respect to α as

∂fzig
T

∂α
fzig þ fzig

T ∂fzig

∂α
¼ 0 ð24Þ

Substitution of Eq. (18) into Eq. (24) gives

ðfνig
T þ cifzig

TÞfzig þ fzig
Tðfνig þ cifzigÞ ¼ 0 ð25Þ

The participation factor ci is thus obtained as

ci ¼ �
1

2
ðfνig

Tfzig þ fzig
TfνigÞ ð26Þ

Finally, the first-order derivative of {zi} with respect to α is calculated by

∂zi
∂α

� �

¼ fνig �
1

2
ðfνig

Tfzig þ fzig
TfνigÞfzig ð27Þ

It is noted from Eq. (17) that the eigenvector derivatives of the global structure are calculated

from Φ
p
m and ∂Φ

p
m

∂α
. ∂zi

∂α

n o

and {z} are treated as the weights and are computed from the small-

size eigenequation (Eq.(9)) rapidly. Only the derivative matrices of the master modes in the Ath

substructure are needed to recover the eigensensitivity of the global structure. As the size of

the independent substructures is much smaller than that of the global structure, the proposed

substructuring method can significantly improve the computational efficiency.

2.3. Substructure-based updating method

Based on the eigensolutions and eigensensitivities calculated with the forward substructuring

method, the substructure-based model updating is described in Figure 1 with an iterative

process. In each iteration, the eigensolutions are calculated from the modified substructures

with the above substructuring method and are then compared with the experimental modal

data (frequencies and mode shapes) to construct the objective function. The substructure-

based eigensensitivities with respect to a specific parameter are calculated from the substruc-

ture containing the concerned parameter, to indicate the searching direction in each optimal

Substructuring Method in Structural Health Monitoring
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step. The objective function is minimized by adjusting the elemental parameters α iteratively

according to the eigensensitivity matrices.

The objective function formed by the modal frequency and the mode shape is written as [14]

JðαÞ ¼
X

i

W2
λi λiðfαgÞ

FE � λi
E

h i2
þ
X

i

W2
φi

X

j

φjiðfαgÞ
FE � φji

E
h i2

ð28Þ

where λi
E and φji

E represent the experimental frequencies and mode shapes, respectively. λi
FE

and φji
FE are the frequencies and mode shapes gained from the analytical FE model with the

substructuring method (Eq.(8)) proposed above. Wλi and Wφi are the weighting matrix of

frequencies and mode shapes. The objective function is minimized by adjusting the elemental

parameters α in an optimal manner.

The eigensensitivity is computed with the first derivative of a structural response with respect

to a physical parameter as [2]

The 1st

substructure

Eigensolutions

Eigensolutions of the

global structure

Experimental

modal testing

Objective function

J(α)

Convergence criterion?

The NS

Substructure

The 2nd

substructure
……

Updated

parameters

Adjusting

parameter α of

one substructure

disassemble

assemble

yes
no

Eigensensitivity

Eigensolutions

Eigensensitivity

……

……

Eigensolutions

Eigensensitivity

Eigensensitivity of the

global structure Z(α)

Global FE

model

Figure 1. The model updating of forward substructuring method.
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½SλðαÞ� ¼
∂λðαÞ

∂α
, ½SφðαÞ� ¼

∂φðαÞ

∂α
ð29Þ

In this chapter, the eigensensitivity matrices are available with the forward substructuring

method. They are computed solely from the derivative matrices of the substructure containing

the concerned element, while the corresponding derivative matrices of all other substructures

are zeros. As the calculation of eigensensitivity usually consumes most of the computation

time when numerous elemental parameters are updated in practical model updating process,

the forward substructuring method can significantly improve the computational efficiency of

the model-updating process.

3. Inverse substructuring method

3.1. The extraction of substructural flexibility

In the inverse substructuring method, the global flexibility matrix estimated from the experi-

mental modal data is disassembled into substructural flexibility matrices. Afterwards, the

analytical FE models of the substructures are updated independently and parallelly to repro-

duce the extracted substructural flexibility matrices. As before, the global structure with N

DOFs is divided intoNs independent substructures with the jth (j = 1, 2,…,Ns) substructure n(j)

