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Abstract

In sensitivity-based finite element model updating, the eigensolutions and eigensensi-
tivities are calculated repeatedly, which is a time-consuming process for large-scale
structures. In this chapter, a forward substructuring method and an inverse sub-
structuring method are proposed to fulfill the model updating of large-scale structures.
In the forward substructuring method, the analytical FE model of the global structure is
divided into several independent substructures. The eigensolutions of each independent
substructure are used to recover the eigensolutions and eigensensitivities of the global
structure. Consequently, only some specific substructures are reanalyzed in model
updating and assembled with other untouched substructures to recover the eigen-
solutions and eigensensitivities of the global structure. In the inverse substructuring
method, the experimental modal data of the global structure are disassembled into
substructural flexibility. Afterwards, each substructure is treated as an independent
structure to reproduce its flexibility through a model-updating process. Employing the
substructuring method, the model updating of a substructure can be conducted by mea-
suring the local area of the concerned substructure solely. Finally, application of the pro-
posed methods to a laboratory tested frame structure reveals that the forward and inverse
substructuring methods are effective in model updating and damage identification.

Keywords: structural health monitoring, substructuring method, damage identifica-
tion, eigensolutions, eigensensitivity
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1. Introduction

Accurate finite element (FE) models are essential in damage identification and condition
assessment for structural health monitoring. In vibration-based model-updating process, the
FE model of a structure is iteratively updated to guarantee its vibration properties to reproduce
the measured counterparts in an optimal manner [1]. In the optimization process, the structural
responses are usually used to construct the objective function. The response sensitivities, which
are the first derivatives of the structural responses to some structural physical parameters, are
used to indicate a rapid searching direction. In this regard, the eigensolutions and their associ-
ated sensitivity matrices of the analytical model are required to be gained repeatedly in each
iteration [2, 3]. The majority of the practical structures in civil engineering are large in scale,
thus their FE models usually consists of a large number of degrees of freedom (DOFs) and
uncertain updating parameters. The conventional model updating methods of large-scale
structures are expensive in terms of computation time and computer memory [2].

It has been proved that the substructuring methods are efficient in dealing with large-scale
structures, as it takes the local area as an independent structure [4-9]. First, the global structure
is divided rationally into several smaller substructures to make it much easier and faster to
analyze the small substructures independently. Second, the FE model of a substructure has
much fewer uncertain parameters than the global structure, which helps to accelerate the
convergence of optimization process to identify these parameters and alleviates the ill-
condition problems. Third, the substructuring method is required to measure the local area of
the practical structure and save the experimental instruments. Finally, the substructuring
method can be more promising if combined with parallel computation.

In this chapter, a forward substructuring method and an inverse substructuring method are
proposed for model updating and damage identification. In the forward substructuring method,
the divided substructures are analyzed independently and are assembled to recover the
eigensolutions of the global structure by satistfying the coordination condition of displacement
at the interfaces. Afterwards, the fast-calculated eigensolutions and eigensensitivities of the
global structure are used for model updating. In the inverse substructuring method, the experi-
mental modal data of the global structure are disassembled into the substructural flexibility by
satisfying the coordination condition of force and displacement at the interfaces. Based on the
extracted substructural flexibility, the model-updating process is performed on the concerned
substructure by treating it as an independent structure. In the following part, the forward and
inverse substructuring methods will be explained first and then the two kinds of substructure-
based model updating methods will be verified by a laboratory-tested frame structure.

2. Forward substructuring method

2.1. Eigensolutions

In the forward substructuring method, the eigensolutions and eigensensitivities of a substruc-
ture are calculated and assembled to recover those of the global structure. The global structure
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is divided into Ng independent substructures, and the number of DOFs of each substructure is
1n;(j=1,2,..., Ns). Treated as an independent structure, the eigenequation of the jth substructure
is expressed as

KO} = A" MO (o]} M

where K(j) and M(j) are the stiffness matrix and mass matrix of the jth substructure, respec-
tively. (¢i(j), Ai(j)) are the ith eigenpairs of the jth substructure. The n’ pairs of eigenvalues and
eigenvectors are expressed as [10]

A = Diag[A), 29, ..., A0, @ = [¢, 60, .. 6],
And due to orthogonality, eigenvectors satisfy the two following formulas as
[cp(f)]TK@q)o‘) _AD) [q)@rM@q)(j) —n,