DOFs. Treated as independent substructures, the substructural displacements, forces, stiffness,

flexibility, and rigid body modes matrices are written in the primitive form as

xpf g ¼ xð1Þ⋯xðjÞ⋯xðNsÞ
� 	T

, f pf g ¼ f ð1Þ⋯f ðjÞ⋯f ðNsÞ
n oT

Kp ¼ Diag Kð1Þ
⋯KðjÞ

⋯KðNsÞ
h i

,Fp ¼ Diag Fð1Þ⋯FðjÞ⋯FðNsÞ
h i

,Rp ¼ Diag Rð1Þ
⋯RðjÞ

⋯RðNsÞ
h i ð30Þ

where K(j), F(j), x(j), f(j), and R(j), respectively, represent the stiffness, flexibility, nodal displace-

ments, external forces, and rigid body modes of the jth substructure. It is noted that the rigid

body modes R is related to free-constraint substructures. R is a zero matrix if the jth substruc-

ture is constrained after partition. Otherwise, R is determined by the nodal location. For

example, a two-dimensional structure with n nodes has three rigid body modes, i.e., the x

translation (Rx = 1, Ry = 0), the y translation (Rx = 0, Ry = 1) and the z rotation (Rx =�y, Ry = x), R

takes the form of

RT ¼
1 0 0 1 ⋯ 0 0
0 1 0 0 ⋯ 1 0
�y1 x1 1 �y2 ⋯ xn 1

2

4

3

5 ð31Þ

The primitive forms of the substructural displacements and forces are associated with the

global counterparts as [15]

fxpg¼Lpfxgg, ½L
p�Tff pg ¼ ff gg ð32Þ

Substructuring Method in Structural Health Monitoring
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where {xg} and {fg} are the nodal displacement and external force vector of the global structure.

L
p is a Boolean matrix composed of 1 and 0 values to relate the DOFs of the substructures and

the global structure [5]. Most of the values in L
p are zeros. L

p
ij ¼ 1 means that the jth DOF of the

global structure corresponds to the ith DOF in the partitioned substructures. The displacement

of an independent substructure is constituted by its deformational motions and rigid body

motion

fxpg ¼ F
pff pg þ R

pfβpg ð33Þ

where β is the participation factor of rigid body modes. As an independent structure, a

substructure is excited by the external force and the internal interface force from the adjacent

substructures as

ff pg ¼ ð½Lp�TÞþff gg þ Cfτg ¼ f~f gg þ Cfτg ð34Þ

where f~f gg ¼ ð½Lp�TÞþff gg ¼ ~L
p
ff gg,

~L
p
¼ ð½Lp�TÞþis the generalized inverse of ½Lp�T . Similar to

the forward substructuring method, {τ} denotes the internal interface forces from the adjacent

substructures, and matrix C implicitly defines the connections between the adjacent substruc-

tures. Substitution of Eq. (34) into Eq. (33) gives

fxpg ¼ F
pðf~f gg þ CfτgÞ þ R

pfβpg ð35Þ

Substitution of Eq. (35) into the left equation of Eq. (32) gives

fxgg ¼ ½Lp�þfxpg ¼ ½~L
p
�TFpðf~f gg þ CfτgÞ þ ½~L

p
�TRpfβpg ð36Þ

Since the global displacement is associated with the global force by fxgg ¼ Fgff gg [15], the

global flexibility can also be expressed as

fxgg ¼ ½Lp�þfxpg ¼ ½~L
p
�TFpðf~f gg þ CfτgÞ þ ½~L

p
�TRpfβpg ¼ Fgff gg ð37Þ

Equation (37) means that the primitive substructural flexibility matrix F
p can be calculated

from the global flexibility matrix Fg once the two variables fτg and fβpg are given. {τ} and fβpg

are gained according the force and displacement compatibility condition with the following

procedures:

1. The primitive substructural rigid body modes and forces satisfy the force equilibrium

compatibility as [16, 17]>

½Rp�Tff pg ¼ f0g ð38Þ

2. From the physical point of view, matrix C constraints the displacement compatibility as

C
Tfxpg ¼ f0g ð39Þ

Structural Health Monitoring - Measurement Methods and Practical Applications10



Substituting Eqs. (33) and (34) into Eq. (39) leads to

C
TfFpðf~f gg þ CfτgÞ þ R

pfβpgg ¼ f0g ð40Þ

Therefore, {τ} is expressed as

fτg ¼ �F
�1
C ðCT

F
pf~f gg þ RCfβ

pgÞ ð41Þ

where FC ¼ C
T
F
p
C and RC ¼ C

T
R

p.

The combination of Eq. (34) and Eq. (41) gives

½Rp�T
�

f~f gg�CF
�1
C ðCT

F
pf~f gg þ RCfβ

pgÞ
�

¼ f0g ð42Þ

fβpg is therefore solved as

fβpg ¼ K
�1
R ð½Rp�T � R

T
CF

�1
C C

T
F
pÞf~f gg ð43Þ

where KR ¼ R
T
CF

�1
C RC. In consequence, {τ} is therefore solved from Eq. (41) as

fτg ¼ �F
�1
C C

T
F
pf~f gg þ F

�1
C C

T
R

p
K

�1
R ð½Rp�TKCF

p � ½Rp�TÞf~f gg ð44Þ

where KC ¼ CF
�1
C C

T . Once {τ} and fβpg are solved, Eq. (36) can be expressed as

fxgg ¼ ½
~
L

p

�TðFp � F
p
HF

p � F
p
KCFR � F

T
RK

T
CF

p þ FRÞ
~
L

p

ff gg ð45Þ

where

FR ¼ R
pð½Rp�TKCR

pÞ�1½Rp�T ,H ¼ KC �KCFRKC

In consequence, the global flexibilitymatrix can be expressed by the substructural flexibilitymatrix:

L
p
Fg½L

p�T ¼ F
p � F

p
KCFR � FRKCF

p � F
p
HF

p þ FR ð46Þ

Based on Eq. (46), the substructural flexibility matrix F
p is extracted from the global flexibility

Fg with an iterative scheme:

1. F
p is initiated from the diagonal subblocks of the global flexibility as

½Fp�½0� ¼ L
p

F�

1:Nð1Þ ,1:Nð1Þ

�

⋱

F
�

X

j�1

i¼1

NðiÞ
þ1:

X

j

i¼1

NðiÞ
,

X

j�1

i¼1

NðiÞ
þ1:

X

j

i¼1

NðiÞ
�

⋱

F
�

X

Ns�1

i¼1

NðiÞ
þ1:

X

Ns

i¼1

NðiÞ
,

X

Ns�1

i¼1

NðiÞ
þ1:

X

Ns

i¼1

NðiÞ
�

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

½Lp�T

ð47Þ
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2. In the kth (k = 1, 2, …) iteration, the substructural flexibility matrix is calculated according

to Eq. (46)

½Fp�
½k�
0 ¼

~
Fg þ ½Fp�½k�1�H½k�1�½Fp�½k�1� þ ½Fp�½k�1�K

½k�1�
C F

½k�1�
R þ F

½k�1�
R K

½k�1�
C ½Fp�½k�1� � F

½k�1�
R ð48Þ

The diagonal subblocks of ½F
p
0�
½k� are reused in the next iteration

½Fp�½k� ¼

½Fp�
½k�
0�

1:Nð1Þ,1:Nð1Þ

�

⋱

½F
p
0�
½k�
0
�

X

j�1

i¼1

NðiÞ
þ1:

X

j

i¼1

NðiÞ
,

X

j�1

i¼1

NðiÞ
þ1:

X

j

i¼1

NðiÞ
�

⋱

½F
p
0�
½k�
0
�

X

Ns�1

i¼1

NðiÞ
þ1:

X

Ns

i¼1

NðiÞ
,

X

Ns�1

i¼1

NðiÞ
þ1:

X

Ns

i¼1

NðiÞ
�

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð49Þ

3. Step 2 stops when the substructural flexibility matrices from two consecutive iterations

drop below a predefined tolerance [16]

e ¼
normð½Fp�½k� � ½Fp�½k�1�Þ

normð½Fp�½k�Þ
≤Tol ð50Þ

The substructural flexibility matrices F(j) are thereby gained by the diagonal subblocks of ½Fp�½k�.

3.2. The projection matrix to extract free-free flexibility for model updating

In the substructuring methods, the global structure is divided properly into several indepen-

dent free or constrained substructures. Most of the substructures are free-free without con-

straints after partition. Here the jth substructure is free-free as an illustration. The substructural

flexibility matrix F
ðjÞ

from Fp is constituted by both the rigid body modes and deformational

modes. Hereinafter, superscript “j” is omitted to derive the free-free substructural flexibility for

brevity. For the jth substructure, the substructural flexibility matrix, contributed by the rigid

body motions and deformational motions, is expressed as

F ¼ Fþ γRRT ð51Þ

F is defined as the generalized substructural flexibility. Accordingly, the generalized substruc-

tural stiffness matrix, including the contribution made by the rigid body motions and defor-

mational motions is written as

Structural Health Monitoring - Measurement Methods and Practical Applications12



K ¼ Kþ ηRR
T ð52Þ

where K is defined as the generalized substructural stiffness matrix. The free-free stiffness and

flexibility matrices (K and F) are contributed by the deformational modes solely. The partici-

pation factors γ and η of rigid body modes are difficult to determine, which makes the

generalized flexibility unable to be applied to model updating or damage identification. It is

necessary to extract the free-free substructural flexibility contributed by the deformational

modes solely. The free-free flexibility shows the real properties of a substructure and can be

applied to model updating and damage identification.