The eigensolutions of the global structure can be recovered by adding constraints at the
interfaces to obey the principle of virtual work and geometric compatibility like [11]

TR @

r = [C(I)P]T/ Ap — Dlag [A(l), A(Z), ..., A(Na):|
@ = Ding|@V, @2, .., @]

where
(3)

Matrix C gives the general implicit constraints to guarantee the nodes at the interface identical
displacement [11]. C contains two nonzero elements in each row, which are 1 and —1 for a rigid
interface connection. A” and ®” are diagonally assembled from the eigensolutions of each
substructure. A is the eigenvalue of the global structure, which is the square of circular
frequencies. The eigenvectors of the global structure are recovered by @ = ®”{z}. t indicates

the interface forces between the adjacent substructures. Superscript “p” denotes the primitive
matrices, which is assembled diagonally from the substructural matrices before displacement

constraints at the adjacent substructures are imposed.

It is noted from Eq. (2) that A¥ and ®” are assembled from all modes of the substructures. It is
inefficient and unworthy with all eigenmodes available, as only the first few eigenmodes are
usually required for a large-scale structure. Here, the first few eigensolutions of each substruc-
ture are selected as “master” modes, and the residual higher modes are the “slave” modes.
Only the master modes are used to gain the eigenequation of the global structure.

"y
S

From here on, subscript “m” represents the “master” modes and subscript denotes the
“slave” modes, respectively. The eigenequation (Eq. (2)) is then rewritten according to the
master modes and slave modes as
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A =21 0 Ty ( 2z 0
0 AP—AI -T,[{z ;=40 (4)
-l -1! 0 T 0
where
AP = Diag[AD, AL .. AD, ., AN, A Diagm”, A, A
@), = Diag[®\), DY, ..., D), ..., D" ] = [0, 07, ... o]
AL = Diag[Agl , Agz), o A NS ], A Dzag[/\(]) 0417 A;S]w )42/ /\;(1]10 +s(/)]
@ = Digg[@), ®?, ., @Y, .., @M, @) = [V oV el ] (5)
I, = [C®’)", T, = [Co!]"
N, N;

According to the second line of Eq. (4), the slave coordinates can be expressed as

= (AL - 7) "It (6)

Substitution of Eq. (6) into Eq. (4) gives
A — A1 —T, z, | O 7)
-1 AP -An 'Lt f |0

Generally, the lower eigenmodes are usually required by a structure. The eigenvalues A are
much smaller than A? when the size of the master modes is selected rationally. In this regard,
Eq. (7) is approximated as:

Mt e {7 g

The above eigenequation can be simplified by denoting T with z,, from the second line of
Eq. (8) and substituting it into the first line as:

(AP —AL,) + T, 'T ]z, =0 (9)

Consequently, A and z,, are available by solving Eq. (9) with commonly used eigensolver such
as Simpson method or Lanczos method [10]. And the eigenvector of the global structure is
recovered from the master modes by ® = @ z,,. The size of the simplified eigenequation
(Eq. (9)) is equal to the number of the master modes, which is much smaller than the original
one (Eq. (2)). It is noted from Eq. (9) that only the master eigensolutions of the independent
substructures are used to gain the eigensolutions of the global structure. The contribution of
the slave modes is compensated by the first-order residual flexibility { = I'' (A?)'TI', which is
calculated by the master modes as:



Substructuring Method in Structural Health Monitoring
http://dx.doi.org/10.5772/67890

I7(AD) T, = COL(AL) ' [@2]'CT (10)

m

<K<1>> oW ( Agﬂn) )T

m

(K(N») ) ( A(Ns)) M)

2.2. Eigensensitivity

In this section, the eigensensitivity of the ith (=1, 2, ..., N) mode with respect to an elemental
parameter will be derived. The elemental stiffness parameter a in the Ath substructure is
illustrated in the following. Writing Eq. (9) for the ith mode and differentiating it with respect
to parameter a gives [11]