To remove the rigid body components in the generalized substructural stiffness, flexibility, and

displacements, a projection matrix P is formed as [17]

P ¼ I� RðRT
RÞ�1

R
T ð53Þ

The projection matrix P has the properties of

P
2 ¼ P,PR ¼ R

T
P ¼ 0 ð54Þ

P can filter out the rigid body motions, while the free-free stiffness and flexibility matrices

contributed by the deformational modes remain unchanged

FP ¼ F,PF ¼ F,PFP ¼ F

FP ¼ F,PF ¼ F,PFP ¼ F

KP ¼ K,PK ¼ K,P
T
KP ¼ K

KP ¼ K,P
T
K ¼ K,P

T
KP ¼ K

ð55Þ

On the other hand, the free-free stiffness and flexibility of a substructural analytical model are

singular, whereas the generalized stiffness and flexibility are full-rank. The free-free stiffness and

flexibility can be calculated from the inverse of the generalized stiffness and flexibility matrices as

F ¼ PðKþ ηRR
TÞ�1

P ð56Þ

K ¼ PðFþ γRR
TÞ�1

P ð57Þ

If the projection matrix P is known, the free-free substructural flexibility F is calculated from

Eq. (56) or by removing all the rigid body components in the extracted substructural flexibility

matrix (Eq. (55)). In substructure-based model updating, the elemental parameters of the

analytical FE model are iteratively adjusted to minimize the discrepancy between the analyti-

cal substructural flexibility and that extracted from global data [18].

Generally, the stiffness or flexibility matrices are difficult to be measured on the full DOFs, and

the partial stiffness and flexibility at the measured DOFs are probably utilized for a substruc-

ture. Divide the full-DOF model into the measured part and the unmeasured part, the stiffness

matrix is rewritten in block form as

Substructuring Method in Structural Health Monitoring
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K ¼
Kaa Kab

Kba Kbb

� �

ð58Þ

where subscript “a” represents the measured DOFs, and subscript “b” represents the

unmeasured DOFs. The condensed stiffness matrix by the Guyan static condensation is [19–21]

KG ¼ Kaa �KabK
�1
bb Kba ð59Þ

The substructural flexibility is written in block form according to the measured and unmeasured

parts as [22]

F ¼
Faa Fab

Fba Fbb

� �

,F ¼
Faa Fab

Fba Fbb

� �

ð60Þ

In this case, the projection matrix of the reduced model PD is formed as

PD ¼ I� RaðR
T
a RaÞ

�1
R

T
a ð61Þ

which has the properties of

P
2
D ¼ PD ð62Þ

PDRa ¼ R
T
a PD ¼ 0 ð63Þ

The rigid body modes Ra are gained by rewriting the rows in Eq. (58) corresponding to the

measured DOFs.

The projection matrix PD removes the rigid body components in the partial substructural

flexibility matrix and leaves the free-free substructural flexibility by

FaaPD ¼ PDFaa ¼ PDFaaPD ¼ Faa ð64Þ

FaaPD ¼ PDFaa ¼ PDFaaPD ¼ Faa ð65Þ

In addition, the projection matrix can be used to form the dual inverse of substructural stiffness

and flexibility like

Faa ¼ PD

�

KG þ RaðR
T
aRaÞ

�1
R

T
a

��1

PD ð66Þ

KG ¼ PD

�

Faa þ RaðR
T
aRaÞ

�1
R

T
a

��1

PD ð67Þ

In substructure-based model updating, the elemental parameters in the substructural model

are iteratively adjusted to minimize the discrepancy between the substructural flexibility and

that extracted from global modal data [18]. For a free-free substructure, the flexibility extracted

from global modal data is contaminated by the rigid body motions, and the stiffness matrix of

substructural analytical FE model is singular. The projection matrix is utilized to extract the