2 T —1yT

(A}, = AiLy) + Tl T,

Premultiplying {z;}" on both sides of Eq. (11) gives

{2} (AL + T, C T — 7, 1]{ } iy Wt D Loty 0 @

Since [(A?, —AL,) + T, 'T1]z,, =0 (Eq. (9)) and [A? + T, 'TT — A1 are a symmetric
matrix, the first item on the left side of Eq. (12) is zero. In consequence, the ith eigenvalue
derivative with respect to the designed parameter « is available by [12]

o r[oAr o mc D
o o (z) (13)
where
OTwC 'Ty) _OTw 1 p 1 C 11T 1 0T,
5 =3 cr,-TI.C C I, +Tnl Sa (14)

aé\é" and & are the eigenvalue and eigenvector derivatives of the master modes of the indepen-
3<FST(A§)’ Fs)

dent substructures, respectively. 3= = —~————/ is the derivative of the residual flexibility of

the substructures. Considering that the substructures are taken as independent structures,

these derivative matrices are calculated within the Ath substructure solely, while the

corresponding derivative matrices in other substructures are zero matrices, i.e.,

0 0 o0 0 o0
Al AW or, _d®h 3D
=, |0 =2 0|, - = =Clo — o
da da ow o Au
0 0 o0 0 0 0 15)
IR 0 0 0 15
T(ArP)~ ! _ _
oC 0 (rs (AS) rs) } a((K(A)) ' W (Am)) 1[(D<A>]T) .
=C m m m C
o o 0 3 0

5
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) )
agg and a%)'" can be calculated rapidly by treating the Ath substructure as an independent

structure with Nelson’s method [12, 13].

The ith eigenvector of the global structure is recovered by the master modes as
61' = (I)fn{zi} (16)
Eq. (16) is differentiated with respect to the structural parameter a as

0D O fay+ {2 (17)

dGCD

where @7 and = are the master eigenvectors and their derivatives of the Ath substructure,

respectively. {z;} is the eigenvector calculated from Eq. (9). Only { } is required to calculate

the eigenvector derivative of the ith mode in Eq. (17).

{%Z’} is rewritten by the sum of a particular part and a general part as

{22} = {vi} +ci{zi} (18)

where ¢, is a participation factor and {v;} is a residual vector. Substituting Eq. (18) into Eq. (11)
leads to

A2, + T, 'TT — A

[AD + T, T — AL ({vi} + ci{zi}) = — 5 {zi} (19)
Given that [A? + T, 'TT — A 1){z;} = {0}, Eq. (19) can be simplified into
W{vi} = {Yi} (20)
where
/ p -1yT _ 75,
W= AP + T, 0T A0, {Yi} = — OlAy, + F’”aca L, = Al {z;} (21)

In consequence, W and {Y;} can be calculated from Eq. (21) since all of their items have been
available in the calculation of the eigenvalue derivatives proposed in the former section.

If no repeated roots exist in Eq. (20), W takes the size of m” x m” with the rank of (m"-1). To
solve this rank-deficient equation (Eq. (20)), the kth item (corresponds to the maximum entry in
{z;})) in {vj} is assumed to be zero, and the corresponding row and column in W and
corresponding item in {Y;} are assumed to be zeros as well [14]. The full rank equation is
formed as
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‘I’l 1 0 lI”13 Vi1 Yi 1
0 1 0 vi p=4{ 0 (22)
Wy, 0 Wy Vi3 Yis

In consequence, the vector {v;} is solved from Eq. (22).

The eigenvectors {z;} satisfy the orthogonal condition of

{z}'{z} =1 (23)
Equation (23) is differentiated with respect to a as
Az ) 1 agr22) g (24)
Substitution of Eq. (18) into Eq. (24) gives
(i} +edz} )z} + {2} ({vi} + efz}) = 0 (25)
The participation factor c; is thus obtained as
i = = () s} + (20} ) (26)

Finally, the first-order derivative of {z;} with respect to « is calculated by
Ozi 1 T T
3y (= it =5 vk {zi} +{zi}" {vib){zi} (27)

It is noted from Eq. (17) that the eigenvector derivatives of the global structure are calculated

from ®@? and a%’p”. {%} and {z} are treated as the weights and are computed from the small-
size eigenequation (Eq.(9)) rapidly. Only the derivative matrices of the master modes in the Ath
substructure are needed to recover the eigensensitivity of the global structure. As the size of
the independent substructures is much smaller than that of the global structure, the proposed

substructuring method can significantly improve the computational efficiency.

2.3. Substructure-based updating method

Based on the eigensolutions and eigensensitivities calculated with the forward substructuring
method, the substructure-based model updating is described in Figure 1 with an iterative
process. In each iteration, the eigensolutions are calculated from the modified substructures
with the above substructuring method and are then compared with the experimental modal
data (frequencies and mode shapes) to construct the objective function. The substructure-
based eigensensitivities with respect to a specific parameter are calculated from the substruc-
ture containing the concerned parameter, to indicate the searching direction in each optimal
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Figure 1. The model updating of forward substructuring method.

step. The objective function is minimized by adjusting the elemental parameters « iteratively
according to the eigensensitivity matrices.

The objective function formed by the modal frequency and the mode shape is written as [14]

@) = S Wh[Ata)™ — AF] + WA [0, () - 6,f] (28)
i 1 ]

where A;f and qul.E represent the experimental frequencies and mode shapes, respectively. A;FE
and ]-Z.F E are the frequencies and mode shapes gained from the analytical FE model with the
substructuring method (Eq.(8)) proposed above. W,. and W, are the weighting matrix of

frequencies and mode shapes. The objective function is minimized by adjusting the elemental
parameters « in an optimal manner.

The eigensensitivity is computed with the first derivative of a structural response with respect
to a physical parameter as [2]
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S1(@)) = 2[5, (a)) = 22 29)

In this chapter, the eigensensitivity matrices are available with the forward substructuring
method. They are computed solely from the derivative matrices of the substructure containing
the concerned element, while the corresponding derivative matrices of all other substructures
are zeros. As the calculation of eigensensitivity usually consumes most of the computation
time when numerous elemental parameters are updated in practical model updating process,
the forward substructuring method can significantly improve the computational efficiency of
the model-updating process.

3. Inverse substructuring method

3.1. The extraction of substructural flexibility

In the inverse substructuring method, the global flexibility matrix estimated from the experi-
mental modal data is disassembled into substructural flexibility matrices. Afterwards, the
analytical FE models of the substructures are updated independently and parallelly to repro-
duce the extracted substructural flexibility matrices. As before, the global structure with N
DOFs is divided into Ns independent substructures with the jth (j=1, 2,..., Ns) substructure n?’
DOFs. Treated as independent substructures, the substructural displacements, forces, stiffness,
flexibility, and rigid body modes matrices are written in the primitive form as

(27} = {20} gy {fa)...f@...f(Ns)}T

‘ ‘ ‘ (30)
K* = Diag [Ku)...Ko)...K(Ns)}FrJ — Diag {Fu)...ym...l:(Ns)},Rp — Diag {Ra)...Ro)...R(Ns)}

where K¥, F?, x0, 7 and RY, respectively, represent the stiffness, flexibility, nodal displace-
ments, external forces, and rigid body modes of the jth substructure. It is noted that the rigid
body modes R is related to free-constraint substructures. R is a zero matrix if the jth substruc-
ture is constrained after partition. Otherwise, R is determined by the nodal location. For
example, a two-dimensional structure with n nodes has three rigid body modes, i.e., the x
translation (R, =1, R, = 0), the y translation (R, =0, R, = 1) and the z rotation (R, = -y, R, =x), R
takes the form of

1 0 01 - 0 0
Rf=|0 1 00 -~ 1 0 (31)
-y a1 o=y, x|

The primitive forms of the substructural displacements and forces are associated with the
global counterparts as [15]

(= g}, [T} = {f ) (32)
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where {x,} and {f,} are the nodal displacement and external force vector of the global structure.
L? is a Boolean matrix composed of 1 and 0 values to relate the DOFs of the substructures and

the global structure [5]. Most of the values in L” are zeros. ij = 1 means that the jth DOF of the

global structure corresponds to the ith DOF in the partitioned substructures. The displacement
of an independent substructure is constituted by its deformational motions and rigid body
motion

(&'} = F{f"} + R'{p"} (33)

where f is the participation factor of rigid body modes. As an independent structure, a
substructure is excited by the external force and the internal interface force from the adjacent
substructures as

"y =W {f + C{th = {f } + C{t} (34)

where {fq} = ([L”]T)+{fg} =L’ {f,} L" = ([L"]")"is the generalized inverse of [L”]”. Similar to
the forward substructuring method, {7} denotes the internal interface forces from the adjacent

substructures, and matrix C implicitly defines the connections between the adjacent substruc-
tures. Substitution of Eq. (34) into Eq. (33) gives