Structural Health Monitoring - Measurement Methods and Practical Applications14



free-free flexibility for model updating. On the one hand, the projection matrix removes the

rigid body components in the generalized substructural flexibility from experimental data and

leaves the free-free substructural flexibility according to

FEaa ¼ PDF
E

aaPD ð68Þ

On the other hand, the free-free flexibility matrix of the substructural FE model is iteratively

computed from the singular stiffness matrix according to

FFEaa ¼ PD

�

KG þ RaðR
T
aRaÞ

�1RT
a

��1

PD ð69Þ

3.3. Substructure-based model updating

The substructure-based model updating process is listed in Figure 2. Identically, the jth sub-

structure, which is free-free after partition, is employed to illustrate the substructure-based

model updating in the following:

1. The experimental flexibility FEg is estimated by modal data of the global structure.

2. The generalized substructural flexibility matrix
�

F

ðjÞ�E

is extracted from the global flexi-

bility matrix FEg by the proposed substructuring method in Section 3.1.

3. The rigid body modes R
ðjÞ
a are constructed according to the nodal location of the jth

substructure (Eq. (31)), and the projection matrix PðjÞ is formed according to the proposed

method in Section 3.2.

The free-free substructural flexibility is extracted by the projection matrix as
�

FðjÞ
�E

¼

½PðjÞ�T
�

F

ðjÞ�E

PðjÞ.

4. The FE model of the jth substructure is constructed without constraints. The FE model of

the jth substructure is treated as an independent structure to be updated: In each iteration,

the free-free substructural flexibility matrix
�

FðjÞ
�FE

at the measured DOFs and its sensi-

tivity with respect to α ∂

�

FðjÞ
�FE

=∂α are computed [21]. The elemental parameters in the

jth substructure are adjusted according to the sensitivity (J(α)) of the flexibility with

respect to elemental parameters, to minimize the objective function ΔFðαÞ through the

Trust Region Newton method [2, 3, 18].

In the proposed substructuring method, the substructural flexibility matrices in primitive

matrix Fp are independent. And only one substructure instead of the whole global structure

at a time is updated in each iteration. The size of system matrices and updating parameters

are sharply reduced, which improves the computational efficiency of model updating

significantly.
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4. Laboratory frame structure

Here a laboratory-tested steel frame structure is employed to investigate the effectiveness of the

forward and inverse substructuring methods in model updating and damage identification. The

cross section of the beams is 50.0 � 8.8 mm2 and the cross section of the columns is 50.0 � 4.4

mm2, with the dimensions shown in Figures 3(a) and (b). The mass density of the structural

material is 7.67 � 103 kg/m3. The FE model of the frame is composed of 44 nodes and 45

elements, with each element 100 mm in length as Figure 3(c). In experiment, the accelerometers

are placed at the nodes to measure the translational vibration of the frame [23]. The sampling

Figure 2. The model updating of inverse substructuring method.

Structural Health Monitoring - Measurement Methods and Practical Applications16



frequency was set to 2000 Hz. The specimen was excited with the instrumented hammer at the

reference point indicated in Figure 3(a).

The FEmodel is first updated in the undamaged state, and the refinedmodel is subsequently used

for damage identification. In the undamaged state, the Young’s modules of all 45 elements are

updated, with their initial values set to 2 �1011 Pa. The global structure is partitioned into three

substructures, and the elements in the substructures are labeled in Figure 3(c). Accordingly, there

are 17 updating parameters in the first substructure, 15 in the second, and 13 in the third. The

recorded input and output time history were analyzed in Matlab platform to derive the first 14

experimental frequencies andmode shapes.

Using the forward substructuring method, the first 30 modes in each substructure are selected

as the master modes. In the model updating process, the substructure-based eigensolutions are

compared with the first 14 experimental frequencies and mode shapes to form the objective

function. The eigensensitivities are computed from one substructure solely to improve the

computational efficiency. The elemental parameters of the FE model are adjusted iteratively

to minimize the objective function through an optimal process. The elemental stiffness reduc-

tion factor (SRF) is used to estimate the damage identification, which gives the change ratio of

the updated values to the initial values of updating parameters.

SRF ¼
Δα

α

¼
α
U � α

O

α
O

ð70Þ

where superscript O denotes the initial values before updating and U denotes the updated

values. The SRF values of the three substructures after updating are listed in Figure 4(a). The

model improved in the undamaged state is used for damage identification subsequently.
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Figure 3. Laboratory-tested frame structure. (a) Experimental specimen. (b) Configurations. (c) Analytical model.
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There are two damage configurations in the frame. In the first damage case, the column of the

first storey is cut with the width of b = 10 mm and depth d = 15 mm at 180 mm away from the

support (Figure 3(b)). Subsequently, the second storey is cut with the same width and depth at

750 mm away from the support.