("} =F'({f} + C{th) + R {p'} (35)
Substitution of Eq. (35) into the left equation of Eq. (32) gives
{xg} = W ") = [LTF({f } + C{r)) + [L']RIB) (36)

Since the global displacement is associated with the global force by {x,} = F{f g} [15], the

global flexibility can also be expressed as
{xg} = [T {x"} = [T ({f,} + C{r}) + [L') RI{B’} = Foff, } (37)

Equation (37) means that the primitive substructural flexibility matrix F¥ can be calculated

from the global flexibility matrix F, once the two variables {7} and {f/} are given. {7} and {f"}

are gained according the force and displacement compatibility condition with the following

procedures:

1. The primitive substructural rigid body modes and forces satisfy the force equilibrium
compatibility as [16, 17]>

R {7} = {0} (38)

2. From the physical point of view, matrix C constraints the displacement compatibility as

CT{x"} = {0} (39)
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Substituting Egs. (33) and (34) into Eq. (39) leads to
CH{F'({f} + C{t}) + RP{p"}} = {0}

Therefore, {7} is expressed as

[t} = —E(CTP'{f } + Re{p)

where Fc = CTF'C and R¢c = C'R?.

The combination of Eq. (34) and Eq. (41) gives
[RP]T<{fg}—CFEl(CTFP{fg} + RC{‘BP})> — {0}
{p"} is therefore solved as

{F} =K' (R”]" —RIFC'CTF){f }

where Kr = RLFZ'R¢. In consequence, {7} is therefore solved from Eq. (41) as

{t} = —F'CTP{f ) + Fo' CTRPK ([RY) KPP — [R)){F, )

where K¢ = CF:'C”. Once {7} and {#?} are solved, Eq. (36) can be expressed as

~Pp ~p
{xg} = [L']"(F — PHFY — F'KcFg — FRKCF + Fr) L {f }

where

Fr = RP([R?]"KcR?) ' [RP)T, H = K¢ — KcFrKe

(42)

(45)

In consequence, the global flexibility matrix can be expressed by the substructural flexibility matrix:

LF [L]" = F — FPKcFg — FRKcFP — FPHF + Fi

(46)

Based on Eq. (46), the substructural flexibility matrix F” is extracted from the global flexibility

F, with an iterative scheme:
1. Fisinitiated from the diagonal subblocks of the global flexibility as

[F
<1:N<'),1:N(”)

F i

) - )
[P U ) (ZN@H:ZJ:N(D, ]X:N(i)+1:z]:N(i)>
i i—1 i—1

i= i=1

oy

(@7)

11
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2. Inthekth (k=1,2, ...)iteration, the substructural flexibility matrix is calculated according
to Eq. (46)

F]y’ = F + () ) R R R R R 48)

The diagonal subblocks of [Fg][k] are reused in the next iteration
P ]

0<1 N(U,l-NU))
FF’ k]
[B)H = | O]O(iN% zj:N(’) FlN“MEENW)
i=1 i=1 i=1 i=1
F5ly
SN0 iNm ASN(‘) iNO)
I\]Z +1: ! , ! +1: !

L ( i=1 i1 =1 i=1 i
(49)

3. Step 2 stops when the substructural flexibility matrices from two consecutive iterations
drop below a predefined tolerance [16]

, _ norm([FP) — [P
a norm([F?] i ) -

(50)

The substructural flexibility matrices F) are thereby gained by the diagonal subblocks of [F?] M,

3.2. The projection matrix to extract free-free flexibility for model updating

In the substructuring methods, the global structure is divided properly into several indepen-
dent free or constrained substructures. Most of the substructures are free-free without con-
straints after partition. Here the jth substructure is free-free as an illustration. The substructural

flexibility matrix F’ from F” is constituted by both the rigid body modes and deformational
modes. Hereinafter, superscript “j” is omitted to derive the free-free substructural flexibility for
brevity. For the jth substructure, the substructural flexibility matrix, contributed by the rigid
body motions and deformational motions, is expressed as

F =F + )RR’ (51)
F is defined as the generalized substructural flexibility. Accordingly, the generalized substruc-
tural stiffness matrix, including the contribution made by the rigid body motions and defor-
mational motions is written as
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K = K+ nRR” (52)

where K is defined as the generalized substructural stiffness matrix. The free-free stiffness and
flexibility matrices (K and F) are contributed by the deformational modes solely. The partici-
pation factors y and 71 of rigid body modes are difficult to determine, which makes the
generalized flexibility unable to be applied to model updating or damage identification. It is
necessary to extract the free-free substructural flexibility contributed by the deformational
modes solely. The free-free flexibility shows the real properties of a substructure and can be
applied to model updating and damage identification.

To remove the rigid body components in the generalized substructural stiffness, flexibility, and
displacements, a projection matrix P is formed as [17]

P=1-RR'R)'RT (53)

The projection matrix P has the properties of

P> =P,PR=R'P=0 (54)

P can filter out the rigid body motions, while the free-free stiffness and flexibility matrices
contributed by the deformational modes remain unchanged

FP = F,PF =F PFP = F

FP =F PF =F,PFP =F

KP =K, PK = K, P’KP = K
KP =K P'K=K P'KP=K

(55)

On the other hand, the free-free stiffness and flexibility of a substructural analytical model are
singular, whereas the generalized stiffness and flexibility are full-rank. The free-free stiffness and
flexibility can be calculated from the inverse of the generalized stiffness and flexibility matrices as

F=P(K + nRR?)'P (56)

K = P(F + yRRT)'P (57)

If the projection matrix P is known, the free-free substructural flexibility F is calculated from
Eq. (56) or by removing all the rigid body components in the extracted substructural flexibility
matrix (Eq. (55)). In substructure-based model updating, the elemental parameters of the
analytical FE model are iteratively adjusted to minimize the discrepancy between the analyti-
cal substructural flexibility and that extracted from global data [18].

Generally, the stiffness or flexibility matrices are difficult to be measured on the full DOFs, and
the partial stiffness and flexibility at the measured DOFs are probably utilized for a substruc-
ture. Divide the full-DOF model into the measured part and the unmeasured part, the stiffness
matrix is rewritten in block form as

13
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Kaa Kab
K= 58
{ Kion Ky ] (58)

" _7

where subscript “a” represents the measured DOFs, and subscript “b” represents the
unmeasured DOFs. The condensed stiffness matrix by the Guyan static condensation is [19-21]

KG = Kaa - KabK;},lea (59)

The substructural flexibility is written in block form according to the measured and unmeasured
parts as [22]

F. Ful| = F. F
F= aa a , F=|_™ Lab 60
[ Foo Fup } [ Fpi Fup ] (60)

In this case, the projection matrix of the reduced model Pp, is formed as

Pp =I1—R,(R'R,) 'R (61)

which has the properties of
P, = Pp (62)
PpR, =R'Pp =0 (63)

The rigid body modes R, are gained by rewriting the rows in Eq. (58) corresponding to the
measured DOFs.

The projection matrix Pp removes the rigid body components in the partial substructural
flexibility matrix and leaves the free-free substructural flexibility by

F.Pp = PDFzm = PDFaaPD = Fau (64)

FthD - PDFaa - PDFuaPD = Fuu (65)

In addition, the projection matrix can be used to form the dual inverse of substructural stiffness
and flexibility like

-1

F, = Pp (KG n Ra(RaTRa)_lRaT) Py (66)
_ T 1T\ !

K¢ = Pp(Fu + R,(R'R,) 'RT)  Pp (67)

In substructure-based model updating, the elemental parameters in the substructural model
are iteratively adjusted to minimize the discrepancy between the substructural flexibility and
that extracted from global modal data [18]. For a free-free substructure, the flexibility extracted
from global modal data is contaminated by the rigid body motions, and the stiffness matrix of
substructural analytical FE model is singular. The projection matrix is utilized to extract the
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free-free flexibility for model updating. On the one hand, the projection matrix removes the
rigid body components in the generalized substructural flexibility from experimental data and
leaves the free-free substructural flexibility according to

FL, = PpF,Pp (68)

On the other hand, the free-free flexibility matrix of the substructural FE model is iteratively
computed from the singular stiffness matrix according to

1
Fif = Pp(Kq + Ri(R'R,) 'RT) Pp (69)

3.3. Substructure-based model updating

The substructure-based model updating process is listed in Figure 2. Identically, the jth sub-
structure, which is free-free after partition, is employed to illustrate the substructure-based
model updating in the following:

1. The experimental flexibility F§ is estimated by modal data of the global structure.

_(\E
2. The generalized substructural flexibility matrix (F(] ) is extracted from the global flexi-

bility matrix F§ by the proposed substructuring method in Section 3.1.