In the first damage configuration, the cut is located in the first storey. The 17 elemental

parameters in Substructure 1 are adjusted iteratively to minimize the discrepancy between the

analytical eigensolutions and the measured modal data. In FE model updating, only the first

substructure is reanalyzed, and the eigensolutions of the second and third substructures

remain untouched and reused directly to compute the eigensolutions of global structure. The

eigensensitivities with respect to the 17 elemental parameters are computed from the substruc-

tural derivative matrices of the first substructure solely, whereas those in the second and third

substructures are zero-matrices. The elemental parameters in the undamaged state are subse-

quently employed for damage identification. It is apparent from Figure 5(a) that, Element 2 has

an obvious negative value in SRF of about �25%, which agrees with the location of the cut in

the experiment.
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(a) Forward substructuring method (b) Inverse substructuring method
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Figure 4. SRF values of the three substructures in the undamaged state. (a) Forward substructuring method. (b) Inverse

substructuring method.
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In the second damage configuration, the two cuts are located in the first and second sub-

structures, respectively. Subsequently, the first and second substructures are updated, while

the third substructure remains untouched. The SRF values shown in Figure 6(a) demonstrate

that Element 2 of the first substructure and Element 2 of the second substructure have an

obvious negative SRF values. The identified locations agree with those of the experimental cut.

Particularly, the SRF values of Element 2 of the first substructure are about �23%, comparable

to that in the first damage configuration. This is because the cut remains unchanged in the two

damage configurations.

Afterwards, the frame structure is analyzed by the inverse substructuring method with the

same measured data and FE model. In the undamaged state, the global flexibility is formu-

lated from the 14 pairs of measured natural frequencies and mode shapes. The inverse

substructuring method is used to extract the substructural flexibility matrices of the three
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Figure 5. SRF values of the first damage configuration. (a) Forward substructuring method. (b) Inverse substructuring

method. Actual damage location.
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Figure 6. SRF values of the second damage configuration. (a) Forward substructuring method. (b) Inverse substructuring

method. Actual damage location.
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substructures simultaneously. The global FE model is divided into three substructures as

well. The substructural flexibility of the three submodels is compared with the extracted

substructural flexibility to form the objective function. The discrepancy of substructural

flexibility matrices between the FE sub-model and extracted ones is minimized by adjusting

the updating elemental parameters of the three submodels independently. Figure 4(b)

reports the updated SRF values of the three substructures, which are subsequently utilized

for damage identification.

In the first damage case, the local area within the first storey, i.e., Nodes 1 to 18 in Figure 3(c), are

measured. Accordingly, only the substructural flexibility matrix of the first storey is extracted,

based on which the submodel of the first substructure is updated independently. Figure 5(b)

reveals a significant reduction in stiffness in Element 2, which agrees with the real location of the

cut in experiment. The identified damage location and severity agrees with those obtained by the

forward substructuringmethod aswell.

In the second damage configuration, the frequencies and mode shapes measured in the first

and second storeys are measured to form the global flexibility matrix. The substructural

flexibility corresponding to the first and second substructures are extracted from the global

flexibility simultaneously. The submodels of the first and second substructures are indepen-

dently updated to recover the extracted substructural flexibility. Figure 6(b) reveals a negative

SRF value of �20% in Element 2 of the first substructure and �25% in Element 2 of the second

substructure. The identified damage location and severity are consistent to those gained by the

forward substructuring method again. Both the forward and inverse substructuring methods

are effective in model updating and damage identification.

5. Conclusion

A forward substructuring method and an inverse substructuring method are proposed in

this chapter for model updating and damage identification. In the forward substructure-

based model updating, the modified substructures are reanalyzed and assembled with

other untouched substructures for the eigensolutions of the global structure to match the

experimental data in an optimal manner. In the inverse substructuring method, the exper-

imental modal data measured in local areas are used to extract the experimental flexibility

matrix of the concerned substructure. The concerned substructures are updated by being

treated as independent structures. Both the forward and inverse substructuring methods

are effective in model updating and damage identification of a laboratory-tested steel

frame structure. In the substructure-based model updating, only one substructure instead

of the large-scale global structure is re-analyzed, which will be quite efficient for the

model updating of practical large-scale structures. The substructuring methods are prom-

ising to be combined with the nonlinear analysis, vibration control, and parallel computa-

tion as well.
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