3. The rigid body modes RY are constructed according to the nodal location of the jth

substructure (Eq. (31)), and the projection matrix P is formed according to the proposed
method in Section 3.2.

NE

The free-free substructural flexibility is extracted by the projection matrix as (F(’)) =
s (O\NE .
[P(J)]T(F ) PV

4. The FE model of the jth substructure is constructed without constraints. The FE model of
the jth substructure is treated as an independent structure to be updated: In each iteration,

-\ FE
the free-free substructural flexibility matrix (F(f)) at the measured DOFs and its sensi-

-\ FE
tivity with respect to « G(FU)> /0a are computed [21]. The elemental parameters in the

jth substructure are adjusted according to the sensitivity (J(a)) of the flexibility with
respect to elemental parameters, to minimize the objective function AF(a) through the
Trust Region Newton method [2, 3, 18].

In the proposed substructuring method, the substructural flexibility matrices in primitive
matrix F¥ are independent. And only one substructure instead of the whole global structure
at a time is updated in each iteration. The size of system matrices and updating parameters
are sharply reduced, which improves the computational efficiency of model updating
significantly.

15
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Figure 2. The model updating of inverse substructuring method.

4. Laboratory frame structure

Here a laboratory-tested steel frame structure is employed to investigate the effectiveness of the
forward and inverse substructuring methods in model updating and damage identification. The
cross section of the beams is 50.0 x 8.8 mm? and the cross section of the columns is 50.0 x 4.4
mm?, with the dimensions shown in Figures 3(a) and (b). The mass density of the structural
material is 7.67 x 10° kg/m°. The FE model of the frame is composed of 44 nodes and 45
elements, with each element 100 mm in length as Figure 3(c). In experiment, the accelerometers
are placed at the nodes to measure the translational vibration of the frame [23]. The sampling
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Figure 3. Laboratory-tested frame structure. (a) Experimental specimen. (b) Configurations. (c) Analytical model.

frequency was set to 2000 Hz. The specimen was excited with the instrumented hammer at the
reference point indicated in Figure 3(a).

The FE model is first updated in the undamaged state, and the refined model is subsequently used
for damage identification. In the undamaged state, the Young’s modules of all 45 elements are
updated, with their initial values set to 2 x10"" Pa. The global structure is partitioned into three
substructures, and the elements in the substructures are labeled in Figure 3(c). Accordingly, there
are 17 updating parameters in the first substructure, 15 in the second, and 13 in the third. The
recorded input and output time history were analyzed in Matlab platform to derive the first 14
experimental frequencies and mode shapes.

Using the forward substructuring method, the first 30 modes in each substructure are selected
as the master modes. In the model updating process, the substructure-based eigensolutions are
compared with the first 14 experimental frequencies and mode shapes to form the objective
function. The eigensensitivities are computed from one substructure solely to improve the
computational efficiency. The elemental parameters of the FE model are adjusted iteratively
to minimize the objective function through an optimal process. The elemental stiffness reduc-
tion factor (SRF) is used to estimate the damage identification, which gives the change ratio of
the updated values to the initial values of updating parameters.
Aa  aY —a®

SRF=— =~ 70
" 0 (70)

where superscript O denotes the initial values before updating and U denotes the updated
values. The SRF values of the three substructures after updating are listed in Figure 4(a). The
model improved in the undamaged state is used for damage identification subsequently.

17
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Figure 4. SRF values of the three substructures in the undamaged state. (a) Forward substructuring method. (b) Inverse

substructuring method.

There are two damage configurations in the frame. In the first damage case, the column of the
tirst storey is cut with the width of b = 10 mm and depth 4 = 15 mm at 180 mm away from the
support (Figure 3(b)). Subsequently, the second storey is cut with the same width and depth at

750 mm away from the support.

In the first damage configuration, the cut is located in the first storey. The 17 elemental
parameters in Substructure 1 are adjusted iteratively to minimize the discrepancy between the
analytical eigensolutions and the measured modal data. In FE model updating, only the first
substructure is reanalyzed, and the eigensolutions of the second and third substructures
remain untouched and reused directly to compute the eigensolutions of global structure. The
eigensensitivities with respect to the 17 elemental parameters are computed from the substruc-
tural derivative matrices of the first substructure solely, whereas those in the second and third

substructures are zero-matrices. The elemental parameters in the undamaged state are subse-
quently employed for damage identification. It is apparent from Figure 5(a) that, Element 2 has
an obvious negative value in SRF of about —25%, which agrees with the location of the cut in

the experiment.
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Figure 5. SRF values of the first damage configuration. (a) Forward substructuring method. (b) Inverse substructuring

method. T Actual damage location.

In the second damage configuration, the two cuts are located in the first and second sub-
structures, respectively. Subsequently, the first and second substructures are updated, while
the third substructure remains untouched. The SRF values shown in Figure 6(a) demonstrate
that Element 2 of the first substructure and Element 2 of the second substructure have an
obvious negative SRF values. The identified locations agree with those of the experimental cut.
Particularly, the SRF values of Element 2 of the first substructure are about —23%, comparable
to that in the first damage configuration. This is because the cut remains unchanged in the two
damage configurations.

Afterwards, the frame structure is analyzed by the inverse substructuring method with the
same measured data and FE model. In the undamaged state, the global flexibility is formu-
lated from the 14 pairs of measured natural frequencies and mode shapes. The inverse
substructuring method is used to extract the substructural flexibility matrices of the three

First Substructure

0%1234567891011121314151617 00 1 }3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Element Element

Second Substructure

1234567Ele§]em9101112131415 01 3 4 5 6 7 8 9 10 11 12 13 14 15
Element

(a) Forward substructuring method (b) Inverse substructuring method

Figure 6. SRF values of the second damage configuration. (a) Forward substructuring method. (b) Inverse substructuring

method. T Actual damage location.
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substructures simultaneously. The global FE model is divided into three substructures as
well. The substructural flexibility of the three submodels is compared with the extracted
substructural flexibility to form the objective function. The discrepancy of substructural
flexibility matrices between the FE sub-model and extracted ones is minimized by adjusting
the updating elemental parameters of the three submodels independently. Figure 4(b)
reports the updated SRF values of the three substructures, which are subsequently utilized
for damage identification.

In the first damage case, the local area within the first storey, i.e., Nodes 1 to 18 in Figure 3(c), are
measured. Accordingly, only the substructural flexibility matrix of the first storey is extracted,
based on which the submodel of the first substructure is updated independently. Figure 5(b)
reveals a significant reduction in stiffness in Element 2, which agrees with the real location of the
cut in experiment. The identified damage location and severity agrees with those obtained by the
forward substructuring method as well.

In the second damage configuration, the frequencies and mode shapes measured in the first
and second storeys are measured to form the global flexibility matrix. The substructural
flexibility corresponding to the first and second substructures are extracted from the global
flexibility simultaneously. The submodels of the first and second substructures are indepen-
dently updated to recover the extracted substructural flexibility. Figure 6(b) reveals a negative
SRF value of —20% in Element 2 of the first substructure and —25% in Element 2 of the second
substructure. The identified damage location and severity are consistent to those gained by the
forward substructuring method again. Both the forward and inverse substructuring methods
are effective in model updating and damage identification.

5. Conclusion

A forward substructuring method and an inverse substructuring method are proposed in
this chapter for model updating and damage identification. In the forward substructure-
based model updating, the modified substructures are reanalyzed and assembled with
other untouched substructures for the eigensolutions of the global structure to match the
experimental data in an optimal manner. In the inverse substructuring method, the exper-
imental modal data measured in local areas are used to extract the experimental flexibility
matrix of the concerned substructure. The concerned substructures are updated by being
treated as independent structures. Both the forward and inverse substructuring methods
are effective in model updating and damage identification of a laboratory-tested steel
frame structure. In the substructure-based model updating, only one substructure instead
of the large-scale global structure is re-analyzed, which will be quite efficient for the
model updating of practical large-scale structures. The substructuring methods are prom-
ising to be combined with the nonlinear analysis, vibration control, and parallel computa-
tion as well.
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